1
|
Ma J, Xin X, Cao Y, Zhao L, Zhang Z, Zhang D, Fu Z, Sun J. Root growth characteristics and antioxidant system of Suaeda salsa in response to the short-term nitrogen and phosphorus addition in the Yellow River Delta. FRONTIERS IN PLANT SCIENCE 2024; 15:1410036. [PMID: 38911979 PMCID: PMC11191639 DOI: 10.3389/fpls.2024.1410036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024]
Abstract
Human activities have increased nitrogen (N) and phosphorus (P) inputs to the Yellow River Delta and the supply level of N and P affects plant growth as well as ecosystem structure and function directly. However, the root growth, stoichiometry, and antioxidant system of plants in response to N and P additions, especially for herbaceous halophyte in the Yellow River Delta (YRD), remain unknown. A field experiment with N addition (0, 5, 15, and 45 g N m-2 yr-1, respectively) as the main plot, and P addition (0 and 1 g N m-2 yr-1, respectively) as the subplot, was carried out with a split-plot design to investigate the effects on the root morphology, stoichiometry, and antioxidant system of Suaeda salsa. The results showed that N addition significantly increased the above-ground and root biomass as well as shoot-root ratio of S. salsa, which had a significant interaction with P addition. The highest biomass was found in the treatment with 45 g N m-2 yr-1 combined with P addition. N addition significantly increased TN content and decreased C:N ratio of root, while P addition significantly increased TP content and decreased C:P ratio. The main root length (MRL), total root length (TRL), specific root length (SRL), and root tissue density (RTD) of S. salsa root were significantly affected by N addition and P addition, as well as their interaction. The treatments with or without P addition at the 45 g N m-2 yr-1 of N addition significantly increased the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) activities and soluble protein content of roots, decreased malondialdehyde (MDA) content. And there was a significant interaction between the N and P addition on SOD activity. Therefore, N and P additions could improve the growth of S. salsa by altering the root morphology, increasing the root nutrient content, and stimulating antioxidant system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jingkuan Sun
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou, China
| |
Collapse
|
2
|
Luo Y, Du L, Zhang J, Ren H, Shen Y, Zhang J, Li N, Tian R, Wang S, Liu H, Xu Z. Nitrogen addition alleviates the adverse effects of drought on plant productivity in a temperate steppe. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2969. [PMID: 38562107 DOI: 10.1002/eap.2969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 04/04/2024]
Abstract
Drought and nitrogen enrichment could profoundly affect the productivity of semiarid ecosystems. However, how ecosystem productivity will respond to different drought scenarios, especially with a concurrent increase in nitrogen availability, is still poorly understood. Using data from a 4-year field experiment conducted in a semiarid temperate steppe, we explored the responses of aboveground net primary productivity (ANPP) to different drought scenarios and nitrogen addition, and the underlying mechanisms linking soil properties, plant species richness, functional diversity (community-weighted means of plant traits, functional dispersion) and phylogenetic diversity (net relatedness index) to ANPP. Our results showed that completely excluding precipitation in June (1-month intense drought) and reducing half the precipitation amount from June to August (season-long chronic drought) both significantly reduced ANPP, with the latter having a more negative impact on ANPP. However, reducing half of the precipitation frequency from June to August (precipitation redistribution) had no significant effect on ANPP. Nitrogen addition increased ANPP irrespective of drought scenarios. ANPP was primarily determined by soil moisture and nitrogen availability by regulating the community-weighted means of plant height, rather than other aspects of plant diversity. Our findings suggest that precipitation amount is more important than precipitation redistribution in influencing the productivity of temperate steppe, and nitrogen supply could alleviate the adverse impacts of drought on grassland productivity. Our study advances the mechanistic understanding of how the temperate grassland responds to drought stress, and implies that management strategies to protect tall species in the community would be beneficial for maintaining the productivity and carbon sequestration of grassland ecosystems under climate drought.
Collapse
Affiliation(s)
- Yonghong Luo
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lan Du
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jiatao Zhang
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Haiyan Ren
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Shen
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jinbao Zhang
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Na Li
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Ru Tian
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Shan Wang
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Heyong Liu
- School of Life Sciences, Hebei University, Baoding, China
| | - Zhuwen Xu
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, China
| |
Collapse
|
3
|
Kong L, Song J, Ru J, Feng J, Hou J, Wang X, Zhang Q, Wang H, Yue X, Zhou Z, Sun D, Zhang J, Li H, Fan Y, Wan S. Nitrogen addition does not alter symmetric responses of soil respiration to changing precipitation in a semi-arid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171170. [PMID: 38402979 DOI: 10.1016/j.scitotenv.2024.171170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Concurrent changing precipitation regimes and atmospheric nitrogen (N) deposition can have profound influences on soil carbon (C) cycling. However, how N enrichment regulates the responses of soil C fluxes to increasing variability of precipitation remains elusive. As part of a field precipitation gradient experiment with nine levels of precipitation amounts (-60 %, -45 %, -30 %, -15 %, ambient precipitation, +15 %, +30 %, +45 %, and +60 %) and two levels of N addition (0 and 10 g N m-2 yr-1) in a semi-arid temperate steppe on the Mongolian Plateau, this work was conducted to investigate the responses of soil respiration to decreased and increased precipitation (DP and IP), N addition, and their possible interactions. Averaged over the three years from 2019 to 2021, DP suppressed soil respiration by 16.1 %, whereas IP stimulated it by 27.4 %. Nitrogen addition decreased soil respiration by 7.1 % primarily via reducing microbial biomass C. Soil respiration showed symmetric responses to DP and IP within all the four precipitation variabilities (i.e., 15 %, 30 %, 45 %, and 60 %) under ambient N. Nevertheless, N addition did not alter the symmetric responses of soil respiration to changing precipitation due to the comparable sensitivities of microbial biomass and root growth to DP and IP under the N addition treatment. These findings indicate that intensified precipitation variability does not change but N addition could alleviate soil C releases. The unchanged symmetric responses of soil respiration to precipitation variability under N addition imply that N deposition may not change the response pattern of soil C releases to predicted increases in precipitation variability in grasslands, facilitating the robust projections of ecosystem C cycling under future global change scenarios.
Collapse
Affiliation(s)
- Lingjie Kong
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jian Song
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jingyi Ru
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jiayin Feng
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jiawei Hou
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Xueke Wang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Qingshan Zhang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Haidao Wang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Xiaojing Yue
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Zhenxing Zhou
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dasheng Sun
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jiajia Zhang
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Heng Li
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yongge Fan
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Shiqiang Wan
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
4
|
Wei X, Han L, Xu N, Sun M, Yang X. Nitrate nitrogen enhances the efficiency of photoprotection in Leymus chinensis under drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1348925. [PMID: 38419774 PMCID: PMC10899514 DOI: 10.3389/fpls.2024.1348925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Introduction Global climate change exerts a significant impact on the nitrogen supply and photosynthesis ability in land-based plants. The photosynthetic capacity of dominant grassland species is important if we are to understand carbon cycling under climate change. Drought stress is one of the major factors limiting plant photosynthesis, and nitrogen (N) is an essential nutrient involved in the photosynthetic activity of leaves. The regulatory mechanisms responsible for the effects of ammonium (NH4 +) and nitrate (NO3 -) on the drought-induced photoinhibition of photosystem II (PSII) in plants have yet to be fully elucidated. Therefore, there is a significant need to gain a better understanding of the role of electron transport in the photoinhibition of PSII. Methods In the present study, we conducted experiments with normal watering (LD), severe drought (MD), and extreme drought (HD) treatments, along with no nitrogen (N0), ammonium (NH4), nitrate (NO3), and mixed nitrogen (NH4NO3) treatments. We analyzed pigment accumulation, reactive oxygen species (ROS) accumulation, photosynthetic enzyme activity, photosystem activity, electron transport, and O-J-I-P kinetics. Results Analysis showed that increased nitrate application significantly increased the leaf chlorophyll content per unit area (Chlarea) and nitrogen content per unit area (Narea) (p< 0.05). Under HD treatment, ROS levels were lower in NO3-treated plants than in N0 plants, and there was no significant difference in photosynthetic enzyme activity between plants treated with NO3 and NH4NO3. Under drought stress, the maximum photochemical efficiency of PSII (Fv/Fm), PSII electron transport rate (ETR), and effective quantum yield of PSII (φPSII) were significant higher in NO3-treated plants (p< 0.05). Importantly, the K-band and G-band were higher in NO3-treated plants. Discussion These results suggest that drought stress hindered the formation of NADPH and ATP in N0 and NH4-treated L. chinensis plants, thus damaging the donor side of the PSII oxygen-evolving complex (OEC). After applying nitrate, higher photosynthetic enzyme and antioxidant enzyme activity not only protected PSII from photodamage under drought stress but also reduced the rate of damage in PSII during the growth of L. chinensis growth under drought stress.
Collapse
Affiliation(s)
- Xiaowei Wei
- Jilin Provincial Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| | - Lin Han
- Jilin Provincial Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, China
| | - Nan Xu
- Key Laboratory of Heilongjiang Province for Cold-Regions Wetlands Ecology and Environment Research, and School of Geography and Tourism, Harbin University, Harbin, China
| | - Mingyue Sun
- Jilin Provincial Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| | - Xuechen Yang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Ren J, Wang C, Wang Q, Song W, Sun W. Nitrogen addition regulates the effects of variation in precipitation patterns on plant biomass formation and allocation in a Leymus chinensis grassland of northeast China. FRONTIERS IN PLANT SCIENCE 2024; 14:1323766. [PMID: 38283970 PMCID: PMC10810989 DOI: 10.3389/fpls.2023.1323766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Global warming is predicted to change precipitation amount and reduce precipitation frequency, which may alter grassland primary productivity and biomass allocation, especially when interact with other global change factors, such as nitrogen deposition. The interactive effects of changes in precipitation amount and nitrogen addition on productivity and biomass allocation are extensively studied; however, how these effects may be regulated by the predicted reduction in precipitation frequency remain largely unknown. Using a mesocosm experiment, we investigated responses of primary productivity and biomass allocation to the manipulated changes in precipitation amount (PA: 150 mm, 300 mm, 450 mm), precipitation frequency (PF: medium and low), and nitrogen addition (NA: 0 and 10 g N m-2 yr-1) in a Leymus chinensis grassland. We detected significant effects of the PA, PF and NA treatments on both aboveground biomass (AGB) and belowground biomass (BGB); but the interactive effects were only significant between the PA and NA on AGB. Both AGB and BGB increased with an increment in precipitation amount and nitrogen addition; the reduction in PF decreased AGB, but increased BGB. The reduced PF treatment induced an enhancement in the variation of soil moisture, which subsequently affected photosynthesis and biomass formation. Overall, there were mismatches in the above- and belowground biomass responses to changes in precipitation regime. Our results suggest the predicted changes in precipitation regime, including precipitation amount and frequency, is likely to alter primary productivity and biomass allocation, especially when interact with nitrogen deposition. Therefore, predicting the influence of global changes on grassland structure and functions requires the consideration of interactions among multiple global change factors.
Collapse
Affiliation(s)
- Jianli Ren
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin, China
- Institute of Resources and Ecology, Yili Normal University, Yining, Xinjiang, China
- School of Resources and Environment, Yili Normal University, Yining, Xinjiang, China
| | - Chengliang Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin, China
| | - Qiaoxin Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin, China
| | - Wenzheng Song
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin, China
- College of Tourism, Resources and Environment, Zaozhuang University, Zaozhuang, China
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
6
|
Tao Z, Shen C, Qin W, Nie B, Chen P, Wan J, Zhang K, Huang W, Siemann E. Fluctuations in resource availability shape the competitive balance among non-native plant species. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2795. [PMID: 36502292 DOI: 10.1002/eap.2795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Fluctuating resource availability plays a critical role in determining non-native plant invasions through mediating the competitive balance between non-native and native species. However, the impact of fluctuating resource availability on interactions among non-native species remains largely unknown. This represents a barrier to understanding invasion mechanisms, particularly in habitats that harbor multiple non-native species with different responses to fluctuating resource availability. To examine the responses of non-native plant species to nutrient fluctuations, we compared the growth of each of 12 non-native species found to be common in local natural areas to nutrients supplied at a constant rate or supplied as a single large pulse in a pot experiment. We found that seven species produced more biomass with pulsed nutrients compared to constant nutrients (hereafter "benefitting species"), while the other five species did not differ between nutrient enrichment treatments (hereafter "non-benefitting species"). To investigate how nutrient fluctuations influence the interactions among non-native plant species, we established experimental non-native communities in the field with two benefitting and two non-benefitting non-native species. Compared with constant nutrient supply, the single large pulse of nutrient did not influence community biomass, but strongly increased the biomass and cover of the benefitting species and decreased those of the non-benefitting species. Furthermore, the benefitting species had higher leaf N content and greater plant height when nutrients were supplied as a single large pulse than at a constant rate, whereas the non-benefitting species showed no differences in leaf N content and were shorter when nutrients were supplied as a single large pulse than at a constant rate. Our results add to the growing evidence that the individual responses of non-native species to nutrient fluctuation are species-specific. More importantly, benefitting species were favored by nutrients coming in a pulse, while non-benefitting ones were favored by nutrients coming constantly when they grew together. This suggests that nutrient fluctuations can mediate the competitive balance among non-native plants and may thus determine their invasion success in a community harboring multiple non-native plant species.
Collapse
Affiliation(s)
- Zhibin Tao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Changchao Shen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenchao Qin
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baoguo Nie
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengdong Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinlong Wan
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Kaoping Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wei Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, Texas, USA
| |
Collapse
|
7
|
Kiene C, Jung EY, Engelbrecht BMJ. Nutrient effects on drought responses vary across common temperate grassland species. Oecologia 2023; 202:1-14. [PMID: 37145315 DOI: 10.1007/s00442-023-05370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Abstract
Drought and nutrient input are two main global change drivers that threaten ecosystem function and services. Resolving the interactive effects of human-induced stressors on individual species is necessary to improve our understanding of community and ecosystem responses. This study comparatively assessed how different nutrient conditions affect whole-plant drought responses across 13 common temperate grassland species. We conducted a fully factorial drought-fertilization experiment to examine the effect of nutrient addition [nitrogen (N), phosphorus (P), and combined NP] on species' drought survival, and on drought resistance of growth as well as drought legacy effects. Drought had an overall negative effect on survival and growth, and the adverse drought effects extended into the next growing season. Neither drought resistance nor legacy effects exhibited an overall effect of nutrients. Instead, both the size and the direction of the effects differed strongly among species and between nutrient conditions. Consistently, species performance ranking under drought changed with nitrogen availability. The idiosyncratic responses of species to drought under different nutrient conditions may underlie the seemingly contradicting effects of drought in studies on grassland composition and productivity along nutrient and land-use gradients-ranging from amplifying to dampening. Differential species' responses to combinations of nutrients and drought, as observed in our study, complicate predictions of community and ecosystem responses to climate and land-use changes. Moreover, they highlight the urgent need for an improved understanding of the mechanisms that render species more or less vulnerable to drought under different nutrients.
Collapse
Affiliation(s)
- Carola Kiene
- Functional and Tropical Plant Ecology, Bayreuth Centre of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany.
| | - Eun-Young Jung
- Functional and Tropical Plant Ecology, Bayreuth Centre of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Bettina M J Engelbrecht
- Functional and Tropical Plant Ecology, Bayreuth Centre of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
8
|
Guo H, Quan Q, Niu S, Li T, He Y, Fu Y, Li J, Wang J, Zhang R, Li Z, Tian D. Shifting biomass allocation and light limitation co-regulate the temporal stability of an alpine meadow under eutrophication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160411. [PMID: 36574548 DOI: 10.1016/j.scitotenv.2022.160411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Eutrophication generally promotes but destabilizes grassland productivity. Under eutrophication, plants tend to decrease biomass allocation to roots but increase aboveground allocation and light limitation, likely affecting community stability. However, it remains unclear to understand how shifting plant biomass allocation and light limitation regulate grassland stability in response to eutrophication. Here, using a 5-yr multiple nutrient addition experiment in an alpine meadow, we explored the role of changes in plant biomass allocation and light limitation on its community stability under eutrophication as well as traditionally established mechanisms (i.e., plant Shannon diversity, species asynchrony and grass subcommunity stability). Our results showed that nitrogen (N) addition, rather than phosphorus (P) or potassium (K) addition, significantly reduced the temporal stability of the alpine meadow. In accordance with previous studies, we found that N addition decreased plant Shannon diversity, species asynchrony and grass subcommunity stability, further destabilizing meadow community productivity. In addition, we also found the decrease in biomass allocation to belowground by N addition, further weakening its community stability. Moreover, this shifts in plant biomass allocation from below- to aboveground, intensifying plant light limitation. Further, the light limitation reduced plant species asynchrony, which finally weakened its community stability. Overall, in addition to traditionally established mechanisms, this study highlights the role of plant biomass allocation shifting from belowground to aboveground in determining grassland community stability. These "unseen" mechanisms might improve our understanding of grassland stability in the context of ongoing eutrophication.
Collapse
Affiliation(s)
- Hongbo Guo
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Quan Quan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Yicheng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yiwen Fu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Environmental Mapping and Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Jiapu Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Zhaolei Li
- College of Resources and Environment and Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Jin Y, Lai S, Chen Z, Jian C, Zhou J, Niu F, Xu B. Leaf Photosynthetic and Functional Traits of Grassland Dominant Species in Response to Nutrient Addition on the Chinese Loess Plateau. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212921. [PMID: 36365374 PMCID: PMC9658743 DOI: 10.3390/plants11212921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 05/11/2023]
Abstract
Leaf photosynthetic and functional traits of dominant species are important for understanding grassland community dynamics under imbalanced nitrogen (N) and phosphorus (P) inputs. Here, the effects of N (N0, N50, and N100, corresponding to 0, 50, and 100 kg ha-1 yr-1, respectively) or/and P additions (P0, P40, and P80, corresponding to 0, 40, and 80 kg ha-1 yr-1) on photosynthetic characteristics and leaf economic traits of three dominant species (two grasses: Bothriochloa ischaemum and Stipa bungeana; a leguminous subshrub: Lespedeza davurica) were investigated in a semiarid grassland community on the Loess Plateau of China. Results showed that, after a three-year N addition, all three species had higher specific leaf area (SLA), leaf chlorophyll content (SPAD value), maximum net photosynthetic rate (PNmax), and leaf instantaneous water use efficiency (WUE), while also having a lower leaf dry matter content (LDMC). The two grasses, B. ischaemum and S. bungeana, showed greater increases in PNmax and SLA than the subshrub L. davurica. P addition alone had no noticeable effect on the PNmax of the two grasses while it significantly increased the PNmax of L. davurica. There was an evident synergetic effect of the addition of N and P combined on photosynthetic traits and most leaf economic traits in the three species. All species had relatively high PNmax and SLA under the addition of N50 combined with P40. Overall, this study suggests that N and P addition shifted leaf economic traits towards a greater light harvesting ability and, thus, elevated photosynthesis in the three dominant species of a semiarid grassland community, and this was achieved by species-specific responses in leaf functional traits. These results may provide insights into grassland restoration and the assessment of community development in the context of atmospheric N deposition and intensive agricultural fertilization.
Collapse
Affiliation(s)
- Yuan Jin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xianyang 712100, China
| | - Shuaibin Lai
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xianyang 712100, China
| | - Zhifei Chen
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Chunxia Jian
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xianyang 712100, China
| | - Junjie Zhou
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xianyang 712100, China
| | - Furong Niu
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xianyang 712100, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Xianyang 712100, China
- Correspondence:
| |
Collapse
|
10
|
Zang YX, Xu WX, Wu K, Yang WK. Effect of Nitrogen Application on the Sensitivity of Desert Shrub Community Productivity to Precipitation in Central Asia. FRONTIERS IN PLANT SCIENCE 2022; 13:916706. [PMID: 35923882 PMCID: PMC9340062 DOI: 10.3389/fpls.2022.916706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Precipitation variability and nitrogen (N) deposition caused by anthropogenic activities could profoundly impact ecosystem productivity and carbon cycling. In desert ecosystems, vegetation is sensitive to changes in precipitation and N deposition. However, the impacts of large changes in precipitation, especially with a concurrent increase in N content, on plant community remain unclear. In this study, we carried out experiments to monitor the impacts of five precipitation levels and two N levels on the plant community function and composition from the Junggar desert in Central Asia during the period 2018-2019. Our results showed that: (1) Aboveground net primary production (ANPP) significantly increased with increasing precipitation, it followed a positive linear model under normal precipitation range, and nonlinear mode under extreme precipitation events; (2) N application led to an increase in ANPP, but did not significantly improve the sensitivity of ANPP to precipitation change; (3) Changes in N content and precipitation, and their impacts on ANPP were mainly driven by plant density. These results provide a theoretical basis for predict the future dynamics of terrestrial vegetation more accurately under climate change and increasing nitrogen deposition.
Collapse
Affiliation(s)
- Yong-Xin Zang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wen-Xuan Xu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- The Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Mori Wildlife Monitoring and Experimentation Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Mori, China
| | - Ke Wu
- Mori Wildlife Monitoring and Experimentation Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Mori, China
| | - Wei-Kang Yang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- The Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Mori Wildlife Monitoring and Experimentation Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Mori, China
| |
Collapse
|
11
|
Hossain ML, Li J, Hoffmann S, Beierkuhnlein C. Biodiversity showed positive effects on resistance but mixed effects on resilience to climatic extremes in a long-term grassland experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154322. [PMID: 35257775 DOI: 10.1016/j.scitotenv.2022.154322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Understanding the role of biodiversity in maintaining ecosystem functioning and stability under increasing frequency and magnitude of climatic extremes has fascinated ecologists for decades. Although growing evidence suggests that biodiversity affects ecosystem productivity and buffers ecosystem against climatic extremes, it remains unclear whether the stability of an ecosystem is caused by its resistance against disturbances or resilience towards perturbations or both. In attempting to explore how species richness affects resistance and resilience of above-ground net primary productivity (ANPP) against climatic extremes, we analyzed the grassland ANPP of the long-running (1997-2020) Bayreuth Biodiversity experiment in Germany. We used the Standardized Precipitation Evapotranspiration Index to identify climatic conditions based on 5- and 7-class classifications of climatic conditions. Mixed-effects models and post-hoc test show that ANPP varied significantly among different intensities (e.g. moderate or extreme) and directions (e.g. dry or wet) of climatic conditions, with the highest ANPP in extreme wet and the lowest in extreme dry conditions. Resistance and resilience of ANPP to climatic extremes in different intensities were examined by linear-mixed effects models and we found that species richness increased ecosystem resistance against all dry and wet climatic extremes, but decreased ecosystem resilience towards all dry climatic extremes. Species richness had no effects on ecosystem resilience towards wet climatic extremes. When the five level of species richness treatment (i.e., 1, 2, 4, 8, and 16 species) were considered, the relationships between species richness and resistance and resilience of ANPP under extreme wet and dry conditions remained similar. Our study emphasizes that plant communities with greater species richness need to be maintained to stabilize ecosystem productivity and increase resistance against different climatic extremes.
Collapse
Affiliation(s)
- Md Lokman Hossain
- Department of Geography, Hong Kong Baptist University, Baptist University Road, Kowloon Tong, Hong Kong, China; Department of Biogeography, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany; Department of Environment Protection Technology, German University Bangladesh, 1702 Gazipur, Bangladesh
| | - Jianfeng Li
- Department of Geography, Hong Kong Baptist University, Baptist University Road, Kowloon Tong, Hong Kong, China.
| | - Samuel Hoffmann
- Department of Biogeography, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Carl Beierkuhnlein
- Department of Biogeography, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany; BayCEER, Bayreuth Center for Ecology and Environmental Research, Universitätsstr. 30, 95447 Bayreuth, Germany
| |
Collapse
|
12
|
Fust P, Schlecht E. Importance of timing: Vulnerability of semi-arid rangeland systems to increased variability in temporal distribution of rainfall events as predicted by future climate change. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Meng B, Li J, Yao Y, Nippert JB, Williams DG, Chai H, Collins SL, Sun W. Soil N enrichment mediates carbon allocation through respiration in a dominant grass during drought. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Bo Meng
- Institute of Grassland Science Key Laboratory of Vegetation Ecology of the Ministry of Education Jilin Songnen Grassland Ecosystem National Observation and Research Station Northeast Normal University Changchun 130024 China
- Institute of Ecology College of Urban and Environmental Science Key Laboratory for Earth Surface Processes of the Ministry of Education Peking University Beijing 100871 China
| | - Junqin Li
- Institute of Grassland Science Key Laboratory of Vegetation Ecology of the Ministry of Education Jilin Songnen Grassland Ecosystem National Observation and Research Station Northeast Normal University Changchun 130024 China
| | - Yuan Yao
- Institute of Grassland Science Key Laboratory of Vegetation Ecology of the Ministry of Education Jilin Songnen Grassland Ecosystem National Observation and Research Station Northeast Normal University Changchun 130024 China
| | - Jesse B. Nippert
- Division of Biology Kansas State University Manhattan KS 66506 USA
| | | | - Hua Chai
- Institute of Grassland Science Key Laboratory of Vegetation Ecology of the Ministry of Education Jilin Songnen Grassland Ecosystem National Observation and Research Station Northeast Normal University Changchun 130024 China
| | - Scott L. Collins
- Department of Biology University of New Mexico Albuquerque NM 87131 USA
| | - Wei Sun
- Institute of Grassland Science Key Laboratory of Vegetation Ecology of the Ministry of Education Jilin Songnen Grassland Ecosystem National Observation and Research Station Northeast Normal University Changchun 130024 China
| |
Collapse
|
14
|
Hou E, Litvak ME, Rudgers JA, Jiang L, Collins SL, Pockman WT, Hui D, Niu S, Luo Y. Divergent responses of primary production to increasing precipitation variability in global drylands. GLOBAL CHANGE BIOLOGY 2021; 27:5225-5237. [PMID: 34260799 DOI: 10.1111/gcb.15801] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Interannual variability in precipitation has increased globally as climate warming intensifies. The increased variability impacts both terrestrial plant production and carbon (C) sequestration. However, mechanisms driving these changes are largely unknown. Here, we examined mechanisms underlying the response of aboveground net primary production (ANPP) to interannual precipitation variability in global drylands with mean annual precipitation (MAP) <500 mm year-1 , using a combined approach of data synthesis and process-based modeling. We found a hump-shaped response of ANPP to precipitation variability along the MAP gradient. The response was positive when MAP < ~300 mm year-1 and negative when MAP was higher than this threshold, with a positive peak at 140 mm year-1 . Transpiration and subsoil water content mirrored the response of ANPP to precipitation variability; evaporation responded negatively and water loss through runoff and drainage responded positively to precipitation variability. Mean annual temperature, soil type, and plant physiological traits all altered the magnitude but not the pattern of the response of ANPP to precipitation variability along the MAP gradient. By extrapolating to global drylands (<500 mm year-1 MAP), we estimated that ANPP would increase by 15.2 ± 6.0 Tg C year-1 in arid and hyper-arid lands and decrease by 2.1 ± 0.5 Tg C year-1 in dry sub-humid lands under future changes in interannual precipitation variability. Thus, increases in precipitation variability will enhance primary production in many drylands in the future.
Collapse
Affiliation(s)
- Enqing Hou
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Marcy E Litvak
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jennifer A Rudgers
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, New Mexico, USA
| | - Lifen Jiang
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Scott L Collins
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, New Mexico, USA
| | - William T Pockman
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, New Mexico, USA
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|