1
|
Beltran RS, Kilpatrick AM, Adamczak SK, Beumer LT, Czapanskiy MF, Davidson SC, McLean BS, Mueller T, Payne AR, Soria CD, Weeks BC, Williams TM, Salguero-Gómez R. Integrating animal tracking and trait data to facilitate global ecological discoveries. J Exp Biol 2025; 228:JEB247981. [PMID: 39973193 PMCID: PMC11883293 DOI: 10.1242/jeb.247981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Understanding animal movement is at the core of ecology, evolution and conservation science. Big data approaches for animal tracking have facilitated impactful synthesis research on spatial biology and behavior in ecologically important and human-impacted regions. Similarly, databases of animal traits (e.g. body size, limb length, locomotion method, lifespan) have been used for a wide range of comparative questions, with emerging data being shared at the level of individuals and populations. Here, we argue that the proliferation of both types of publicly available data creates exciting opportunities to unlock new avenues of research, such as spatial planning and ecological forecasting. We assessed the feasibility of combining animal tracking and trait databases to develop and test hypotheses across geographic, temporal and biological allometric scales. We identified multiple research questions addressing performance and distribution constraints that could be answered by integrating trait and tracking data. For example, how do physiological (e.g. metabolic rates) and biomechanical traits (e.g. limb length, locomotion form) influence migration distances? We illustrate the potential of our framework with three case studies that effectively integrate trait and tracking data for comparative research. An important challenge ahead is the lack of taxonomic and spatial overlap in trait and tracking databases. We identify critical next steps for future integration of tracking and trait databases, with the most impactful being open and interlinked individual-level data. Coordinated efforts to combine trait and tracking databases will accelerate global ecological and evolutionary insights and inform conservation and management decisions in our changing world.
Collapse
Affiliation(s)
- Roxanne S. Beltran
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - A. Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Stephanie K. Adamczak
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Larissa T. Beumer
- The University Centre in Svalbard, Longyearbyen 9170, Svalbard, Norway
| | - Max F. Czapanskiy
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sarah C. Davidson
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Konstanz, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Bryan S. McLean
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Thomas Mueller
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), 60325 Frankfurt am Main, Germany
- Department of Biological Sciences, Goethe University, 60323 Frankfurt am Main, Germany
| | - Allison R. Payne
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Carmen D. Soria
- Department of Spatial Sciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 165 00 Praha-Suchdol, Czech Republic
| | - Brian C. Weeks
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
| | - Terrie M. Williams
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
2
|
Brehm AM, Assis VR, Martin LB, Orrock JL. Individual variation underlies large-scale patterns: Host conditions and behavior affect parasitism. Ecology 2025; 106:e4478. [PMID: 39654293 PMCID: PMC11739666 DOI: 10.1002/ecy.4478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/27/2024] [Accepted: 09/23/2024] [Indexed: 01/19/2025]
Abstract
Identifying the factors that affect host-parasite interactions is essential for understanding the ecology and dynamics of vector-borne diseases and may be an important component of predicting human disease risk. Characteristics of hosts themselves (e.g., body condition, host behavior, immune defenses) may affect the likelihood of parasitism. However, despite highly variable rates of parasitism and infection in wild populations, identifying widespread links between individual characteristics and heterogeneity in parasite acquisition has proven challenging because many zoonoses exist over wide geographic extents and exhibit both spatial and temporal heterogeneity in prevalence and individual and population-level effects. Using seven years of data collected by the National Ecological Observatory Network (NEON), we examined relationships among individual host condition, behavior, and parasitism by Ixodid ticks in a keystone host species, the white-footed mouse, Peromyscus leucopus. We found that individual condition, specifically sex, body mass, and reproductive condition, had both direct and indirect effects on parasitism by ticks, but the nature of these effects differed for parasitism by larval versus nymphal ticks. We also found that condition differences influenced rodent behavior, and behavior directly affected the rates of parasitism, with individual mice that moved farther being more likely to carry ticks. This study illustrates how individual-level data can be examined using large-scale datasets to draw inference and uncover broad patterns in host-parasite encounters at unprecedented spatial scales. Our results suggest that intraspecific variation in the movement ecology of hosts may affect host-parasite encounter rates and, ultimately, alter zoonotic disease risk through anthropogenic modifications and natural environmental conditions that alter host space use.
Collapse
Affiliation(s)
- Allison M. Brehm
- Department of Integrative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Vania R. Assis
- Global and Planetary HealthUniversity of South FloridaTampaFloridaUSA
| | - Lynn B. Martin
- Global and Planetary HealthUniversity of South FloridaTampaFloridaUSA
| | - John L. Orrock
- Department of Integrative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
3
|
Wilsterman K, Bautista AI, Butler CE, Juergens MY, Larson AM. Evolution of Litter Size: Proximate and Ultimate Mechanisms. Integr Comp Biol 2024; 64:1643-1660. [PMID: 38802126 PMCID: PMC11659681 DOI: 10.1093/icb/icae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Relative reproductive success and failure are the ultimate determinants of Darwinian fitness. As such, reproductive traits and variations therein have an immediate and considerable impact on the evolutionary trajectory of lineages. Historically, significant attention has been paid to the ecological and evolutionary processes (ultimate factors) that shape the diversity and canalization of reproductive traits within groups to better our understanding of organismal diversity and population or species resilience. In contrast, the physiological systems that mediate variation within and among species (i.e., the proximate factors) in reproductive traits remain a significant black box. To date, there is comparatively little information about how proximate mechanisms constrain or promote evolutionary potential in reproductive traits. In this mini-review, we focus on litter size in Eutherian mammals as a trait with relatively well-defined diversity (litter sizes are well-described both within and across species) and for which some genetic determinants have been identified. We discuss both the ultimate and potential proximate determinants of litter size with special attention to the breadth of physiological traits that may act as "toggle" switches for evolution of litter size. We close with a brief discussion of the role that physiological plasticity may play in the evolution of litter size and lay out several forward-looking areas for future research.
Collapse
Affiliation(s)
- Kathryn Wilsterman
- Department of Biology, Colorado State University, Fort Collins, CO, 80521, USA
| | | | - Chloe E Butler
- Department of Biology, Colorado State University, Fort Collins, CO, 80521, USA
| | - Makenna Y Juergens
- Department of Biology, Colorado State University, Fort Collins, CO, 80521, USA
| | - Ashley M Larson
- Department of Biology, Colorado State University, Fort Collins, CO, 80521, USA
| |
Collapse
|
4
|
Connolly B, Zirbel CR, Keller C, Fuka M, Orrock JL. Invasive shrubs differentially alter autumnal activity for three common small-mammal species. Ecology 2024; 105:e4384. [PMID: 39039740 DOI: 10.1002/ecy.4384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/24/2024] [Accepted: 05/24/2024] [Indexed: 07/24/2024]
Abstract
Seasonal variation in animal activity influences fitness and the intensity of ecological interactions (e.g., competition, predation), yet aspects of global change in the Anthropocene may catalyze shifts in seasonal activity. Invasive plants are components of global change and can modify animal daily activity, but their influence on animal seasonal activity is less understood. We examined how invasive woody shrubs (Autumn olive [Elaeagnus umbellata] and Amur honeysuckle [Lonicera maackii]) affect seasonal activity of three common small-mammal species by coupling experimental shrub removal with autumnal camera trapping for two consecutive years at six paired forest sites (total 12 plots). Eastern chipmunks (Tamias striatus) foraged more, and foraging was observed at least 20 days longer, in shrub-invaded forests. White-footed mice (Peromyscus leucopus) foraged more in invaded than cleared plots in one study year, but P. leucopus autumn activity timing did not differ between shrub-removal treatments. Fox squirrel (Sciurus niger) activity displayed year-specific responses to shrub removal suggesting intraannual cues (e.g., temperature) structure S. niger autumnal activity. Our work highlights how plant invasions can have species-specific effects on seasonal animal activity, may modify the timing of physiological processes (e.g., torpor), and could generate variation in animal-mediated interactions such as seed dispersal or granivory.
Collapse
Affiliation(s)
- Brian Connolly
- Biology Department, Gonzaga University, Spokane, Washington, USA
- Biology Department, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Chad R Zirbel
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, USA
| | - Carson Keller
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, USA
| | - Mark Fuka
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Stephens RB, Willems JS, Yamasaki M, Costello CA, Rowe RJ. Resource availability alters breeding strategies in a small mammal community. J Anim Ecol 2024; 93:1303-1315. [PMID: 39073110 DOI: 10.1111/1365-2656.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024]
Abstract
Following a resource pulse, animals may finance reproduction by consuming concurrently available resources (income breeding) or by storing resources for future reproduction (capital breeding). Understanding how these reproductive strategies are used is important for determining the ecological mechanisms that structure timing of reproduction and that drive interannual population fluctuations in animals. We gathered a reproductive dataset for five small mammal species over a 12-year period in Northeastern USA during which six masting events of American beech (Fagus grandifolia) and eastern hemlock (Tsuga canadensis) occurred. Masting created alternate years where seeds were either available late (masting year) or early (cached from the previous year) in the breeding season. The small mammal species differed in reliance on seeds and overwintering strategies. We quantified the diet using stable isotopes and recorded reproduction timing, proportion breeding and litter size in females and testes size in males. Timing of seed availability minimally affected litter size but strongly affected proportion breeding and timing of reproduction. During masting years (late seed availability), a higher proportion of females reproduced, with breeding taking place later in the season (lactation timed with peak seed availability), although the delay was restricted in Napaeozapus insignis, an obligate hibernator. After a fall mast, cached seeds were used as capital in the following spring (early seed availability) to support a litter that, depending on the species, occurred 24-79 days sooner than a mast year. No late-season reproduction occurred in years with early seed availability except for Myodes gapperi which produced a second litter, likely financed by fungal consumption. Males also showed strong responses to seed availability, mirroring female reproduction with testes size staying constant in years with late seed availability and sharply decreasing over the breeding season in years with early seed availability. Our results highlight that although photoperiod and temperature broadly set bounds of the breeding season in temperate environments, resource availability influences the reproductive strategies that species use, which in turn alters reproductive timing and can drive large inter-annual population fluctuations. Differences in overwintering strategies and diet may further modulate reproductive timing and output relative to resource pulses.
Collapse
Affiliation(s)
- Ryan B Stephens
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, USA
- Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Joshua S Willems
- Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Mariko Yamasaki
- Forest Sciences Laboratory, USDA Forest Service Northern Research Station, Durham, New Hampshire, USA
| | - Christine A Costello
- Forest Sciences Laboratory, USDA Forest Service Northern Research Station, Durham, New Hampshire, USA
| | - Rebecca J Rowe
- Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
6
|
Chapman OS, McLean BS. Seasonal and sex-specific changes in the gastrointestinal tracts of Peromyscus maniculatus. J Mammal 2023; 104:1364-1376. [PMID: 38059007 PMCID: PMC10697414 DOI: 10.1093/jmammal/gyad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/08/2023] [Indexed: 12/08/2023] Open
Abstract
Functional traits are phenotypic characteristics that contribute to fitness of individuals in dynamic and changing environments. In mammals, both categorical and continuous (e.g., quantitative) functional traits have been extensively utilized as proxies for diet, locomotion, and other aspects of species ecology, but there has been less focus on form and function of soft tissues. This is particularly true for the digestive system, which varies in size and complexity across Class Mammalia and plays a major role in the energetics of species. To guide more effective utilization of gastrointestinal (GI) morphology as a functional proxy in small mammal ecology, we examined how GI tracts (lengths and masses of four GI sections) varied within a population of deer mice (Peromyscus maniculatus) in the Southern Appalachian Mountains of North Carolina, United States. We collected samples of adult P. maniculatus monthly for 1 year and measured GI tracts to quantify variation with respect to seasonality and trophic level, providing insight into plasticity in this soft tissue trait over time. We found that season had a significant effect on the total length and wet mass of the GI tract, with January mice having the longest GI tracts and lengths being shortest in the summer. The relative shortening of the GI tract in summer corresponded with a partial trophic increase detected by stable isotope signatures. GI length and wet mass also were affected by reproduction, but males and females responded in sex-specific ways to demands of reproduction, with reproductively active males having shorter and lighter GI tracts than nonreproductively active males. Our study provides proof-of-concept for understanding population-level plasticity in a rarely collected soft tissue trait, which may also be complementary to standard craniodental measurements as a functional dietary proxy to understand mammalian ecology and community assembly.
Collapse
Affiliation(s)
- Olivia S Chapman
- Department of Biology, University of North Carolina at Greensboro, 325 McIver Street, Greensboro, North Carolina 27412, USA
| | - Bryan S McLean
- Department of Biology, University of North Carolina at Greensboro, 325 McIver Street, Greensboro, North Carolina 27412, USA
| |
Collapse
|
7
|
Dumandan PKT, Yenni GM, Ernest SKM. Shifts in competitive structures can drive variation in species' phenology. Ecology 2023; 104:e4160. [PMID: 37671433 DOI: 10.1002/ecy.4160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/07/2023] [Accepted: 07/29/2023] [Indexed: 09/07/2023]
Abstract
For many species, a well documented response to anthropogenic climate change is a shift in various aspects of its life history, including its timing or phenology. Often, these phenological shifts are associated with changes in abiotic factors used as proxies for resource availability or other suitable conditions. Resource availability, however, can also be impacted by competition, but the impact of competition on phenology is less studied than abiotic drivers. We fit generalized additive models (GAMs) to a long-term experimental dataset on small mammals monitored in the southwestern United States and show that altered competitive landscapes can drive shifts in breeding timing and prevalence, and that, relative to a dominant competitor, other species exhibit less specific responses to environmental factors. These results suggest that plasticity of phenological responses, which is often described in the context of annual variation in abiotic factors, can occur in response to biotic context as well. Variation in phenological responses under different biotic conditions shown here further demonstrates that a more nuanced understanding of shifting biotic interactions is useful to better understand and predict biodiversity patterns in a changing world.
Collapse
Affiliation(s)
| | - Glenda M Yenni
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - S K Morgan Ernest
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Blubaugh CK, Jones CR, Josefson C, Scoles GA, Snyder WE, Owen JP. Omnivore diet composition alters parasite resistance and host condition. J Anim Ecol 2023; 92:2175-2188. [PMID: 37732627 DOI: 10.1111/1365-2656.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/25/2023] [Indexed: 09/22/2023]
Abstract
Diet composition modulates animals' ability to resist parasites and recover from stress. Broader diet breadths enable omnivores to mount dynamic responses to parasite attack, but little is known about how plant/prey mixing might influence responses to infection. Using omnivorous deer mice (Peromyscus maniculatus) as a model, we examine how varying plant and prey concentrations in blended diets influence resistance and body condition following infestation by Rocky Mountain wood ticks (Dermacentor andersoni). In two repeated experiments, deer mice fed for 4 weeks on controlled diets that varied in proportions of seeds and insects were then challenged with 50 tick larvae in two sequential infestations. The numbers of ticks successfully feeding on mice declined by 25% and 66% after the first infestation (in the first and second experiments, respectively), reflecting a pattern of acquired resistance, and resistance was strongest when plant/prey ratios were more equally balanced in mouse diets, relative to seed-dominated diets. Diet also dramatically impacted the capacity of mice to cope with tick infestations. Mice fed insect-rich diets lost 15% of their body weight when parasitized by ticks, while mice fed seed-rich diets lost no weight at all. While mounting/maintaining an immune response may be energetically demanding, mice may compensate for parasitism with fat and carbohydrate-rich diets. Altogether, these results suggest that a diverse nutritional landscape may be key in enabling omnivores' resistance and resilience to infection and immune stressors in their environments.
Collapse
Affiliation(s)
- Carmen K Blubaugh
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Cami R Jones
- Department of Entomology, Washington State University, Pullman, Washington, USA
| | - Chloe Josefson
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| | - Glen A Scoles
- Invasive Insect Biocontrol & Behavior Laboratory, USDA-ARS, Beltsville, Maryland, USA
| | - William E Snyder
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jeb P Owen
- Department of Entomology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
9
|
Dantzer B, Mabry KE, Bernhardt JR, Cox RM, Francis CD, Ghalambor CK, Hoke KL, Jha S, Ketterson E, Levis NA, McCain KM, Patricelli GL, Paull SH, Pinter-Wollman N, Safran RJ, Schwartz TS, Throop HL, Zaman L, Martin LB. Understanding Organisms Using Ecological Observatory Networks. Integr Org Biol 2023; 5:obad036. [PMID: 37867910 PMCID: PMC10586040 DOI: 10.1093/iob/obad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/07/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Human activities are rapidly changing ecosystems around the world. These changes have widespread implications for the preservation of biodiversity, agricultural productivity, prevalence of zoonotic diseases, and sociopolitical conflict. To understand and improve the predictive capacity for these and other biological phenomena, some scientists are now relying on observatory networks, which are often composed of systems of sensors, teams of field researchers, and databases of abiotic and biotic measurements across multiple temporal and spatial scales. One well-known example is NEON, the US-based National Ecological Observatory Network. Although NEON and similar networks have informed studies of population, community, and ecosystem ecology for years, they have been minimally used by organismal biologists. NEON provides organismal biologists, in particular those interested in NEON's focal taxa, with an unprecedented opportunity to study phenomena such as range expansions, disease epidemics, invasive species colonization, macrophysiology, and other biological processes that fundamentally involve organismal variation. Here, we use NEON as an exemplar of the promise of observatory networks for understanding the causes and consequences of morphological, behavioral, molecular, and physiological variation among individual organisms.
Collapse
Affiliation(s)
- B Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109,USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109,USA
| | - K E Mabry
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109,USA
- Department of Biology, New Mexico State University, Las Cruces, NM 88003,USA
| | - J R Bernhardt
- Department of Biology, New Mexico State University, Las Cruces, NM 88003,USA
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - R M Cox
- Department of Biology, University of Virginia, Charlottesville, VA 22940,USA
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407,USA
| | - C D Francis
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407,USA
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), N‐7491 Trondheim, Norway
| | - C K Ghalambor
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), N‐7491 Trondheim, Norway
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - K L Hoke
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - S Jha
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712,USA
| | - E Ketterson
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405,USA
| | - N A Levis
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405,USA
| | - K M McCain
- Global Health and Infectious Disease Research Center, College of Public Health, University of South Florida, Tampa, FL 33612,USA
| | - G L Patricelli
- Department of Evolution and Ecology, University of California, Davis, CA 95616,USA
| | - S H Paull
- Battelle, National Ecological Observatory Network, 1685 38th Street, Boulder, CO 80301, USA
| | - N Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - R J Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder 80309,USA
| | - T S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - H L Throop
- School of Earth and Space Exploration and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - L Zaman
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109,USA
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA
| | - L B Martin
- Global Health and Infectious Disease Research Center and Center for Genomics, College of Public Health, University of South Florida, Tampa, FL 33612,USA
| |
Collapse
|
10
|
Wilsterman K, Cunningham K. Evolution in reproductive tempo and investment across the Peromyscus radiation. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:13-27. [PMID: 36289026 PMCID: PMC10092142 DOI: 10.1002/jez.2666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Mammals display diverse reproductive strategies, however, the ultimate and proximate mechanisms that underlie this diversity and its composite traits remain poorly understood from both evolutionary and physiological perspectives. The Peromyscus genus of rodents, which is found throughout the north and central Americas, has diversified along life history gradients, varying both within and among species in reproductive strategies. This variation provides a useful model for studying reproductive diversity. Here, we combine a literature review with new analyses of captive colony breeding records from six Peromyscus species to assess our current understanding of how plasticity and local adaptation contribute to diversity in two classes of reproductive traits: phenology and litter investment. There is substantial evidence that many traits underlying phenology and litter investment have diverged among populations in ways that are likely to be locally adaptive, though plasticity in these traits remains common. However, these conclusions are largely based on data collected from the two most widespread Peromyscus species: P. maniculatus and P. leucopus. The majority of Peromyscus species diversity remains understudied regarding reproductive phenology and litter traits. We conclude by discussing key challenges and considerations relevant to using Peromyscus as a mammalian model for reproductive trait diversity and evolution moving forward.
Collapse
Affiliation(s)
- Kathryn Wilsterman
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA.,Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Kirksey Cunningham
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
11
|
McLean BS, Barve N, Guralnick RP. Sex‐specific breeding phenologies in the North American deer mouse (
Peromyscus maniculatus
). Ecosphere 2022. [DOI: 10.1002/ecs2.4327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Bryan S. McLean
- Department of Biology University of North Carolina Greensboro Greensboro North Carolina USA
| | - Narayani Barve
- Florida Museum of Natural History University of Florida Gainesville Florida USA
| | - Robert P. Guralnick
- Florida Museum of Natural History University of Florida Gainesville Florida USA
| |
Collapse
|
12
|
Wereszczuk A, Fedotova A, Marciszak A, Popiołek M, Zharova A, Zalewski A. Various responses of pine marten morphology and demography to temporal climate changes and primary productivity. J Zool (1987) 2022. [DOI: 10.1111/jzo.13022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- A. Wereszczuk
- Mammal Research Institute Polish Academy of Sciences Białowieża Poland
| | - A. Fedotova
- Universitetskaya naberezhnaya 5/2 Saint Petersburg Russia
| | - A. Marciszak
- Department of Palaeozoology Institute of Environmental Biology University of Wrocław Wrocław Poland
| | - M. Popiołek
- Department of Parasitology University of Wrocław Wrocław Poland
| | - A. Zharova
- Clinical Hospital named after St. Luke the Blessed Surgeon Saint Petersburg Russia
| | - A. Zalewski
- Mammal Research Institute Polish Academy of Sciences Białowieża Poland
| |
Collapse
|
13
|
Penjor U, Cushman SA, Kaszta ŻM, Sherub S, Macdonald DW. Effects of land use and climate change on functional and phylogenetic diversity of terrestrial vertebrates in a Himalayan biodiversity hotspot. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ugyen Penjor
- Wildlife Conservation Research Unit, The Recanati‐Kaplan Centre Abingdon UK
- Department of Forests and Park Services Nature Conservation Division Thimphu Bhutan
| | - Samuel A. Cushman
- Wildlife Conservation Research Unit, The Recanati‐Kaplan Centre Abingdon UK
- USDA, Rocky Mountain Research Station Flagstaff Arizona USA
| | - Żaneta M. Kaszta
- Wildlife Conservation Research Unit, The Recanati‐Kaplan Centre Abingdon UK
| | - Sherub Sherub
- Department of Forests and Park Services Ugyen Wangchuck Institute for Conservation and Environmental Research Bumthang Bhutan
| | - David W. Macdonald
- Wildlife Conservation Research Unit, The Recanati‐Kaplan Centre Abingdon UK
| |
Collapse
|
14
|
Aubry LM, Williams CT. Vertebrate Phenological Plasticity: from Molecular Mechanisms to Ecological and Evolutionary Implications. Integr Comp Biol 2022; 62:958-971. [PMID: 35867980 DOI: 10.1093/icb/icac121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/12/2022] Open
Abstract
Seasonal variation in the availability of essential resources is one of the most important drivers of natural selection on the phasing and duration of annually recurring life-cycle events. Shifts in seasonal timing are among the most commonly reported responses to climate change and the capacity of organisms to adjust their timing, either through phenotypic plasticity or evolution, is a critical component of resilience. Despite growing interest in documenting and forecasting the impacts of climate change on phenology, our ability to predict how individuals, populations, and species might alter their seasonal timing in response to their changing environments is constrained by limited knowledge regarding the cues animals use to adjust timing, the endogenous genetic and molecular mechanisms that transduce cues into neural and endocrine signals, and the inherent capacity of animals to alter their timing and phasing within annual cycles. Further, the fitness consequences of phenological responses are often due to biotic interactions within and across trophic levels, rather than being simple outcomes of responses to changes in the abiotic environment. Here, we review the current state of knowledge regarding the mechanisms that control seasonal timing in vertebrates, as well as the ecological and evolutionary consequences of individual, population, and species-level variation in phenological responsiveness. Understanding the causes and consequences of climate-driven phenological shifts requires combining ecological, evolutionary, and mechanistic approaches at individual, populational, and community scales. Thus, to make progress in forecasting phenological responses and demographic consequences, we need to further develop interdisciplinary networks focused on climate change science.
Collapse
Affiliation(s)
- Lise M Aubry
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Cory T Williams
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| |
Collapse
|
15
|
van Rosmalen L, Riedstra B, Beemster N, Dijkstra C, Hut RA. Differential temperature effects on photoperiodism in female voles: A possible explanation for declines in vole populations. Mol Ecol 2022; 31:3360-3373. [PMID: 35398940 PMCID: PMC9325516 DOI: 10.1111/mec.16467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
Abstract
Many mammalian species use photoperiod as a predictive cue to time seasonal reproduction. In addition, metabolic effects on the reproductive axis may also influence seasonal timing, especially in female small, short-lived mammals. To get a better understanding of how annual cycling environmental cues impact reproductive function and plasticity in small, short-lived herbivores with different geographic origins, we investigated the mechanisms underlying integration of temperature in the photoperiodic-axis regulating female reproduction in a Northern vole species (tundra vole, Microtus oeconomus) and in a Southern vole species (common vole, Microtus arvalis). We show that photoperiod and temperature interact to determine appropriate physiological responses; there is species-dependent annual variation in the sensitivity to temperature for reproductive organ development. In common voles, temperature can overrule photoperiodical spring-programmed responses, with reproductive organ mass being higher at 10°C than at 21°C, whereas in autumn they are less sensitive to temperature. These findings are in line with our census data, showing an earlier onset of spring reproduction in cold springs, while reproductive offset in autumn is synchronized to photoperiod. The reproductive organs of tundra voles were relatively insensitive to temperature, whereas hypothalamic gene expression was generally upregulated at 10°C. Thus, both vole species use photoperiod, whereas only common voles use temperature as a cue to control spring reproduction, which indicates species-specific reproductive strategies. Due to global warming, spring reproduction in common voles will be delayed, perhaps resulting in shorter breeding seasons and thus declining populations, as observed throughout Europe.
Collapse
Affiliation(s)
- Laura van Rosmalen
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
- Present address:
Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Bernd Riedstra
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Nico Beemster
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
- Present address:
Altenburg & Wymenga Ecological ConsultantsFeanwâldenThe Netherlands
| | - Cor Dijkstra
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Roelof A. Hut
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
16
|
Tamian A, Viblanc VA, Dobson FS, Neuhaus P, Hammer TL, Nesterova AP, Raveh S, Skibiel AL, Broussard D, Manno TG, Rajamani N, Saraux C. Integrating microclimatic variation in phenological responses to climate change: A 28‐year study in a hibernating mammal. Ecosphere 2022. [DOI: 10.1002/ecs2.4059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Anouch Tamian
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
| | - Vincent A. Viblanc
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
| | - F. Stephen Dobson
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
- Department of Biological Sciences Auburn University Auburn Alabama USA
| | - Peter Neuhaus
- Department of Biological Sciences University of Calgary Calgary Canada
| | - Tracey L. Hammer
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
- Department of Biological Sciences University of Calgary Calgary Canada
| | | | - Shirley Raveh
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Amy L. Skibiel
- Department of Animal, Veterinary and Food Sciences University of Idaho Moscow Idaho USA
| | - David Broussard
- Department of Biology Lycoming College Williamsport Pennsylvania USA
| | - Theodore G. Manno
- Science Department Catalina Foothills High School Tucson Arizona USA
| | - Nandini Rajamani
- Indian Institute of Science Education and Research Tirupati Andhra Pradesh India
| | - Claire Saraux
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
| |
Collapse
|
17
|
McLean BS, Guralnick RP. Digital biodiversity data sets reveal breeding phenology and its drivers in a widespread North American mammal. Ecology 2021; 102:e03258. [PMID: 33226631 DOI: 10.1002/ecy.3258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/06/2020] [Indexed: 11/06/2022]
Abstract
Shifts in reproductive timing are among the most commonly documented responses of organisms to global climate change. However, our knowledge of these responses is biased towards taxa that are easily observable and abundant in existing biodiversity data sets. Mammals are common subjects in reproductive biology, but mammalian phenology and its drivers in the wild remain poorly understood because many species are small, secretive, or too labor-intensive to monitor. We took an informatics-based approach to reconstructing breeding phenology in the widespread North American deer mouse (Peromyscus maniculatus) using individual-level reproductive observations from digitized museum specimens and field censuses spanning >100 yr and >45 degrees of latitude. We reconstructed female phenology in different regions and tested the importance of three environmental variables (photoperiod, temperature, precipitation) as breeding cues. Photoperiod and temperature were strong positive and negative breeding cues, respectively, whereas precipitation was not a significant predictor of breeding phenology. However, phenologies and the use of environmental cues varied substantially among regions, and we found evidence that these cueing repertoires are tuned to ecosystem-specific limiting conditions. Our results reiterate the importance of ecological context in optimizing reproduction and demonstrate how harmonization across biodiversity data resources allows new insight into phenology and its drivers in wild mammals.
Collapse
Affiliation(s)
- Bryan S McLean
- Department of Biology, University of North Carolina Greensboro, P.O. Box 26170, Greensboro, North Carolina, 27402, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, Florida, 32611, USA
| |
Collapse
|