1
|
Ostwald M, Gonzalez V, Chang C, Vitale N, Lucia M, Seltmann K. Toward a Functional Trait Approach to Bee Ecology. Ecol Evol 2024; 14:e70465. [PMID: 39429800 PMCID: PMC11487340 DOI: 10.1002/ece3.70465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
Functional traits offer an informative framework for understanding ecosystem functioning and responses to global change. Trait data are abundant in the literature, yet many communities of practice lack data standards for trait measurement and data sharing, hindering data reuse that could reveal large-scale patterns in functional and evolutionary ecology. Here, we present a roadmap toward community data standards for trait-based research on bees, including a protocol for effective trait data sharing. We also review the state of bee functional trait research, highlighting common measurement approaches and knowledge gaps. These studies were overwhelmingly situated in agroecosystems and focused predominantly on morphological and behavioral traits, while phenological and physiological traits were infrequently measured. Studies investigating climate change effects were also uncommon. Along with our review, we present an aggregated morphological trait dataset compiled from our focal studies, representing more than 1600 bee species globally and serving as a template for standardized bee trait data presentation. We highlight obstacles to harmonizing this trait data, especially ambiguity in trait classes, methodology, and sampling metadata. Our framework for trait data sharing leverages common data standards to resolve these ambiguities and ensure interoperability between datasets, promoting accessibility and usability of trait data to advance bee ecological research.
Collapse
Affiliation(s)
- Madeleine M. Ostwald
- Cheadle Center for Biodiversity & Ecological RestorationUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Victor H. Gonzalez
- Undergraduate Biology Program and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - Carrie Chang
- Cheadle Center for Biodiversity & Ecological RestorationUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Nydia Vitale
- Instituto Argentino de Investigaciones de Las Zonas Áridas, CONICETMendozaArgentina
| | - Mariano Lucia
- División Entomología, Laboratorio Anexo Museo de La PlataUniversidad Nacional de La Plata, CONICETLa PlataArgentina
| | - Katja C. Seltmann
- Cheadle Center for Biodiversity & Ecological RestorationUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| |
Collapse
|
2
|
Remmers R, Frantzeskaki N. Bees in the city: Findings from a scoping review and recommendations for urban planning. AMBIO 2024; 53:1281-1295. [PMID: 38767748 PMCID: PMC11300792 DOI: 10.1007/s13280-024-02028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/25/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Over the last decades, bee biodiversity has dropped sharply due to land use change, including urbanization. To contrast this, recent research has pointed to cities as a hotspot for bees. Because of this ambiguity, a scoping review has been conducted to examine the urban characteristics that impact bees and how bees are impacted. A total of 276 articles were analyzed against landscape and local habitat characteristics. The key findings include first that natural areas are more valuable for bees since biodiversity levels are higher. Second, urban areas generally score better than agricultural and rural areas. Third, plant biodiversity positively influences bee biodiversity. Fourth, the urban environment strongly affects some bee traits and the proportion of native bees. For making cities bee friendly and bee inclusive, we recommend to maintain natural areas, connect natural areas to urban ecosystems, encourage floral abundance and diversity and increasing the size of urban green areas overall.
Collapse
Affiliation(s)
- Rutger Remmers
- Department of Biology, School of Science, Utrecht University, Utrecht, The Netherlands
| | - Niki Frantzeskaki
- Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, Vening Meinesz building A, Princetonlaan 8a, 3584 CB, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Genung MA, Reilly J, Williams NM, Buderi A, Gardner J, Winfree R. Rare and declining bee species are key to consistent pollination of wildflowers and crops across large spatial scales. Ecology 2023; 104:e3899. [PMID: 36263772 DOI: 10.1002/ecy.3899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 02/03/2023]
Abstract
Biodiversity promotes ecosystem function (EF) in experiments, but it remains uncertain how biodiversity loss affects function in larger-scale natural ecosystems. In these natural ecosystems, rare and declining species are more likely to be lost, and function needs to be maintained across space and time. Here, we explore the importance of rare and declining bee species to the pollination of three wildflowers and three crops using large-scale (72 sites across 5000 km2 ), multi-year datasets. Half of the sampled bee species (82/164) were rare or declining, but these species provided only ~15% of overall pollination. To determine the number of species important to EF, we used two methods of "scaling up," both of which have previously been used for biodiversity-function analysis. First, we summed bee species' contributions to pollination across space and time and then found the minimum set of species needed to provide a threshold level of function across all sites; according to this method, effectively no rare and declining bee species were important to pollination. Second, we account for the "insurance value" of biodiversity by finding the minimum set of bee species needed to simultaneously provide a threshold level of function at each site in each year. The second method leads to the conclusion that 25 rare and eight declining bee species (36% and 53% of all rare and declining bee species, respectively) are included in the minimum set. Our findings provide some of the strongest evidence yet that rare and declining species are key to meeting threshold levels of EF, thereby providing a more direct link between real-world biodiversity loss and EF.
Collapse
Affiliation(s)
- Mark A Genung
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | - James Reilly
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | - Neal M Williams
- Department of Entomology, University of California - Davis, Davis, California, USA
| | - Andrew Buderi
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Joel Gardner
- Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rachael Winfree
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
4
|
Sato A, Takahashi Y. Responses in thermal tolerance and daily activity rhythm to urban stress in Drosophila suzukii. Ecol Evol 2022; 12:e9616. [PMID: 36518620 PMCID: PMC9744627 DOI: 10.1002/ece3.9616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Cities experience changes in abiotic factors, such as warming, increases in noise and light. These changes can lead to phenotypic changes. Several studies have revealed that altered environments change phenotypes in plants and animals in cities. However, limited studies have isolated evolutionary from nongenetic changes. Here, we analyzed the evolution of thermal tolerance and diurnal activity patterns in the urban population of the fruit pest, Drosophila suzukii. Urban and rural isofemale lines were reared under constant conditions. We compared the lower and upper thermal limits (CTmin and CTmax, respectively), and effects of temperature exposure on the thermal limits of urban and rural populations. Common garden experiments showed that urban populations exhibit a lower CTmin than rural populations, suggesting genetic difference in CTmin among populations. On the other hand, the difference in CTmax between urban and rural populations was not significant. Exposure to cold temperature did not affect CTmin in both urban and rural populations. In contrast, exposure to hot temperature increased CTmax especially in urban population, suggesting that urban populations evolved in response to urban heat. We also investigated the daily activity patterns of urban and rural populations and the effect of lifelong artificial light at night on daily activity. We found that night-time light (dim light) reduced the total amount of activity compared to dark night condition. In addition, dim light at night altered the daily rhythm of activity and increased the activity rate at night. The effect of night light on total activity was less in urban than that in rural populations, suggesting that populations in cities evolved to mitigate decreased activity under night light. Our results showed that environmental temperature and artificial light at night evolutionarily and plastically influence ecologically important traits, such as temperature tolerance and diurnal activity.
Collapse
Affiliation(s)
- Ayame Sato
- Graduate School of Science and EngineeringChiba UniversityChibaJapan
| | | |
Collapse
|
5
|
Xie G, Sookhan N, Carscadden KA, MacIvor JS. No evidence for environmental filtering of cavity-nesting solitary bees and wasps by urbanization using trap nests. Ecol Evol 2022; 12:e9360. [PMID: 36203633 PMCID: PMC9526028 DOI: 10.1002/ece3.9360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/01/2022] [Accepted: 08/27/2022] [Indexed: 11/12/2022] Open
Abstract
Spatial patterns in biodiversity are used to establish conservation priorities and ecosystem management plans. The environmental filtering of communities along urbanization gradients has been used to explain biodiversity patterns but demonstrating filtering requires precise statistical tests to link suboptimal environments at one end of a gradient to lower population sizes via ecological traits. Here, we employ a three-part framework on observational community data to test: (I) for trait clustering (i.e., phenotypic similarities among co-occurring species) by comparing trait diversity to null expectations, (II) if trait clustering is correlated with an urbanization graient, and (III) if species' traits relate to environmental conditions. If all criteria are met, then there is evidence that urbanization is filtering communities based on their traits. We use a community of 46 solitary cavity-nesting bee and wasp species sampled across Toronto, a large metropolitan city, over 3 years to test these hypotheses. None of the criteria were met, so we did not have evidence for environmental filtering. We do show that certain ecological traits influence which species perform well in urban environments. For example, cellophane bees (Hylaeus: Colletidae) secrete their own nesting material and were overrepresented in urban areas, while native leafcutting bees (Megachile: Megachilidae) were most common in greener areas. For wasps, prey preference was important, with aphid-collecting (Psenulus and Passaloecus: Crabronidae) and generalist spider-collecting (Trypoxylon: Crabronidae) wasps overrepresented in urban areas and caterpillar- and beetle-collecting wasps (Euodynerus and Symmorphus: Vespidae, respectively) overrepresented in greener areas. We emphasize that changes in the prevalence of different traits across urban gradients without corresponding changes in trait diversity with urbanization do not constitute environmental filtering. By applying this rigorous framework, future studies can test whether urbanization filters other nesting guilds (i.e., ground-nesting bees and wasps) or larger communities consisting of entire taxonomic groups.
Collapse
Affiliation(s)
- Garland Xie
- Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Nicholas Sookhan
- Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Kelly A. Carscadden
- Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - James Scott MacIvor
- Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| |
Collapse
|
6
|
Fernandes K, Prendergast K, Bateman PW, Saunders BJ, Gibberd M, Bunce M, Nevill P. DNA metabarcoding identifies urban foraging patterns of oligolectic and polylectic cavity-nesting bees. Oecologia 2022; 200:323-337. [PMID: 36098815 PMCID: PMC9675668 DOI: 10.1007/s00442-022-05254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022]
Abstract
Urbanisation modifies natural landscapes resulting in built-up space that is covered by buildings or hard surfaces and managed green spaces that often substitute native plant species with exotics. Some native bee species have been able to adapt to urban environments, foraging and reproducing in these highly modified areas. However, little is known on how the foraging ecology of native bees is affected by urbanised environments, and whether impacts vary among species with different degrees of specialisation for pollen collection. Here, we aim to investigate the responses of native bee foraging behaviour to urbanisation, using DNA metabarcoding to identify the resources within nesting tubes. We targeted oligolectic (specialist) and polylectic (generalist) cavity-nesting bee species in residential gardens and remnant bushland habitats. We were able to identify 40 families, 50 genera, and 23 species of plants, including exotic species, from the contents of nesting tubes. Oligolectic bee species had higher diversity of plant pollen in their nesting tubes in residential gardens compared to bushland habitats, along with significantly different forage composition between the two habitats. This result implies a greater degree of forage flexibility for oligolectic bee species than previously thought. In contrast, the diversity and composition of plant forage in polylectic bee nesting tubes did not vary between the two habitat types. Our results suggest a complex response of cavity-nesting bees to urbanisation and support the need for additional research to understand how the shifts in foraging resources impact overall bee health.
Collapse
Affiliation(s)
- Kristen Fernandes
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia. .,Section for Molecular Ecology and Evolution, Faculty of Health and Medical Sciences, Globe Institute, University of Copenhagen, Copenhagen K, Denmark. .,Food Agility CRC Ltd, 175 Pitt St, Sydney, NSW, 2000, Australia.
| | - Kit Prendergast
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Philip W Bateman
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.,MBioMe - Mine Site Biomonitoring using eDNA Research Group, Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Benjamin J Saunders
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Mark Gibberd
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.,The Institute of Environmental Science and Research (ESR), Kenepuru, Porirua, 5022, New Zealand
| | - Paul Nevill
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.,MBioMe - Mine Site Biomonitoring using eDNA Research Group, Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| |
Collapse
|
7
|
Villalta I, Bouget C, Lopez-Vaamonde C, Baude M. Phylogenetic, functional and taxonomic responses of wild bee communities along urbanisation gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154926. [PMID: 35364149 DOI: 10.1016/j.scitotenv.2022.154926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/26/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Increasing urbanisation is one of the primary drivers of land-use change that threaten biodiversity. Wild bee communities have been reported with contrasting responses to urbanisation, with varying effects on abundance and taxonomical diversity. The suite of functional traits exhibited by wild bee species might determine their persistence in urban areas. Urbanisation thus can impose an environmental filter with potential consequences on the functional and phylogenetical diversity of wild bee communities. Here, we sampled 2944 wild bee specimens from 156 species in 29 sites located along an urbanisation gradient using a replicated design in three mid-sized cities in the Loire valley (France). We show that urban landscape cover has a negative effect on overall species richness and taxonomical diversity indices, while total abundance remains constant. Species loss was taxon dependent, mainly driven by Andrenidae and Halictidae. Only a few species, especially of the genus Lasioglossum, were positively affected by the urban landscape cover. Urban and peri-urban areas differed in their composition of bee assemblages. Species turnover was the main component of beta diversity, driving community dissimilarities through the urban gradient. Urbanisation favours bees with small body sizes, social structure and extended flight periods but did not affect the phylogenetic or the functional diversity of communities. Our findings have implications for understanding the factors involved in the environmental filter exerted through the urban gradient on bee communities helping to implement conservation measures and managing urban spaces for bees.
Collapse
Affiliation(s)
| | | | - Carlos Lopez-Vaamonde
- IRBI, UMR 7261, Université de Tours, Tours, France; INRAE, UR0633 Zoologie Forestière, Orléans, France
| | - Mathilde Baude
- Université d'Orléans, INRAE USC 1328, LBLGC EA 1207, Orléans, France
| |
Collapse
|
8
|
Cunningham SA, Crane MJ, Evans MJ, Hingee KL, Lindenmayer DB. Density of invasive western honey bee (Apis mellifera) colonies in fragmented woodlands indicates potential for large impacts on native species. Sci Rep 2022; 12:3603. [PMID: 35246626 PMCID: PMC8897460 DOI: 10.1038/s41598-022-07635-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
Feral Apis mellifera colonies are widespread globally and cause ecological impacts as pollinators and competitors for food and nesting opportunities. The magnitude of impact depends on their population density, but knowledge of this density is poor. We document feral A. mellifera colonies at 69 per km2 in fragmented Eucalyptus woodlands in Australia, exceeding estimates from elsewhere in the world, and matched only by one other Australian study. We surveyed 52.5 ha of woodland patches with 357 nest boxes installed to provide nesting opportunities for threatened vertebrates. Our sites covered a region of more than 140 km across with repeated surveys over 3 to 6 years. We show that nest box use by feral A. mellifera colonies is influenced by box design (p = 0.042), with weak evidence for an interactive effect of type of vegetation at a site (woodland remnants vs. replanting) and woody cover within 500 m (p = 0.091). At 69 colonies per km2, this density is equivalent to the recommended stocking of hives for pollination of some crops and is therefore likely to influence pollination and lead to competition with other flower visitors. Apis mellifera is also likely to be competing for hollows with cavity dependent native fauna, especially in landscapes where there has been extensive tree removal.
Collapse
Affiliation(s)
- Saul A Cunningham
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 0200, Australia.
| | - Mason J Crane
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 0200, Australia
| | - Maldwyn J Evans
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 0200, Australia.,Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kassel L Hingee
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 0200, Australia
| | - David B Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 0200, Australia
| |
Collapse
|
9
|
Zaninotto V, Perrard A, Babiar O, Hansart A, Hignard C, Dajoz I. Seasonal Variations of Pollinator Assemblages among Urban and Rural Habitats: A Comparative Approach Using a Standardized Plant Community. INSECTS 2021; 12:insects12030199. [PMID: 33673434 PMCID: PMC7996759 DOI: 10.3390/insects12030199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/30/2023]
Abstract
Simple Summary Urbanization modifies the composition of all biological communities, including insect pollinator communities, but what is filtered out? To answer this question, we compared the pollinators and their morphological and behavioral characteristics between Paris green spaces and nearby rural grasslands. We monitored the pollinators foraging on identical plant plots in these two environments for two years, and from spring to fall. Pollinators in the city were relatively less diverse than their rural counterparts. They comprised fewer bees belonging to solitary or ground-nesting species, but the bees had a larger body size overall. These data add to the body of evidence of a filtering of pollinator communities by the urban environment, partly because the abundance and distribution of nesting and feeding resources are modified. Since the diversity of pollinators is important for plant pollination, such effects must be considered in order to preserve the insect pollinator community and maintain the pollination function despite the increasing urbanization of our landscapes. Abstract Even though urban green spaces may host a relatively high diversity of wild bees, urban environments impact the pollinator taxonomic and functional diversity in a way that is still misunderstood. Here, we provide an assessment of the taxonomic and functional composition of pollinator assemblages and their response to urbanization in the Paris region (France). We performed a spring-to-fall survey of insect pollinators in green spaces embedded in a dense urban matrix and in rural grasslands, using a plant setup standardized across sites and throughout the seasons. We compared pollinator species composition and the occurrence of bee functional traits over the two habitats. There was no difference in species richness between habitats, though urban assemblages were dominated by very abundant generalist species and displayed a lower evenness. They also included fewer brood parasitic, solitary or ground-nesting bees. Overall, bees tended to be larger in the city than in the semi-natural grasslands, and this trait exhibited seasonal variations. The urban environment filters out some life history traits of insect pollinators and alters their seasonal patterns, likely as a result of the fragmentation and scarcity of feeding and nesting resources. This could have repercussions on pollination networks and the efficiency of the pollination function.
Collapse
Affiliation(s)
- Vincent Zaninotto
- Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, UPEC, 4 Place Jussieu, 75005 Paris, France; (A.P.); (I.D.)
- Direction des Espaces verts et de l’Environnement, Mairie de Paris, 103 Avenue de France, 75013 Paris, France
- Correspondence:
| | - Adrien Perrard
- Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, UPEC, 4 Place Jussieu, 75005 Paris, France; (A.P.); (I.D.)
| | - Olivier Babiar
- Station d’Écologie Forestière, Université de Paris, Route de la tour Dénécourt, 77300 Fontainebleau, France; (O.B.); (C.H.)
| | - Amandine Hansart
- Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP-Ecotron IleDeFrance), Département de biologie, École Normale Supérieure, PSL University, CNRS, UMS 3194, 11 Chemin de Busseau, 77140 Saint-Pierre-lès-Nemours, France;
| | - Cécile Hignard
- Station d’Écologie Forestière, Université de Paris, Route de la tour Dénécourt, 77300 Fontainebleau, France; (O.B.); (C.H.)
| | - Isabelle Dajoz
- Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, UPEC, 4 Place Jussieu, 75005 Paris, France; (A.P.); (I.D.)
| |
Collapse
|
10
|
Hung KLJ, Sandoval SS, Ascher JS, Holway DA. Joint Impacts of Drought and Habitat Fragmentation on Native Bee Assemblages in a California Biodiversity Hotspot. INSECTS 2021; 12:insects12020135. [PMID: 33562453 PMCID: PMC7914906 DOI: 10.3390/insects12020135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 01/27/2023]
Abstract
Simple Summary Global climate change is causing more frequent and severe droughts, which can have serious impacts on our environment. To examine how a severe drought in 2014 impacted wild bees in scrub habitats of San Diego, California, we compared bee samples collected before and after the drought. We also investigated whether habitat loss and fragmentation worsened the impacts of drought on wild bees by comparing samples collected from large natural reserves to those from small fragments of scrub habitat embedded in urban areas. Samples collected after the drought contained fewer bee species and fewer individual bees of most species, indicating that bee populations suffered losses during the drought. However, after-drought samples contained large numbers of Dialictus sweat bees, indicating that some bee species benefitted from environmental conditions present during the drought. The impact of drought on the composition of bee samples was three fold higher than the impact of habitat fragmentation, and habitat fragmentation did not appear to have exacerbated the impacts of drought. Our findings highlight the importance of studying how impacts of climate change compare with impacts of habitat loss and other threats to biodiversity conservation. Abstract Global climate change is causing more frequent and severe droughts, which could have serious repercussions for the maintenance of biodiversity. Here, we compare native bee assemblages collected via bowl traps before and after a severe drought event in 2014 in San Diego, California, and examine the relative magnitude of impacts from drought in fragmented habitat patches versus unfragmented natural reserves. Bee richness and diversity were higher in assemblages surveyed before the drought compared to those surveyed after the drought. However, bees belonging to the Lasioglossum subgenus Dialictus increased in abundance after the drought, driving increased representation by small-bodied, primitively eusocial, and generalist bees in post-drought assemblages. Conversely, among non-Dialictus bees, post-drought years were associated with decreased abundance and reduced representation by eusocial species. Drought effects were consistently greater in reserves, which supported more bee species, than in fragments, suggesting that fragmentation either had redundant impacts with drought, or ameliorated effects of drought by enhancing bees’ access to floral resources in irrigated urban environments. Shifts in assemblage composition associated with drought were three times greater compared to those associated with habitat fragmentation, highlighting the importance of understanding the impacts of large-scale climatic events relative to those associated with land use change.
Collapse
Affiliation(s)
- Keng-Lou James Hung
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA; (S.S.S.); (D.A.H.)
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
- Correspondence:
| | - Sara S. Sandoval
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA; (S.S.S.); (D.A.H.)
| | - John S. Ascher
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore;
| | - David A. Holway
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA; (S.S.S.); (D.A.H.)
| |
Collapse
|
11
|
Achury R, Holway DA, Suarez AV. Pervasive and persistent effects of ant invasion and fragmentation on native ant assemblages. Ecology 2021; 102:e03257. [PMID: 33226643 DOI: 10.1002/ecy.3257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023]
Abstract
Biological invasions are a leading cause of global change, yet their long-term effects remain hard to predict. Invasive species can remain abundant for long periods of time, or exhibit population crashes that allow native communities to recover. The abundance and impact of nonnative species may also be closely tied to temporally variable habitat characteristics. We investigated the long-term effects of habitat fragmentation and invasion by the Argentine ant (Linepithema humile) by resurveying ants in 40 scrub habitat fragments in coastal southern California that were originally sampled 21 yr ago. At a landscape scale, fragment area, but not fragment age or Argentine ant mean abundance, continued to explain variation in native ant species richness; the species-area relationship between the two sample years did not differ in terms of slope or intercept. At local scales, over the last 21 yr we detected increases in the overall area invaded (+36.7%, estimated as the proportion of occupied traps) and the relative abundance of the Argentine ant (+121.95%, estimated as mean number of workers in pitfall traps). Argentine ant mean abundance also increased inward from urban edges in 2017 compared to 1996. The greater level of penetration into fragments likely reduced native ant richness by eliminating refugia for native ants in fragments that did not contain sufficient interior area. At one fragment where we sampled eight times over the last 21 yr, Argentine ant mean abundance increased over time while the diversity of native ground-foraging ants declined from 14 to 4 species. Notably, native species predicted to be particularly sensitive to the combined effect of invasion and habitat loss were not detected at any sites in our recent sampling, including the army ant genus Neivamyrmex. Conversely, two introduced ant species (Brachymyrmex patagonicus and Pheidole flavens) that were undetected in 1996 are now common and widespread at our sites. Our results indicate that behaviorally and numerically dominant invasive species can maintain high densities and suppress native diversity for extended periods.
Collapse
Affiliation(s)
- Rafael Achury
- Department of Entomology, University of Illinois at Urbana-Champaign, 320 Morrill Hall, 505 S. Goodwin Avenue, Urbana, Illinois, 61801, USA
| | - David A Holway
- Division of Biological Sciences, University of California at San Diego, La Jolla, California, 92093, USA
| | - Andrew V Suarez
- Department of Entomology, University of Illinois at Urbana-Champaign, 320 Morrill Hall, 505 S. Goodwin Avenue, Urbana, Illinois, 61801, USA.,Department of Evolution, Ecology and Behavior, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
12
|
Theodorou P, Herbst SC, Kahnt B, Landaverde-González P, Baltz LM, Osterman J, Paxton RJ. Urban fragmentation leads to lower floral diversity, with knock-on impacts on bee biodiversity. Sci Rep 2020; 10:21756. [PMID: 33303909 PMCID: PMC7730174 DOI: 10.1038/s41598-020-78736-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/26/2020] [Indexed: 11/23/2022] Open
Abstract
Bees and flowering plants are two closely interacting groups of organisms. Habitat loss and fragmentation associated with urbanisation are major threats to both partners. Yet how and why bee and floral richness and diversity co-vary within the urban landscape remain unclear. Here, we sampled bees and flowering plants in urban green spaces to investigate how bee and flowering plant species richness, their phylogenetic diversity and pollination-relevant functional trait diversity influence each other in response to urban fragmentation. As expected, bee abundance and richness were positively related to flowering plant richness, with bee body size (but not bee richness and diversity) increasing with nectar-holder depth of flowering plants. Causal modelling indicated that bottom-up effects dictated patterns of bee-flower relationships, with urban fragmentation diminishing flowering plants richness and thereby indirectly reducing bee species richness and abundance. The close relationship between bees and flowering plants highlights the risks of their parallel declines in response to land-use change within the urban landscape.
Collapse
Affiliation(s)
- Panagiotis Theodorou
- General Zoology, Institute for Biology, Martin-Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany.
| | - Sarah-Christine Herbst
- General Zoology, Institute for Biology, Martin-Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Belinda Kahnt
- General Zoology, Institute for Biology, Martin-Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Patricia Landaverde-González
- General Zoology, Institute for Biology, Martin-Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
- Unidad para el Conocimiento, Uso y Valoración de la Biodiversidad, Centro de Estudios Conservacionistas-CECON-, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Avenida La Reforma 0-63 zona 10, 01010, Ciudad de Guatemala, Guatemala
| | - Lucie M Baltz
- General Zoology, Institute for Biology, Martin-Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Julia Osterman
- General Zoology, Institute for Biology, Martin-Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
- Helmholtz Centre for Environmental Research-UFZ Leipzig, ESCALATE, Department of Computational Landscape Ecology, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Robert J Paxton
- General Zoology, Institute for Biology, Martin-Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
13
|
Wild Bee Conservation within Urban Gardens and Nurseries: Effects of Local and Landscape Management. SUSTAINABILITY 2019. [DOI: 10.3390/su12010293] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Across urban environments, vegetated habitats provide refuge for biodiversity. Gardens (designed for food crop production) and nurseries (designed for ornamental plant production) are both urban agricultural habitats characterized by high plant species richness but may vary in their ability to support wild pollinators, particularly bees. In gardens, pollinators are valued for crop production. In nurseries, ornamental plants rarely require pollination; thus, the potential of nurseries to support pollinators has not been examined. We asked how these habitats vary in their ability to support wild bees, and what habitat features relate to this variability. In 19 gardens and 11 nurseries in California, USA, we compared how local habitat and landscape features affected wild bee species abundance and richness. To assess local features, we estimated floral richness and measured ground cover as proxies for food and nesting resources, respectively. To assess landscape features, we measured impervious land cover surrounding each site. Our analyses showed that differences in floral richness, local habitat size, and the amount of urban land cover impacted garden wild bee species richness. In nurseries, floral richness and the proportion of native plant species impacted wild bee abundance and richness. We suggest management guidelines for supporting wild pollinators in both habitats.
Collapse
|