1
|
Beissinger SR, Peterson SM, Hall LA, Van Schmidt N, Tecklin J, Risk BB, Richmond OM, Kovach TJ, Kilpatrick AM. Stability of patch-turnover relationships under equilibrium and nonequilibrium metapopulation dynamics driven by biogeography. Ecol Lett 2022; 25:2372-2383. [PMID: 36209497 PMCID: PMC9828715 DOI: 10.1111/ele.14111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/27/2022] [Accepted: 07/31/2022] [Indexed: 01/12/2023]
Abstract
Two controversial tenets of metapopulation biology are whether patch quality and the surrounding matrix are more important to turnover (colonisation and extinction) than biogeography (patch area and isolation) and whether factors governing turnover during equilibrium also dominate nonequilibrium dynamics. We tested both tenets using 18 years of surveys for two secretive wetland birds, black and Virginia rails, during (1) a period of equilibrium with stable occupancy and (2) after drought and arrival of West Nile Virus (WNV), which resulted in WNV infections in rails, increased extinction and decreased colonisation probabilities modified by WNV, nonequilibrium dynamics for both species and occupancy decline for black rails. Area (primarily) and isolation (secondarily) drove turnover during both stable and unstable metapopulation dynamics, greatly exceeding the effects of patch quality and matrix conditions. Moreover, slopes between turnover and patch characteristics changed little between equilibrium and nonequilibrium, confirming the overriding influences of biogeographic factors on turnover.
Collapse
Affiliation(s)
- Steven R. Beissinger
- Department of Environmental Science, Policy & ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA,Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Sean M. Peterson
- Department of Environmental Science, Policy & ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA,Department of Environmental BiologyState University of New York College of Environmental Science and ForestryNew YorkUSA
| | - Laurie A. Hall
- Department of Environmental Science, Policy & ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA,Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCaliforniaUSA,U.S. Geological Survey, Western Ecological Research Center, San Francisco Bay Estuary Field StationCaliforniaUSA
| | - Nathan Van Schmidt
- Department of Environmental Science, Policy & ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA,US Geological Survey, Fort Collins Science CenterFort CollinsColoradoUSA
| | - Jerry Tecklin
- Sierra Foothills Research and Extension CenterBrowns ValleyCaliforniaUSA,21170 Shields Camp RoadNevada CityCaliforniaUSA
| | - Benjamin B. Risk
- Department of Environmental Science, Policy & ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA,Department of Biostatistics and BioinformaticsEmory UniversityAtlantaGeorgiaUSA
| | - Orien M. Richmond
- Department of Environmental Science, Policy & ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA,Rocky Mountain Arsenal National Wildlife RefugeCommerce CityColoradoUSA
| | - Tony J. Kovach
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA,California Department of Public Health/Vector Borne Disease SectionCaliforniaUSA
| | - A. Marm Kilpatrick
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| |
Collapse
|
2
|
Van Schmidt ND, Beissinger SR. The rescue effect and inference from isolation-extinction relationships. Ecol Lett 2020; 23:598-606. [PMID: 31981448 DOI: 10.1111/ele.13460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/23/2019] [Indexed: 11/28/2022]
Abstract
The rescue effect in metapopulations hypothesises that less isolated patches are unlikely to go extinct because recolonisation may occur between breeding seasons ('recolonisation rescue'), or immigrants may sufficiently bolster population size to prevent extinction altogether ('demographic rescue'). These mechanisms have rarely been demonstrated directly, and most evidence of the rescue effect is from relationships between isolation and extinction. We determined the frequency of recolonisation rescue for metapopulations of black rails (Laterallus jamaicensis) and Virginia rails (Rallus limicola) from occupancy surveys conducted during and between breeding seasons, and assessed the reliability of inferences about the occurrence of rescue drawn from isolation-extinction relationships, including autologistic isolation measures that corrected for unsurveyed patches and imperfect detection. Recolonisation rescue occurred at expected rates, but was elevated during periods of disturbance that resulted in non-equilibrium metapopulation dynamics. Inferences from extinction-isolation relationships were unreliable, particularly for autologistic measures and for the more vagile Virginia rail.
Collapse
Affiliation(s)
- Nathan D Van Schmidt
- Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, CA, USA
| | - Steven R Beissinger
- Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, CA, USA.,Museum of Vertebrate Zoology, University of California - Berkeley, Berkeley, CA, USA
| |
Collapse
|
3
|
Fletcher RJ, Hefley TJ, Robertson EP, Zuckerberg B, McCleery RA, Dorazio RM. A practical guide for combining data to model species distributions. Ecology 2019; 100:e02710. [PMID: 30927270 DOI: 10.1002/ecy.2710] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/09/2018] [Accepted: 01/02/2019] [Indexed: 12/25/2022]
Abstract
Understanding and accurately modeling species distributions lies at the heart of many problems in ecology, evolution, and conservation. Multiple sources of data are increasingly available for modeling species distributions, such as data from citizen science programs, atlases, museums, and planned surveys. Yet reliably combining data sources can be challenging because data sources can vary considerably in their design, gradients covered, and potential sampling biases. We review, synthesize, and illustrate recent developments in combining multiple sources of data for species distribution modeling. We identify five ways in which multiple sources of data are typically combined for modeling species distributions. These approaches vary in their ability to accommodate sampling design, bias, and uncertainty when quantifying environmental relationships in species distribution models. Many of the challenges for combining data are solved through the prudent use of integrated species distribution models: models that simultaneously combine different data sources on species locations to quantify environmental relationships for explaining species distribution. We illustrate these approaches using planned survey data on 24 species of birds coupled with opportunistically collected eBird data in the southeastern United States. This example illustrates some of the benefits of data integration, such as increased precision in environmental relationships, greater predictive accuracy, and accounting for sample bias. Yet it also illustrates challenges of combining data sources with vastly different sampling methodologies and amounts of data. We provide one solution to this challenge through the use of weighted joint likelihoods. Weighted joint likelihoods provide a means to emphasize data sources based on different criteria (e.g., sample size), and we find that weighting improves predictions for all species considered. We conclude by providing practical guidance on combining multiple sources of data for modeling species distributions.
Collapse
Affiliation(s)
- Robert J Fletcher
- Department of Wildlife Ecology and Conservation, University of Florida, P.O. Box 110430, 110 Newins-Ziegler Hall, Gainesville, Florida, 32611-0430, USA
| | - Trevor J Hefley
- Department of Statistics, Kansas State University, 205 Dickens Hall, Manhattan, Kansas, 66506-0802, USA
| | - Ellen P Robertson
- Department of Wildlife Ecology and Conservation, University of Florida, P.O. Box 110430, 110 Newins-Ziegler Hall, Gainesville, Florida, 32611-0430, USA
| | - Benjamin Zuckerberg
- Department of Forest and Wildlife Ecology, University of Wisconsin, 226 Russell Labs, 1630 Linden Drive, Madison, Wisconsin, 53706-1598, USA
| | - Robert A McCleery
- Department of Wildlife Ecology and Conservation, University of Florida, P.O. Box 110430, 110 Newins-Ziegler Hall, Gainesville, Florida, 32611-0430, USA
| | - Robert M Dorazio
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, California, 94132, USA
| |
Collapse
|