1
|
Gong H, Sardans J, Huang H, Yan Z, Wang Z, Peñuelas J. Global patterns and controlling factors of tree bark C : N : P stoichiometry in forest ecosystems consistent with biogeochemical niche hypothesis. THE NEW PHYTOLOGIST 2024; 244:1303-1314. [PMID: 39279036 DOI: 10.1111/nph.20119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 08/25/2024] [Indexed: 09/18/2024]
Abstract
Bark serves crucial roles in safeguarding trees physically and chemically, while also contributing to nutrient cycling and carbon sequestration. Despite its importance, the broader biogeographical patterns and the potential factors influencing bark C : N : P stoichiometry in forest ecosystems remain largely unknown. In this study, we compiled a comprehensive dataset comprising carbon (C), nitrogen (N), and phosphorus (P) concentrations in bark with 1240 records from 550 diverse forest sites to systematically analyze the large-scale patterns and the factors controlling bark C : N : P stoichiometry. The geometric means of bark C, N, and P concentrations were found to be 493.17 ± 1.75, 3.91 ± 0.09, and 0.2 ± 0.01 mg g-1, respectively. Correspondingly, the C : N, C : P, and N : P mass ratios were 135.51 ± 8.11, 3313.19 ± 210.16, and 19.16 ± 0.6, respectively. Bark C : N : P stoichiometry exhibited conspicuous latitudinal trends, with the exception of N : P ratios. These patterns were primarily shaped by the significant impacts of climate, soil conditions, and plant functional groups. However, the impact of evolutionary history in shaping bark C : N : P stoichiometry outweigh climate, soil, and plant functional group, aligning with the biogeochemical niche (BN) hypothesis. These finding enhance our understanding of the spatial distribution of bark nutrient stoichiometry and have important implications for modeling of global forest ecosystem nutrient cycles in a changing environment.
Collapse
Affiliation(s)
- Haiyang Gong
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, 610041, China
- College of Grassland Resources, Southwest Minzu University, Chengdu, 610041, China
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra (Catalonia), 08193, Spain
- CREAF, Cerdanyola del Vallès (Catalonia), 08193, Spain
| | - Heng Huang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhengbing Yan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhiqiang Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, 610041, China
- College of Grassland Resources, Southwest Minzu University, Chengdu, 610041, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra (Catalonia), 08193, Spain
- CREAF, Cerdanyola del Vallès (Catalonia), 08193, Spain
| |
Collapse
|
2
|
Flores-Moreno H, Yatsko AR, Cheesman AW, Allison SD, Cernusak LA, Cheney R, Clement RA, Cooper W, Eggleton P, Jensen R, Rosenfield M, Zanne AE. Shifts in internal stem damage along a tropical precipitation gradient and implications for forest biomass estimation. THE NEW PHYTOLOGIST 2024; 241:1047-1061. [PMID: 38087814 DOI: 10.1111/nph.19417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/03/2023] [Indexed: 01/12/2024]
Abstract
Woody biomass is a large carbon store in terrestrial ecosystems. In calculating biomass, tree stems are assumed to be solid structures. However, decomposer agents such as microbes and insects target stem heartwood, causing internal wood decay which is poorly quantified. We investigated internal stem damage across five sites in tropical Australia along a precipitation gradient. We estimated the amount of internal aboveground biomass damaged in living trees and measured four potential stem damage predictors: wood density, stem diameter, annual precipitation, and termite pressure (measured as termite damage in downed deadwood). Stem damage increased with increasing diameter, wood density, and termite pressure and decreased with increasing precipitation. High wood density stems sustained less damage in wet sites and more damage in dry sites, likely a result of shifting decomposer communities and their differing responses to changes in tree species and wood traits across sites. Incorporating stem damage reduced aboveground biomass estimates by > 30% in Australian savannas, compared to only 3% in rainforests. Accurate estimates of carbon storage across woody plant communities are critical for understanding the global carbon budget. Future biomass estimates should consider stem damage in concert with the effects of changes in decomposer communities and abiotic conditions.
Collapse
Affiliation(s)
- Habacuc Flores-Moreno
- Department of Biological Sciences, George Washington University, Washington, DC, 20007, USA
- CSIRO Health and Biosecurity, GPO Box 2583, Brisbane, Qld, 4001, Australia
| | - Abbey R Yatsko
- Biology Department, University of Miami, Miami, FL, 33146, USA
| | - Alexander W Cheesman
- College of Science and Engineering, James Cook University, Cairns, Qld, 4878, Australia
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QE, UK
| | - Steven D Allison
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Earth System Science, University of California, Irvine, Irvine, CA, 92697, USA
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Qld, 4878, Australia
| | - Rose Cheney
- Department of Biological Sciences, George Washington University, Washington, DC, 20007, USA
| | - Rebecca A Clement
- Department of Biological Sciences, George Washington University, Washington, DC, 20007, USA
| | - Wendy Cooper
- Australian Tropical Herbarium, James Cook University, Cairns, Qld, 4878, Australia
| | - Paul Eggleton
- Life Sciences Department, The Natural History Museum, London, SW7 5BD, UK
| | - Rigel Jensen
- Australian Wildlife Conservancy, Malanda, Qld, 4885, Australia
| | - Marc Rosenfield
- Department of Biological Sciences, George Washington University, Washington, DC, 20007, USA
| | - Amy E Zanne
- Department of Biological Sciences, George Washington University, Washington, DC, 20007, USA
- Biology Department, University of Miami, Miami, FL, 33146, USA
| |
Collapse
|
3
|
Gong H, Niu Y, Niklas KJ, Huang H, Deng J, Wang Z. Nitrogen and phosphorus allocation in bark across diverse tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168327. [PMID: 37926252 DOI: 10.1016/j.scitotenv.2023.168327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Understanding of nitrogen (N) and phosphorus (P) allocation patterns among various plant organs and tissues is crucial for gaining insights into plant growth and life-history strategies, as well as ecosystem nutrient cycles. However, there is limited information available regarding allocation strategies for N and P in bark (i.e., all tissues external to the vascular cambium), which is an indispensable and specialized secondary tissue system. This study presents analyses of a newly compiled and comprehensive data set comprising 1246 pairwise N-P observations across 335 tree species spanning 557 independent sampling sites worldwide. The aim is to explore the interspecific N and P stoichiometry of bark. The global geometric means for bark N and P concentrations, as well as N:P ratios, were 3.88 mg/g, 0.2 mg/g, and 19.38, respectively. However, these values varied significantly among different functional plant-groups and biomes. Across all 335 species, the N vs. P scaling exponent was 0.69 for bark, which is similar to the 2/3-power scaling relationship observed in leaves and twigs. However, the bark N vs. P scaling exponent differed among functional plant-groups, biomes, and local sites, indicating the absence of a "canonical" scaling exponent. The interactions of soil total N and P collectively accounted for the most significant variation in the bark scaling exponent among local sites. The results indicate that there is no "canonical" bark N vs. P scaling exponent, and that soil nutrient content is the most important factor influencing N and P allocation strategies in bark. These findings may hold significant implications for predicting plant nutrient allocation strategies in response to environmental changes.
Collapse
Affiliation(s)
- Haiyang Gong
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu 610041, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Yuan Niu
- Lanzhou Agro-Technical Research and Popularization Center, Lanzhou 730010, China
| | - Karl J Niklas
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Heng Huang
- Division for Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong, China
| | - Jianming Deng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Zhiqiang Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu 610041, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
4
|
Guo C, Yan ER, Cornelissen JHC. Size matters for linking traits to ecosystem multifunctionality. Trends Ecol Evol 2022; 37:803-813. [PMID: 35810137 DOI: 10.1016/j.tree.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
A priority research field addresses how to optimize diverse ecosystem services to people, including biodiversity support, regulatory, utilitarian and cultural services. This field may benefit from linking ecosystem services to the sizes of different body parts of organisms, with functional traits as the go-between. Using woody ecosystems to explore such linkages, we hypothesize that across stem diameter classes from trunk via branches to twigs, key wood and bark functional traits (especially those defining size-shape and resource economics spectra) vary both within individual trees and shrubs and across woody species, thereby together boosting ecosystem multifunctionality. While we focus on woody plants aboveground, we discuss promising extensions to belowground organs of trees and shrubs and analogs with other organisms, for example, vertebrate animals.
Collapse
Affiliation(s)
- Chao Guo
- Putuo Island Ecosystem Research Station, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, and Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 200062, China
| | - En-Rong Yan
- Putuo Island Ecosystem Research Station, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, and Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 200062, China.
| | - J Hans C Cornelissen
- Systems Ecology, A-Life, Faculty of Science, Vrije Universiteit (VU University), De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Yang S, Sterck FJ, Sass-Klaassen U, Cornelissen JHC, van Logtestijn RSP, Hefting M, Goudzwaard L, Zuo J, Poorter L. Stem Trait Spectra Underpin Multiple Functions of Temperate Tree Species. FRONTIERS IN PLANT SCIENCE 2022; 13:769551. [PMID: 35310622 PMCID: PMC8930200 DOI: 10.3389/fpls.2022.769551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/13/2022] [Indexed: 05/17/2023]
Abstract
A central paradigm in comparative ecology is that species sort out along a slow-fast resource economy spectrum of plant strategies, but this has been rarely tested for a comprehensive set of stem traits and compartments. We tested how stem traits vary across wood and bark of temperate tree species, whether a slow-fast strategy spectrum exists, and what traits make up this plant strategy spectrum. For 14 temperate tree species, 20 anatomical, chemical, and morphological traits belonging to six key stem functions were measured for three stem compartments (inner wood, outer wood, and bark). The trait variation was explained by major taxa (38%), stem compartments (24%), and species within major taxa (19%). A continuous plant strategy gradient was found across and within taxa, running from hydraulic safe gymnosperms to conductive angiosperms. Both groups showed a second strategy gradient related to chemical defense. Gymnosperms strongly converged in their trait strategies because of their uniform tracheids. Angiosperms strongly diverged because of their different vessel arrangement and tissue types. The bark had higher concentrations of nutrients and phenolics whereas the wood had stronger physical defense. The gymnosperms have a conservative strategy associated with strong hydraulic safety and physical defense, and a narrow, specialized range of trait values, which allow them to grow well in drier and unproductive habitats. The angiosperm species show a wider trait variation in all stem compartments, which makes them successful in marginal- and in mesic, productive habitats. The associations between multiple wood and bark traits collectively define a slow-fast stem strategy spectrum as is seen also for each stem compartment.
Collapse
Affiliation(s)
- Shanshan Yang
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Shanshan Yang, ;
| | - Frank J. Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - Ute Sass-Klaassen
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - J. Hans C. Cornelissen
- Department of Ecological Science, Systems Ecology, VU University (Vrije Universiteit) Amsterdam, Amsterdam, Netherlands
| | - Richard S. P. van Logtestijn
- Department of Ecological Science, Systems Ecology, VU University (Vrije Universiteit) Amsterdam, Amsterdam, Netherlands
| | - Mariet Hefting
- Landscape Ecology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Leo Goudzwaard
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - Juan Zuo
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
6
|
Tuo B, Yan ER, Guo C, Ci H, Berg MP, Cornelissen JHC. Influences of the bark economics spectrum and positive termite feedback on bark and xylem decomposition. Ecology 2021; 102:e03480. [PMID: 34270798 DOI: 10.1002/ecy.3480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/25/2021] [Accepted: 05/13/2021] [Indexed: 01/26/2023]
Abstract
The plant economics spectrum integrates trade-offs and covariation in resource economic traits of different plant organs and their consequences for pivotal ecosystem processes, such as decomposition. However, in this concept stems are often considered as one unit ignoring the important functional differences between wood (xylem) and bark. These differences may not only affect the performance of woody plants during their lifetime, but may also have important "afterlife effects." Specifically, bark quality may strongly affect deadwood decomposition of different woody species. We hypothesized that (1) bark quality strongly influences bark decomposability to microbial decomposers, and possibly amplifies the interspecific variation in decomposition by invertebrate consumption, especially termites; and (2) bark decomposition has secondary effects on xylem mass loss by providing access to decomposers including invertebrates such as termites. We tested these hypotheses across 34 subtropical woody species representing five common plant functional types, by conducting an in situ deadwood decomposition experiment over 12-month in two sites in subtropical evergreen broad-leaved forest in China. We employed visual examination and surface density measurement to quantify termite consumption to both bark and the underlying xylem, respectively. Using principal component analysis, we synthesized seven bark traits to provide the first empirical evidence for a bark economics spectrum (BES), with high BES values (i.e., bark thickness, nitrogen, phosphorus, and cellulose contents) indicating a resource acquisitive strategy and low BES values (i.e., carbon, lignin, and dry matter contents) indicating a resource conservative strategy. The BES affected interspecific variation in bark mass loss and this relationship was strongly amplified by termites. The BES also explained nearly half of the interspecific variation in termite consumption to xylem, making it an important contributor to deadwood decomposition overall. Moreover, the above across-species relationships manifested also within plant functional types, highlighting the value of using continuous variation in bark traits rather than categorical plant functional types in carbon cycle modeling. Our findings demonstrate the potent role of the BES in influencing deadwood decomposition including positive invertebrate feedback thereon in warm-climate forests, with implications for the role of bark quality in carbon cycling in other woody biomes.
Collapse
Affiliation(s)
- Bin Tuo
- Putuo Island Ecosystem Research Station, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, and Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.,Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - En-Rong Yan
- Putuo Island Ecosystem Research Station, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, and Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Chao Guo
- Putuo Island Ecosystem Research Station, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, and Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Hang Ci
- Putuo Island Ecosystem Research Station, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, and Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Matty P Berg
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands.,Community and Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Post Box 11103, Groningen, 9700 CC, The Netherlands
| | - Johannes H C Cornelissen
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|