1
|
Zhao X, Jiang J, Pang Z, Ma W, Jiang Y, Fu Y, Liu Y. Tracking Existing Factors Directly Affecting the Reproduction of Bumblebees: Current Knowledge. INSECTS 2024; 15:654. [PMID: 39336622 PMCID: PMC11432074 DOI: 10.3390/insects15090654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Bumblebees are primary social insects and a vital class of pollinating insects. Their distinctive reproductive mode is characterized by the independent initiation and construction of the nest by the queen and the subsequent production of sufficient workers, males, and gynes following colony development. After successful mating, the queen transitions to the first phase of its annual life cycle. The reproductive processes are directly influenced by environmental factors, including floral resources and pesticides. Moreover, the reproductive level is regulated by biological factors, particularly the role of workers, who participate in egg laying and pass on their genetic material to the next generation of queens. Successful reproduction can only be achieved by maintaining colony development under natural or artificial breeding conditions. Consequently, understanding the known factors that influence bumblebee reproduction is essential for developing conservation strategies for wild bumblebees and for successfully breeding diverse bumblebee species. Breeding various bumblebee species is crucial for in-depth research into known factors and for further exploration of other potential factors, which will also help to meet the demand for pollination in agricultural facilities globally.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| | - Jingxin Jiang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| | - Zilin Pang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| | - Weihua Ma
- College of Horticulture, Shanxi Agricultural University, Taiyuan 030031, China;
| | - Yusuo Jiang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| | - Yanfang Fu
- HeBei Provincial Animal Husbandry Station, Shijiazhuang 050035, China;
| | - Yanjie Liu
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| |
Collapse
|
2
|
Requier F, Abdelli M, Baude M, Genoud D, Gens H, Geslin B, Henry M, Ropars L. Neglecting non-bee pollinators may lead to substantial underestimation of competition risk among pollinators. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100093. [PMID: 39220234 PMCID: PMC11364274 DOI: 10.1016/j.cris.2024.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Due to the increasing pressures on bees, many beekeepers currently wish to move their managed livestock of Apis mellifera into little disturbed ecosystems such as protected natural areas. This may, however, exert detrimental competitive effects upon local wild pollinators. While it appears critical for land managers to get an adequate knowledge of this issue for effective wildlife conservation schemes, the frequency of this competition is not clear to date. Based on a systematic literature review of 96 studies, we assessed the frequency of exploitative competition between honey bees and wild pollinators. We found that 78% of the studies highlighted exploitative competition from honey bees to wild pollinators. Importantly, these studies have mostly explored competition with wild bees, while only 18% of them considered other pollinator taxa such as ants, beetles, bugs, butterflies, flies, moths, and wasps. The integration of non-bee pollinators into scientific studies and conservation plans is urgently required as they are critical for the pollination of many wild plants and crops. Interestingly, we found that a majority (88%) of these studies considering also non-bee pollinators report evidence of competition. Thus, neglecting non-bee pollinators could imply an underestimation of competition risks from honey bees. More inclusive work is needed to estimate the risks of competition in its entirety, but also to apprehend the context-dependency of competition so as to properly inform wildlife conservation schemes.
Collapse
Affiliation(s)
- Fabrice Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Myriam Abdelli
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Mathilde Baude
- Université d′Orléans, Chateau de la Source, BP 6749, Cedex2, 45067, Orléans, France
- Sorbonne Université, UPEC,Université Paris Cité, CNRS, IRD, INRAE, Institut d'Ecologie et des Sciences de l'Environnement (iEESParis), Paris, France
| | | | - Hadrien Gens
- Amis de la réserve naturelle du lac de Remoray, 25320, Labergement-Sainte-Marie, France
| | - Benoît Geslin
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Université de Rennes (UNIR), UMR 6553 ECOBIO, CNRS, Rennes, France
| | - Mickaël Henry
- INRAE, UR 406 Abeilles et Environnement, Avignon, France
| | - Lise Ropars
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, CP 135, 57 rue Cuvier, 75005, Paris, France
| |
Collapse
|
3
|
Fischer LR, Ramesh D, Weidenmüller A. Sub-lethal but potentially devastating - The novel insecticide flupyradifurone impairs collective brood care in bumblebees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166097. [PMID: 37562619 DOI: 10.1016/j.scitotenv.2023.166097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
The worldwide decline in pollinating insects is alarming. One of the main anthropogenic drivers is the massive use of pesticides in agriculture. Risk assessment procedures test pesticides for mortality rates of well-fed, parasite free individuals of a few non-target species. Sublethal and synergistic effects of co-occurring stressors are usually not addressed. Here, we present a simple, wildly applicable bio-essay to assess such effects. Using brood thermoregulation in bumblebee microcolonies as readout, we investigate how this collective ability is affected by long-term feeding exposure to the herbicide glyphosate (5 mg/l), the insecticide flupyradifurone (0.4 mg/l) and the combination of both, when co-occurring with the natural stressor of resource limitation. Documenting brood temperature and development in 53 microcolonies we find no significant effect of glyphosate, while flupyradifurone significantly impaired the collective ability to maintain the necessary brood temperatures, resulting in prolonged developmental times and a decrease in colony growth by over 50 %. This reduction in colony growth has the potential to significantly curtail the reproductive chances of colonies in the field. Our findings highlight the potentially devastating consequences of flupyradifurone use in agriculture even at sub-lethal doses and underline the urgent need for improved risk assessment procedures.
Collapse
Affiliation(s)
- Liliana R Fischer
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany; School of Biological Sciences, University of East Anglia, UK.
| | - Divya Ramesh
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany; University of Konstanz, Konstanz, Germany
| | - Anja Weidenmüller
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany; University of Konstanz, Konstanz, Germany
| |
Collapse
|
4
|
Maihoff F, Sahler S, Schoger S, Brenzinger K, Kallnik K, Sauer N, Bofinger L, Schmitt T, Nooten SS, Classen A. Cuticular hydrocarbons of alpine bumble bees (Hymenoptera: Bombus) are species-specific, but show little evidence of elevation-related climate adaptation. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1082559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Alpine bumble bees are the most important pollinators in temperate mountain ecosystems. Although they are used to encounter small-scale successions of very different climates in the mountains, many species respond sensitively to climatic changes, reflected in spatial range shifts and declining populations worldwide. Cuticular hydrocarbons (CHCs) mediate climate adaptation in some insects. However, whether they predict the elevational niche of bumble bees or their responses to climatic changes remains poorly understood. Here, we used three different approaches to study the role of bumble bees’ CHCs in the context of climate adaptation: using a 1,300 m elevational gradient, we first investigated whether the overall composition of CHCs, and two potentially climate-associated chemical traits (proportion of saturated components, mean chain length) on the cuticle of six bumble bee species were linked to the species’ elevational niches. We then analyzed intraspecific variation in CHCs of Bombus pascuorum along the elevational gradient and tested whether these traits respond to temperature. Finally, we used a field translocation experiment to test whether CHCs of Bombus lucorum workers change, when translocated from the foothill of a cool and wet mountain region to (a) higher elevations, and (b) a warm and dry region. Overall, the six species showed distinctive, species-specific CHC profiles. We found inter- and intraspecific variation in the composition of CHCs and in chemical traits along the elevational gradient, but no link to the elevational distribution of species and individuals. According to our expectations, bumble bees translocated to a warm and dry region tended to express longer CHC chains than bumble bees translocated to cool and wet foothills, which could reflect an acclimatization to regional climate. However, chain lengths did not further decrease systematically along the elevational gradient, suggesting that other factors than temperature also shape chain lengths in CHC profiles. We conclude that in alpine bumble bees, CHC profiles and traits respond at best secondarily to the climate conditions tested in this study. While the functional role of species-specific CHC profiles in bumble bees remains elusive, limited plasticity in this trait could restrict species’ ability to adapt to climatic changes.
Collapse
|
5
|
Castle D, Alkassab AT, Steffan-Dewenter I, Pistorius J. Nutritional resources modulate the responses of three bee species to pesticide exposure. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130304. [PMID: 36368063 DOI: 10.1016/j.jhazmat.2022.130304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/06/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The response of bee species to various stressors is assumed to depend on the availability of sufficient nutrients in their environment. We compare the response of three bee species (Apis mellifera, Bombus terrestris, Osmia bicornis) under laboratory conditions. Survival, physiology, and sensitivity, after exposure to the fungicide prochloraz, the insecticide chlorantraniliprole, and their mixture with different nutritional resources (sugar only, sugar with amino acids or pollen) were observed. Prochloraz reduced the bee survival of A. mellifera and O. bicornis fed with pollen, but not with other diets. Chlorantraniliprole impaired the survival of A. mellifera fed with sugar or pollen diet, but not with amino acid diet. The mixture impaired survival of A. mellifera and O. bicornis in association with every diet. B. terrestris was only affected by chlorantraniliprole and its mixture with prochloraz fed with sugar diet. The activity of P450 reductase was higher in A. mellifera fed with amino acids in all treatments, whereas no effect emerged in O. bicornis and B. terrestris. Our results indicate that the sensitivity of bee species after exposure to agrochemicals is affected by diet. Thus, balanced and species-dependent nutrition ameliorated the effects. Further field studies are necessary to evaluate the potential effects of such mixtures on bee populations.
Collapse
Affiliation(s)
- Denise Castle
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Messeweg 11/12, Braunschweig, Germany; University of Würzburg, Department of Animal Ecology and Tropical Biology, Biocenter, Am Hubland, Würzburg, Germany.
| | - Abdulrahim T Alkassab
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Messeweg 11/12, Braunschweig, Germany
| | - Ingolf Steffan-Dewenter
- University of Würzburg, Department of Animal Ecology and Tropical Biology, Biocenter, Am Hubland, Würzburg, Germany
| | - Jens Pistorius
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Messeweg 11/12, Braunschweig, Germany
| |
Collapse
|
6
|
Leroy C, Brunet JL, Henry M, Alaux C. Using physiology to better support wild bee conservation. CONSERVATION PHYSIOLOGY 2023; 11:coac076. [PMID: 36632323 PMCID: PMC9825782 DOI: 10.1093/conphys/coac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
There is accumulating evidence that wild bees are experiencing a decline in terms of species diversity, abundance or distribution, which leads to major concerns about the sustainability of both pollination services and intrinsic biodiversity. There is therefore an urgent need to better understand the drivers of their decline, as well as design conservation strategies. In this context, the current approach consists of linking observed occurrence and distribution data of species to environmental features. While useful, a highly complementary approach would be the use of new biological metrics that can link individual bee responses to environmental alteration with population-level responses, which could communicate the actual bee sensitivity to environmental changes and act as early warning signals of bee population decline or sustainability. We discuss here through several examples how the measurement of bee physiological traits or performance can play this role not only in better assessing the impact of anthropogenic pressures on bees, but also in guiding conservation practices with the help of the documentation of species' physiological needs. Last but not least, because physiological changes generally occur well in advance of demographic changes, we argue that physiological traits can help in predicting and anticipating future population trends, which would represent a more proactive approach to conservation. In conclusion, we believe that future efforts to combine physiological, ecological and population-level knowledge will provide meaningful contributions to wild bee conservation-based research.
Collapse
Affiliation(s)
| | - Jean-Luc Brunet
- INRAE, UR 406 Abeilles et Environnement, 84 914 Avignon, France
| | - Mickael Henry
- INRAE, UR 406 Abeilles et Environnement, 84 914 Avignon, France
| | - Cedric Alaux
- INRAE, UR 406 Abeilles et Environnement, 84 914 Avignon, France
| |
Collapse
|
7
|
Jachuła J, Denisow B, Wrzesień M, Ziółkowska E. The need for weeds: Man-made, non-cropped habitats complement crops and natural habitats in providing honey bees and bumble bees with pollen resources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156551. [PMID: 35688241 DOI: 10.1016/j.scitotenv.2022.156551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
In Europe, honey bees and bumble bees are among the most important pollinators, and there is a growing interest in understanding the effects of floral resource availability on their survival. Yet, to date, data on nectar and pollen supplies available to bees in agricultural landscapes are still scarce. In this paper, we quantify species-, habitat- and landscape-scale pollen production in the Lublin Upland, SE Poland. The production per unit area was highest (mean = 2.2-2.6 g/m2) in non-forest woody vegetation, field margins and fallows, whilst significantly lower pollen amounts were shown to be available in road verges and railway embankments (mean = 1.3-1.6 g/m2). At landscape scale, natural and semi-natural areas (forests and meadows/pastures) offered ca. 44% of the total pollen resources during the year. Relatively high amounts of pollen (ca. 35% of the year-round total pollen resources) were from winter rape, but this resource was short-term. Man-made, non-cropped habitats added only ca. 18% of the total pollen mass offered for pollinators during flowering season. However, they provided 66-99% of pollen resources available from July to October. There exists an imbalance in the availability of pollen resources throughout the year. Hence, a diversity of natural, semi-natural and man-made, non-cropped areas is required to support the seasonal continuity of pollen resources for pollinators in an agricultural landscape. Efforts should be made to secure habitat heterogeneity to enhance the flower diversity and continual pollen availability for pollinators.
Collapse
Affiliation(s)
- Jacek Jachuła
- Department of Botany and Plant Physiology, Subdepartment of Plant Biology, University of Life Sciences, 15 Akademicka St., 20-950 Lublin, Poland; The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland.
| | - Bożena Denisow
- Department of Botany and Plant Physiology, Subdepartment of Plant Biology, University of Life Sciences, 15 Akademicka St., 20-950 Lublin, Poland.
| | - Małgorzata Wrzesień
- Department of Botany, Mycology and Ecology, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland.
| | - Elżbieta Ziółkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
8
|
Weidenmüller A, Meltzer A, Neupert S, Schwarz A, Kleineidam C. Glyphosate impairs collective thermoregulation in bumblebees. Science 2022; 376:1122-1126. [PMID: 35653462 DOI: 10.1126/science.abf7482] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Insects are facing a multitude of anthropogenic stressors, and the recent decline in their biodiversity is threatening ecosystems and economies across the globe. We investigated the impact of glyphosate, the most commonly used herbicide worldwide, on bumblebees. Bumblebee colonies maintain their brood at high temperatures via active thermogenesis, a prerequisite for colony growth and reproduction. Using a within-colony comparative approach to examine the effects of long-term glyphosate exposure on both individual and collective thermoregulation, we found that whereas effects are weak at the level of the individual, the collective ability to maintain the necessary high brood temperatures is decreased by more than 25% during periods of resource limitation. For pollinators in our heavily stressed ecosystems, glyphosate exposure carries hidden costs that have so far been largely overlooked.
Collapse
Affiliation(s)
- Anja Weidenmüller
- Centre for the Advanced Study of Collective Behavior, Konstanz, Germany
- University of Konstanz, Konstanz, Germany
| | - Andrea Meltzer
- University of Konstanz, Konstanz, Germany
- Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Stefanie Neupert
- University of Konstanz, Konstanz, Germany
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Alica Schwarz
- Centre for the Advanced Study of Collective Behavior, Konstanz, Germany
- University of Konstanz, Konstanz, Germany
| | - Christoph Kleineidam
- Centre for the Advanced Study of Collective Behavior, Konstanz, Germany
- University of Konstanz, Konstanz, Germany
| |
Collapse
|
9
|
Beyer N, Gabriel D, Westphal C. Landscape composition modifies pollinator densities, foraging behavior and yield formation in faba beans. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Parreño MA, Alaux C, Brunet JL, Buydens L, Filipiak M, Henry M, Keller A, Klein AM, Kuhlmann M, Leroy C, Meeus I, Palmer-Young E, Piot N, Requier F, Ruedenauer F, Smagghe G, Stevenson PC, Leonhardt SD. Critical links between biodiversity and health in wild bee conservation. Trends Ecol Evol 2021; 37:309-321. [PMID: 34955328 DOI: 10.1016/j.tree.2021.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
Wild bee populations are declining due to human activities, such as land use change, which strongly affect the composition and diversity of available plants and food sources. The chemical composition of food (i.e., nutrition) in turn determines the health, resilience, and fitness of bees. For pollinators, however, the term 'health' is recent and is subject to debate, as is the interaction between nutrition and wild bee health. We define bee health as a multidimensional concept in a novel integrative framework linking bee biological traits (physiology, stoichiometry, and disease) and environmental factors (floral diversity and nutritional landscapes). Linking information on tolerated nutritional niches and health in different bee species will allow us to better predict their distribution and responses to environmental change, and thus support wild pollinator conservation.
Collapse
Affiliation(s)
- M A Parreño
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich (TUM), Freising, Germany.
| | - C Alaux
- INRAE, Abeilles et Environnement, Avignon, France
| | - J-L Brunet
- INRAE, Abeilles et Environnement, Avignon, France
| | - L Buydens
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - M Filipiak
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - M Henry
- INRAE, Abeilles et Environnement, Avignon, France
| | - A Keller
- Center for Computational and Theoretical Biology, and Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - A-M Klein
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - M Kuhlmann
- Zoological Museum of Kiel University, Kiel, Germany
| | - C Leroy
- INRAE, Abeilles et Environnement, Avignon, France
| | - I Meeus
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - E Palmer-Young
- US Department of Agriculture (USDA) Agricultural Research Service Bee Research Laboratory, Beltsville, MD, USA
| | - N Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - F Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement, et Écologie, 91198 Gif-sur-Yvette, France
| | - F Ruedenauer
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich (TUM), Freising, Germany
| | - G Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - P C Stevenson
- Royal Botanic Gardens, Kew, Surrey TW9 3AE, UK; University of Greenwich, London, UK
| | - S D Leonhardt
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich (TUM), Freising, Germany.
| |
Collapse
|
11
|
Rosenberger NM, Aizen MA, Dickson RG, Harder LD. Behavioural responses by a bumble bee to competition with a niche-constructing congener. J Anim Ecol 2021; 91:580-592. [PMID: 34862619 PMCID: PMC9305565 DOI: 10.1111/1365-2656.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/21/2021] [Indexed: 11/10/2022]
Abstract
While feeding, foragers can alter their environment. Such alteration constitutes ecological niche construction (ENC) if it enables future benefits for the constructor and conspecific individuals. The environmental modification may also affect non‐constructing, bystander species, especially if they share resources with constructor species. If so, ENC could confer the constructor species a competitive advantage by both enhancing its foraging returns and reducing those of bystander species. Expectations – (E1) ENC frequency should vary positively with the recent and current density of the constructor species, and (E2) constructors should use modifications disproportionately. In contrast, bystanders should (E3) experience intensified competition for the affected resource, and (E4) exhibit diverse, possibly mitigating, responses to ENC, depending on opportunity and relative benefits. We investigated these expectations in Argentina for competition for Fuchsia magellanica nectar between an invasive bumble bee Bombus terrestris (terr: putative constructor), which often bites holes at the bases of floral tubes to rob nectar, and native B. dahlbomii (dahl: bystander), which normally accesses Fuchsia nectar through the flower mouth (front visits). Robbing holes constitute ENC, as they persist until the 7‐day flowers wilt. The dynamics of the incidence of robbed flowers, abundance of both bees and the number and types of their flower visits (front or robbing) were characterised by alternate‐day surveys of plants during 2.5 months. After initially accessing Fuchsia nectar via front visits, terr switched to robbing and its abundance on Fuchsia increased 20‐fold within 10 days (E2). Correspondingly, the incidence of robbed flowers varied positively with recent and past terr abundance (E1). In contrast, dahl abundance remained low and varied negatively with the incidence of robbed flowers (E3). When terr ceased visiting Fuchsia, dahl abundance increased sixfold within 10 days (E3), possibly because many dahl previously had avoided competition with terr by feeding on other plant species (E4). While terr was present, dahl on Fuchsia used front visits (tolerance) or used existing robbing holes (adoption: E4). The diverse dahl responses suggest partial compensation for competition with terr. ENC alters competitive asymmetry, favouring constructor species. However, bystander responses can partially offset this advantage, perhaps facilitating coexistence.
Collapse
Affiliation(s)
- Nick M Rosenberger
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.,Graduate Group in Ecology, University of California - Davis, Davis, CA, USA
| | - Marcelo A Aizen
- Laboratorio Ecotono-CRUB, Universidad Nacional del Comahue and INIBIOMA, Río Negro, Argentina
| | - Rachel G Dickson
- Division of Biological Sciences, University of Montana, Missoula, MT, USA.,Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - Lawrence D Harder
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Riggi LG, Lundin O, Berggren Å. Mass-flowering red clover crops have positive effects on bumblebee richness and diversity after bloom. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Scheper J, Bukovinszky T, Huigens ME, Kleijn D. Attractiveness of sown wildflower strips to flower-visiting insects depends on seed mixture and establishment success. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Jachuła J, Denisow B, Wrzesień M. Habitat heterogeneity helps to mitigate pollinator nectar sugar deficit and discontinuity in an agricultural landscape. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146909. [PMID: 33848857 DOI: 10.1016/j.scitotenv.2021.146909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The scarcity of floral resources and their seasonal discontinuity are considered as major factors for pollinator decline in intensified agricultural landscapes worldwide. The consequences are detrimental for the stability of the environment and ecosystems. Here, we quantified the production of nectar sugars in plant species occurring in man-made, non-cropped areas (non-forest woody vegetation, road verges, railway embankments, field margins, fallow areas) of an agricultural landscape in SE Poland. We also assessed changes in the availability of sugar resources both in space (habitat and landscape scales) and in time (throughout the flowering season), and checked to what extent the sugar demands of honeybees and bumblebees are met at the landscape scale. At landscape-level, 37.6% of the available sugar resources are produced in man-made, non-cropped habitats, while 32.6% and 15.0% of sugars derive from winter rape crops and forest vegetation, respectively. Nectar sugar supplies vary greatly between man-made, non-cropped habitat types/sub-types. These areas are characterized by a high richness of nectar-producing species. However, a predominant role in total sugar resources is ascribable to a few species. Strong fluctuations in nectar resources are recorded throughout the flowering season. March and June are periods with food shortages. Abundant nectar sugars are generally found in April-May, mainly due to the mass flowering of nectar-yielding species in the forests, meadows/pastures and orchards/rapeseed crops. Heterogeneity of man-made, non-cropped habitats is essential to support the supply of July-October nectar sugars for honeybees and bumblebees. Reduced flowering in man-made non-cropped habitats can generate serious food deficiencies, as from summer towards the end of the flowering season >90% of sugars are provided by the flora of these areas. Therefore, highly nectar-yielding plant species that flower during periods of expected food shortages should be a priority for conservation and restoration programs.
Collapse
Affiliation(s)
- Jacek Jachuła
- Department of Botany and Plant Physiology, Subdepartment of Plant Biology, University of Life Sciences, 15 Akademicka St., 20-950 Lublin, Poland
| | - Bożena Denisow
- Department of Botany and Plant Physiology, Subdepartment of Plant Biology, University of Life Sciences, 15 Akademicka St., 20-950 Lublin, Poland.
| | - Małgorzata Wrzesień
- Department of Botany, Mycology, and Ecology, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland.
| |
Collapse
|
15
|
Marja R, Klein AM, Viik E, Batáry P. Environmentally-friendly and organic management practices enable complementary diversification of plant–bumblebee food webs. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Hung KLJ, Sandoval SS, Ascher JS, Holway DA. Joint Impacts of Drought and Habitat Fragmentation on Native Bee Assemblages in a California Biodiversity Hotspot. INSECTS 2021; 12:insects12020135. [PMID: 33562453 PMCID: PMC7914906 DOI: 10.3390/insects12020135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 01/27/2023]
Abstract
Simple Summary Global climate change is causing more frequent and severe droughts, which can have serious impacts on our environment. To examine how a severe drought in 2014 impacted wild bees in scrub habitats of San Diego, California, we compared bee samples collected before and after the drought. We also investigated whether habitat loss and fragmentation worsened the impacts of drought on wild bees by comparing samples collected from large natural reserves to those from small fragments of scrub habitat embedded in urban areas. Samples collected after the drought contained fewer bee species and fewer individual bees of most species, indicating that bee populations suffered losses during the drought. However, after-drought samples contained large numbers of Dialictus sweat bees, indicating that some bee species benefitted from environmental conditions present during the drought. The impact of drought on the composition of bee samples was three fold higher than the impact of habitat fragmentation, and habitat fragmentation did not appear to have exacerbated the impacts of drought. Our findings highlight the importance of studying how impacts of climate change compare with impacts of habitat loss and other threats to biodiversity conservation. Abstract Global climate change is causing more frequent and severe droughts, which could have serious repercussions for the maintenance of biodiversity. Here, we compare native bee assemblages collected via bowl traps before and after a severe drought event in 2014 in San Diego, California, and examine the relative magnitude of impacts from drought in fragmented habitat patches versus unfragmented natural reserves. Bee richness and diversity were higher in assemblages surveyed before the drought compared to those surveyed after the drought. However, bees belonging to the Lasioglossum subgenus Dialictus increased in abundance after the drought, driving increased representation by small-bodied, primitively eusocial, and generalist bees in post-drought assemblages. Conversely, among non-Dialictus bees, post-drought years were associated with decreased abundance and reduced representation by eusocial species. Drought effects were consistently greater in reserves, which supported more bee species, than in fragments, suggesting that fragmentation either had redundant impacts with drought, or ameliorated effects of drought by enhancing bees’ access to floral resources in irrigated urban environments. Shifts in assemblage composition associated with drought were three times greater compared to those associated with habitat fragmentation, highlighting the importance of understanding the impacts of large-scale climatic events relative to those associated with land use change.
Collapse
Affiliation(s)
- Keng-Lou James Hung
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA; (S.S.S.); (D.A.H.)
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
- Correspondence:
| | - Sara S. Sandoval
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA; (S.S.S.); (D.A.H.)
| | - John S. Ascher
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore;
| | - David A. Holway
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA; (S.S.S.); (D.A.H.)
| |
Collapse
|
17
|
Pashalidou FG, Lambert H, Peybernes T, Mescher MC, De Moraes CM. Bumble bees damage plant leaves and accelerate flower production when pollen is scarce. Science 2020; 368:881-884. [PMID: 32439792 DOI: 10.1126/science.aay0496] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/31/2020] [Accepted: 04/10/2020] [Indexed: 01/26/2023]
Abstract
Maintaining phenological synchrony with flowers is a key ecological challenge for pollinators that may be exacerbated by ongoing environmental change. Here, we show that bumble bee workers facing pollen scarcity damage leaves of flowerless plants and thereby accelerate flower production. Laboratory studies revealed that leaf-damaging behavior is strongly influenced by pollen availability and that bee-damaged plants flower significantly earlier than undamaged or mechanically damaged controls. Subsequent outdoor experiments showed that the intensity of damage inflicted varies with local flower availability; furthermore, workers from wild colonies of two additional bumble bee species were also observed to damage plant leaves. These findings elucidate a feature of bumble bee worker behavior that can influence the local availability of floral resources.
Collapse
Affiliation(s)
- Foteini G Pashalidou
- Department of Environmental Systems Sciences, ETH Zürich, 8092 Zürich, Switzerland.,UMR Agronomie, INRA, AgroParisTech, Universite Paris-Saclay, 78850 Thiverval- Grignon, France
| | - Harriet Lambert
- Department of Environmental Systems Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Thomas Peybernes
- Department of Environmental Systems Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Mark C Mescher
- Department of Environmental Systems Sciences, ETH Zürich, 8092 Zürich, Switzerland.
| | - Consuelo M De Moraes
- Department of Environmental Systems Sciences, ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|