1
|
Ogunbode TO, Esan VI, Oyebamiji VO, Olatubi IV, Ogunlaran OM. Exploring People's Perception on Pros and Cons of Human-Bat Coexistence in Urban Environs in Southwestern Nigeria. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241266051. [PMID: 39071234 PMCID: PMC11283653 DOI: 10.1177/11786302241266051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024]
Abstract
This research intricately explores the dynamics surrounding the coexistence of humans and roosting bats in urban areas, meticulously examining both the advantageous and detrimental aspects of their living arrangement. The study conducted a comprehensive survey with 286 residents in Iwo and Ogbomoso, where Eidolon helvum bats are known to roost, generating a robust dataset for thorough analysis. Rigorous statistical assessments, including the KMO and Bartlett's tests, confirmed the data's reliability at a significance level of P < .05. The respondent demographic revealed a predominance of 65% male participants, with an overwhelming 85% claiming familiarity with bats in their respective domains. Utilizing factor analysis, the study identified 8 salient variables from the initial 26, shedding light on diverse perceptions regarding bats: (i) Urban roosting (16.729%); (ii) Impact on tree growth (12.607%); (iii) Failed dislodgement attempts (11.504%); (iv) Medicinal value (10.240%); (v) Co-habitation preference (9.963%); (vi) Costly dislodgment consequences (9.963%); (vii) Beautification disruption (5.615%); and (viii) Structure defacement (5.510%). These factors were systematically categorized into 4 distinct themes: (A) Forced cohabitation (26.762%); (B) Environmental degradation by bats (23.732%); (C) Consequences of dislodging bats (21.477%); and (D) Acknowledged benefits of bats (10.240%). Co-habitation with bats becomes a necessity for ecological balance and, importantly, to safeguard the livelihood of roosting bats within their natural ecology, which man has encroached upon through urbanization, making all negatives arising from such existence self-inflicted by man. However, this study underscores the importance of human-bat cohabitation for mutual benefits, emphasizing potential detrimental consequences, including significant costs, associated with displacing bats from their natural ecosystem. These consequences may exacerbate the impacts of climate change, environmental degradation, and ecological imbalance. Further research is recommended to explore the positive aspects of the sustainable roosting bats' existence in the natural environment.
Collapse
Affiliation(s)
- Timothy O Ogunbode
- Environmental Management and Crop Production Unit, College of Agriculture, Engineering and Science, Bowen University, Iwo, Nigeria
| | - Vincent I Esan
- Environmental Management and Crop Production Unit, College of Agriculture, Engineering and Science, Bowen University, Iwo, Nigeria
| | | | - Iyabo V Olatubi
- Pure and Applied Biology Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Nigeria
| | - Oladotun M Ogunlaran
- Mathematics Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Nigeria
| |
Collapse
|
2
|
Sivault E, Kollross J, Jorge LR, Finnie S, Diez-Méndez D, Fernandez Garzon S, Maraia H, Lenc J, Libra M, Murakami M, Nakaji T, Nakamura M, Sreekar R, Sam L, Abe T, Weiss M, Sam K. Insectivorous birds and bats outperform ants in the top-down regulation of arthropods across strata of a Japanese temperate forest. J Anim Ecol 2024. [PMID: 39045801 DOI: 10.1111/1365-2656.14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/06/2024] [Indexed: 07/25/2024]
Abstract
Birds, bats and ants are recognised as significant arthropod predators. However, empirical studies reveal inconsistent trends in their relative roles in top-down control across strata. Here, we describe the differences between forest strata in the separate effects of birds, bats and ants on arthropod densities and their cascading effects on plant damage. We implemented a factorial design to exclude vertebrates and ants in both the canopy and understorey. Additionally, we separately excluded birds and bats from the understorey using diurnal and nocturnal exclosures. At the end of the experiments, we collected all arthropods and assessed herbivory damage. Arthropods responded similarly to predator exclusion across forest strata, with a density increase of 81% on trees without vertebrates and 53% without both vertebrates and ants. Additionally, bird exclusion alone led to an 89% increase in arthropod density, while bat exclusion resulted in a 63% increase. Herbivory increased by 42% when vertebrates were excluded and by 35% when both vertebrates and ants were excluded. Bird exclusion alone increased herbivory damage by 28%, while the exclusion of bats showed a detectable but non-significant increase (by 22%). In contrast, ant exclusion had no significant effect on arthropod density or herbivory damage across strata. Our results reveal that the effects of birds and bats on arthropod density and herbivory damage are similar between the forest canopy and understorey in this temperate forest. In addition, ants were not found to be significant predators in our system. Furthermore, birds, bats and ants appeared to exhibit antagonistic relationships in influencing arthropod density. These findings highlight, unprecedentedly, the equal importance of birds and bats in maintaining ecological balance across different strata of a temperate forest.
Collapse
Affiliation(s)
- Elise Sivault
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Jan Kollross
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Leonardo Re Jorge
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Sam Finnie
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - David Diez-Méndez
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Sara Fernandez Garzon
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Heveakore Maraia
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Jan Lenc
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Martin Libra
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | | | - Tatsuro Nakaji
- Sapporo Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Japan
| | - Masahiro Nakamura
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Japan
| | - Rachakonda Sreekar
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Centre for Biodiversity and Conservation Science, School of Environment, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Legi Sam
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Tomokazu Abe
- Faculty of Science, Chiba University, Chiba, Japan
| | - Matthias Weiss
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Katerina Sam
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
3
|
de Mel RK, Moseby KE, Stewart KA, Rankin KE, Czenze ZJ. The heat is on: Thermoregulatory and evaporative cooling patterns of desert-dwelling bats. J Therm Biol 2024; 123:103919. [PMID: 39024847 DOI: 10.1016/j.jtherbio.2024.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
For small endotherms inhabiting desert ecosystems, defending body temperatures (Tb) is challenging as they contend with extremely high ambient temperatures (Ta) and limited standing water. In the arid zone, bats may thermoconform whereby Tb varies with Ta, or may evaporatively cool themselves to maintain Tb < Ta. We used an integrative approach that combined both temperature telemetry and flow through respirometry to investigate the ecological and physiological strategies of lesser long-eared bats (Nyctophilus geoffroyi) in Australia's arid zone. We predicted individuals would exhibit desert-adapted thermoregulatory patterns (i.e., thermoconform to prioritise water conservation), and that females would be more conservative with their water reserves for evaporative cooling compared to males. Temperature telemetry data indicated that free-ranging N. geoffroyi were heterothermic (Tskin = 18.9-44.9 °C) during summer and thermoconformed over a wide range of temperatures, likely to conserve water and energy during the day. Experimentally, at high Tas, females maintained significantly lower Tb and resting metabolic rates, despite lower evaporative water loss (EWL) rates compared to males. Females only increased EWL at experimental Ta = 42.5 °C, significantly higher than males (40.7 °C), and higher than any bat species yet recorded. During the hottest day of this study, our estimates suggest the water required for evaporative cooling ranged from 18.3% (females) and 25.5% (males) of body mass. However, if we extrapolate these results to a recent heatwave these values increase to 36.5% and 47.3%, which are likely beyond lethal limits. It appears this population is under selective pressures to conserve water reserves and that these pressures are more pronounced in females than males. Bats in arid ecosystems are threatened by both current and future heatwaves and we recommend future conservation efforts focus on protecting current roost trees and creating artificial standing water sites near vulnerable populations.
Collapse
Affiliation(s)
- Ruvinda K de Mel
- Centre for Behavioural and Physiological Ecology, University of New England, Armidale, NSW, 2351, Australia.
| | - Katherine E Moseby
- School of Biological, Earth and Environment Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Kathleen A Stewart
- Centre for Behavioural and Physiological Ecology, University of New England, Armidale, NSW, 2351, Australia
| | - Kate E Rankin
- Centre for Behavioural and Physiological Ecology, University of New England, Armidale, NSW, 2351, Australia
| | - Zenon J Czenze
- Centre for Behavioural and Physiological Ecology, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
4
|
Perea S, Meinecke CD, Larsen-Gray AL, Greene DU, Villari C, Gandhi KJK, Castleberry SB. Winter diet of bats in working forests of the southeastern U.S. Coastal Plain. Sci Rep 2024; 14:12778. [PMID: 38834684 PMCID: PMC11150266 DOI: 10.1038/s41598-024-63062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Working forests comprise a large proportion of forested landscapes in the southeastern United States and are important to the conservation of bats, which rely on forests for roosting and foraging. While relationships between bat ecology and forest management are well studied during summer, winter bat ecology remains understudied. Hence, we aimed to identify the diet composition of overwintering bats, compare the composition of prey consumed by bat species, and determine the potential role of forest bats as pest controllers in working forest landscapes of the southeastern U.S. Coastal Plain. During January to March 2021-2022, we captured 264 bats of eight species. We used DNA metabarcoding to obtain diet composition from 126 individuals of seven bat species identifying 22 orders and 174 families of arthropod prey. Although Coleoptera, Diptera, and Lepidoptera were the most consumed orders, we found that bats had a generalist diet but with significant differences among some species. We also documented the consumption of multiple insect pests (e.g., Rhyacionia frustrana) and disease vectors (e.g., Culex spp). Our results provide important information regarding the winter diet of bats in the southeastern U.S. Coastal Plain and their potential role in controlling economically relevant pest species and disease vectors.
Collapse
Affiliation(s)
- Santiago Perea
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA.
| | - Colton D Meinecke
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | | | - Daniel U Greene
- Weyerhaeuser Company, Environmental Research South, Columbus, MS, USA
| | - Caterina Villari
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Kamal J K Gandhi
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Steven B Castleberry
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| |
Collapse
|
5
|
Vescera C, Van Vyve C, Smits Q, Michaux JR. All-you-can-eat buffet: A spider-specialized bat species (Myotis emarginatus) turns into a pest fly eater around cattle. PLoS One 2024; 19:e0302028. [PMID: 38718094 PMCID: PMC11078406 DOI: 10.1371/journal.pone.0302028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/26/2024] [Indexed: 05/12/2024] Open
Abstract
Determining the dietary spectrum of European insectivorous bats over time is the cornerstone of their conservation, as it will aid our understanding of foraging behavior plasticity in response to plummeting insect populations. Despite the global decline in insects, a restricted number of arthropod pest species thrive. Yet past research has overlooked the potential of European bats to suppress pests harmful to woodlands or livestock, in spite of their economic relevance. Here we investigated the diet composition, its breeding season variations and pest consumption of an insectivorous bat species (Myotis emarginatus), at the northern edge of its range (Wallonia, Belgium). We also explored the prey ecology to gain insight into the hunting strategies and foraging habitats of this bat species. We used DNA metabarcoding to amplify two COI markers within 195 bat droppings collected in June, July and August, thereby identifying 512 prey taxa predominated by Diptera, Araneae and Lepidoptera. Overall, in 97% of the samples we detected at least one of the 58 potential pest taxa, 41 of which targeting trees. The June samples were marked by a diet rich in orb-weaver spiders, in accordance with the archetypal diet of M. emarginatus bats. However, during the highly energy demanding July-August parturition and lactation period, roughly 55% of the dropping samples contained two cattle fly pests (Stomoxys calcitrans and Musca domestica). Moreover, among the 88 Diptera species preyed upon by M. emarginatus in July and August, these flies accounted for around 50% of the taxa occurrences. This plasticity-the switch from a spider-rich to a fly-rich diet-seems providential considering the dramatic ongoing drop in insect populations but this involves ensuring bat-friendly cattle farming. Our results revealed that bats widely consume pest entomofauna, thereby highlighting their potential role as allies of forest managers and farmers.
Collapse
Affiliation(s)
- Chloé Vescera
- Conservation Genetics Laboratory, University of Liège, Liège, Belgium
| | | | - Quentin Smits
- Département de l’Etude du Milieu Naturel et Agricole (DEMNA), Service Public de Wallonie (SPW), Gembloux, Belgium
| | - Johan R. Michaux
- Conservation Genetics Laboratory, University of Liège, Liège, Belgium
| |
Collapse
|
6
|
Torres JM, de Oliveira CE, Santos FM, Sano NY, Martinez ÉV, Alves FM, Tavares LER, Roque ALR, Jansen AM, Herrera HM. Trypanosomatid diversity in a bat community of an urban area in Campo Grande, Mato Grosso do Sul, Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105563. [PMID: 38301855 DOI: 10.1016/j.meegid.2024.105563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Bats have a long evolutionary history with trypanosomatids, but the role of these flying mammals on parasite transmission cycles in urban areas, especially for Trypanosoma and Leishmania species, remains poorly known. The objective of this study was to evaluate the species richness of trypanosomatids parasitizing a bat community in Campo Grande (CG), a state capital within the Cerrado of the Brazilian Midwest. We evaluated 237 bats of 13 species by means of hemoculture and molecular detection in spleen samples. The bat community of CG appears to participate in the transmission cycles of various species of trypanosomatids. We report an overall trypanosomatid detection rate of 34.2% (n = 81), involving 11 out of 13 sampled bat species. We identified six species of trypanosomatids from 61 bats by analyzing SSU rRNA and/or kDNA: Trypanosoma cruzi DTU TcI, T. c. marinkellei, T. dionisii, Leishmania infantum, L. amazonensis, and T. janseni, with this latter being detected by hemoculture for the first time in a bat species. We also detected a Molecular Operational Taxonomic Unit, Trypanosoma sp. DID, in the phyllostomids Glossophaga soricina and Platyrrhinus lineatus. The highest trypanosomatid richness was observed for Sturnira lilium, which hosted three species: L. infantum, T. dionisii and T. janseni. Given that visceral leishmaniasis is endemic in CG, special focus should be placed on L. infantum. Moreover, L. amazonensis and T. cruzi warrant attention, since these are zoonotic parasites responsible for human cases of tegumentary leishmaniasis and Chagas disease, respectively. In this respect, we discuss how bat communities may influence the Leishmania spp. transmission in endemic areas.
Collapse
Affiliation(s)
- Jaire Marinho Torres
- Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, MS, Brazil
| | | | - Filipe Martins Santos
- Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, MS, Brazil
| | - Nayara Yoshie Sano
- Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, MS, Brazil
| | - Érica Verneque Martinez
- Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Av. Costa e Silva s/n - Pioneiros, Campo Grande, MS, Brazil
| | - Fernanda Moreira Alves
- Laboratório de Biologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, Manguinhos Rio de Janeiro 4365, RJ, Brazil
| | - Luiz Eduardo Roland Tavares
- Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Av. Costa e Silva s/n - Pioneiros, Campo Grande, MS, Brazil
| | - André Luiz Rodrigues Roque
- Laboratório de Biologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, Manguinhos Rio de Janeiro 4365, RJ, Brazil
| | - Ana Maria Jansen
- Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, MS, Brazil; Laboratório de Biologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, Manguinhos Rio de Janeiro 4365, RJ, Brazil
| | - Heitor Miraglia Herrera
- Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, MS, Brazil
| |
Collapse
|
7
|
Beilke EA, Sanchez JF, Hews DK, O'Keefe JM. Sexual dichromatism in the fur of a bat: An exploration of color differences and potential signaling functions. Ecol Evol 2024; 14:e11023. [PMID: 38371860 PMCID: PMC10870327 DOI: 10.1002/ece3.11023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
Sex differences in body color (i.e., sexual dichromatism) are rare in bats and, more broadly, in mammals. The eastern red bat (Lasiurus borealis) is a common tree-roosting bat that occupies much of North America and has long been described as sexually dichromatic. However, previous research on this species found that absolute body size and collection year were better predictors of fur color in preserved specimens than sex. We revisited this issue and photographed 82 live eastern red bats under standardized conditions, then used image analysis to quantify pelage hue, saturation, and value. We used an information theoretic approach to evaluate four competing hypotheses about the principal drivers of color differences in the fur of eastern red bats. Our analyses demonstrated that sex was a better predictor of pelage color than body size; males had redder, more saturated, and lighter pelages than females. Additionally, the fur color of juvenile versus adult bats differed somewhat, as juveniles were darker than adults. In general, absolute body size (i.e., forearm length in bats) was a poor predictor of color in live eastern red bats. In an exploratory post-hoc analysis, we confirm that fur color is related to body mass (i.e., a proxy for body condition in bats), suggesting color might serve as a sexually selected signal of mate quality in this partially diurnal species. Future work should investigate the functional role of sexual dichromatism in this species, which could be related to signaling or possibly thermoregulation.
Collapse
Affiliation(s)
- Elizabeth A. Beilke
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Jahshua F. Sanchez
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Diana K. Hews
- Department of BiologyIndiana State UniversityTerre HauteIndianaUSA
| | - Joy M. O'Keefe
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
8
|
Huszarik M, Roodt AP, Wernicke T, Chávez F, Metz A, Link M, Lima-Fernandes E, Schulz R, Entling MH. Increased bat hunting at polluted streams suggests chemical exposure rather than prey shortage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167080. [PMID: 37722422 DOI: 10.1016/j.scitotenv.2023.167080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Streams and their riparian areas are important habitats and foraging sites for bats feeding on emergent aquatic insects. Chemical pollutants entering freshwater streams from agricultural and wastewater sources have been shown to alter aquatic insect emergence, yet little is known about how this impacts insectivorous bats in riparian areas. In this study, we investigate the relationships between the presence of wastewater effluent, in-stream pesticide toxicity, the number of emergent and flying aquatic insects, and the activity and hunting behaviour of bats at 14 streams in southwestern Germany. Stream sites were located in riparian forests, sheltered from direct exposure to pollutants from agricultural and urban areas. We focused on three bat species associated with riparian areas: Myotis daubentonii, M. cf. brandtii, and Pipistrellus pipistrellus. We found that streams with higher pesticide toxicity and more frequent detection of wastewater also tended to be warmer and have higher nutrient and lower oxygen concentrations. We did not observe a reduction of insect emergence, bat activity or hunting rates in association with pesticide toxicity and wastewater detections. Instead, the activity and hunting rates of Myotis spp. were higher at more polluted sites. The observed increase in bat hunting at more polluted streams suggests that instead of reduced prey availability, chemical pollution at the levels measured in the present study could expose bats to pollutants transported from the stream by emergent aquatic insects.
Collapse
Affiliation(s)
- Maike Huszarik
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany.
| | - Alexis P Roodt
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Teagan Wernicke
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Fernanda Chávez
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Annika Metz
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Moritz Link
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Eva Lima-Fernandes
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Ralf Schulz
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany; Eußerthal Ecosystem Research Station, RPTU Kaiserslautern-Landau, Birkenthalstr. 13, 76857 Eußerthal, Germany
| | - Martin H Entling
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| |
Collapse
|
9
|
Hallam J, Harris NC. What's going to be on the menu with global environmental changes? GLOBAL CHANGE BIOLOGY 2023; 29:5744-5759. [PMID: 37458101 DOI: 10.1111/gcb.16866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/13/2023] [Indexed: 07/18/2023]
Abstract
Ongoing anthropogenic change is altering the planet at an unprecedented rate, threatening biodiversity, and ecosystem functioning. Species are responding to abiotic pressures at both individual and population levels, with changes affecting trophic interactions through consumptive pathways. Collectively, these impacts alter the goods and services that natural ecosystems will provide to society, as well as the persistence of all species. Here, we describe the physiological and behavioral responses of species to global changes on individual and population levels that result in detectable changes in diet across terrestrial and marine ecosystems. We illustrate shifts in the dynamics of food webs with implications for animal communities. Additionally, we highlight the myriad of tools available for researchers to investigate the dynamics of consumption patterns and trophic interactions, arguing that diet data are a crucial component of ecological studies on global change. We suggest that a holistic approach integrating the complexities of diet choice and trophic interactions with environmental drivers may be more robust at resolving trends in biodiversity, predicting food web responses, and potentially identifying early warning signs of diversity loss. Ultimately, despite the growing body of long-term ecological datasets, there remains a dearth of diet ecology studies across temporal scales, a shortcoming that must be resolved to elucidate vulnerabilities to changing biophysical conditions.
Collapse
Affiliation(s)
- Jane Hallam
- Applied Wildlife Ecology Lab, Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Nyeema C Harris
- Applied Wildlife Ecology Lab, Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Beilke EA, O'Keefe JM. Bats reduce insect density and defoliation in temperate forests: An exclusion experiment. Ecology 2023; 104:e3903. [PMID: 36310413 PMCID: PMC10078224 DOI: 10.1002/ecy.3903] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023]
Abstract
Bats suppress insect populations in agricultural ecosystems, yet the question of whether bats initiate trophic cascades in forests is mainly unexplored. We used a field experiment to test the hypothesis that insectivorous bats reduce defoliation through the top-down suppression of forest-defoliating insects. We excluded bats from 20 large, subcanopy forest plots (opened daily to allow birds access), each paired with an experimental control plot, during three summers between 2018 and 2020 in the central hardwood region of the United States. We monitored leaf area changes and insect density for nine to 10 oak or hickory seedlings per plot. Insect density was three times greater on seedlings in bat-excluded versus control plots. Additionally, seedling defoliation was five times greater with bats excluded, and bats' impact on defoliation was three times greater for oaks than for hickories. We show that insectivorous bats drive top-down trophic cascades, play an integral role in forest ecosystems, and may ultimately influence forest health, structure, and composition. This work demonstrates insectivorous bats' ecological and economic value and the importance of conserving this highly imperiled group of predators.
Collapse
Affiliation(s)
- Elizabeth A. Beilke
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Bat Research, Outreach, and ConservationIndiana State UniversityTerre HauteIndianaUSA
| | - Joy M. O'Keefe
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Bat Research, Outreach, and ConservationIndiana State UniversityTerre HauteIndianaUSA
| |
Collapse
|