1
|
van de Wal MAE, Doornbos C, Bibbe J, Homberg JR, van Karnebeek C, Huynen MA, Keijer J, van Schothorst EM, 't Hoen PAC, Janssen MCH, Adjobo-Hermans MJW, Wieckowski MR, Koopman WJH. Ndufs4 knockout mice with isolated complex I deficiency engage a futile adaptive brain response. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024:141055. [PMID: 39395749 DOI: 10.1016/j.bbapap.2024.141055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Paediatric Leigh syndrome (LS) is an early-onset and fatal neurodegenerative disorder lacking treatment options. LS is frequently caused by mutations in the NDUFS4 gene, encoding an accessory subunit of mitochondrial complex I (CI), the first complex of the oxidative phosphorylation (OXPHOS) system. Whole-body Ndufs4 knockout (KO) mice (WB-KO mice) are widely used to study isolated CI deficiency, LS pathology and interventions. These animals develop a brain-specific phenotype via an incompletely understood pathomechanism. Here we performed a quantitative analysis of the sub-brain proteome in six-weeks old WB-KO mice vs. wildtype mice. Brain regions comprised of a brain slice (BrSl), cerebellum (CB), cerebral cortex (CC), hippocampus (HC), inferior colliculus (IC), and superior colliculus (SC). Proteome analysis demonstrated similarities between CC/HC, and between IC/SC, whereas BrSl and CB differed from these two groups and each other. All brain regions displayed greatly reduced levels of two CI structural subunits (NDUFS4, NDUFA12) and an increased level of the CI assembly factor NDUFAF2. The level of CI-Q module subunits was significantly more reduced in IC/SC than in BrSl/CB/CC/HC, whereas other OXPHOS complex levels were not reduced. Gene ontology and pathway analysis demonstrated specific and common proteome changes between brain regions. Across brain regions, upregulation of cold-shock-associated proteins, mitochondrial fatty acid (FA) oxidation and synthesis (mtFAS) were the most prominent. FA-related pathways were predominantly upregulated in CB and HC. Based upon these results, we argue that stimulation of these pathways is futile and pro-pathological and discuss alternative strategies for therapeutic intervention in LS. SIGNIFICANCE: The Ndufs4 knockout mouse model is currently the most relevant and most widely used animal model to study the brain-linked pathophysiology of human Leigh Syndrome (LS) and intervention strategies. We demonstrate that the Ndufs4 knockout brain engages futile and pro-pathological responses. These responses explain both negative and positive outcomes of intervention studies in Leigh Syndrome mice and patients, thereby guiding novel intervention opportunities.
Collapse
Affiliation(s)
- Melissa A E van de Wal
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cenna Doornbos
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Janne Bibbe
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clara van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands
| | - Martijn A Huynen
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | | | - Peter A C 't Hoen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mirian C H Janssen
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Merel J W Adjobo-Hermans
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
2
|
Zhang B, Wang J, Chen X, Xue T, Xin J, Liu Y, Wang X, Li X. Laminaria japonica Polysaccharide Regulates Fatty Hepatosis Through Bile Acids and Gut Microbiota in Diabetes Rat. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024:10.1007/s10126-024-10365-1. [PMID: 39207652 DOI: 10.1007/s10126-024-10365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
In this study, we examined the effect of Laminaria japonica polysaccharide (fucoidan) on the regulation of lipid metabolism. A rat model of diabetes mellitus (DM) was established by a high-sugar and high-fat diet combined with streptozotocin. Changes in the rats' body weight and blood glucose level during the experiment were recorded. Before the end of the experiment, an automatic biochemical analyzer was used to detect the fasting blood glucose (FBG), lipid content in serum, and insulin content, and calculate the insulin resistance index. Oil red O staining was used to detect lipid deposition in the liver. H&E staining, Masson staining, and PASM staining were used to observe the pathological structural changes in the liver. 16 s RNA sequencing and targeted metabolomics were used to detect intestinal microbiota and bile acid content. The results showed that fucoidan was able to inhibit weight loss in the DM rats and reduce the content of triglycerides (TG), cholesterol (TC), and low-density lipoprotein (LDL-C) in serum. Oil red O staining showed a decrease in liver fat accumulation after fucoidan treatment. 16 s RNA sequencing demonstrated that fucoidan increased the abundance of Bacteroidia, Campylobacteria, Clostridia, Gammaproteobacteria, Negativicutes, and Verrucomicrobi. Fucoidan also increased the secretion of secondary bile acids (Nor-DCA, TLCA, β-UDCA) and alleviated lipid metabolism disorders. The expression of α-SMA was inhibited by fucoidan, whereas the expression of FXR and TGR5 was promoted. Fucoidan shows good activity in regulating lipid metabolism by regulating the expression of FXR and TGR5 and acting on the intestinal flora-bile acid axis.
Collapse
Affiliation(s)
- Bo Zhang
- Linyi University, Linyi, Shandong, China
| | - Jiacai Wang
- Linyi University, Linyi, Shandong, China
- Guizhou University, Guiyang, Guizhou, China
| | | | - Tao Xue
- Linyi University, Linyi, Shandong, China
| | - Jie Xin
- Linyi University, Linyi, Shandong, China
| | | | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Xinpeng Li
- Linyi University, Linyi, Shandong, China.
| |
Collapse
|
3
|
Abdisa KB, Szerdahelyi E, Molnár MA, Friedrich L, Lakner Z, Koris A, Toth A, Nath A. Metabolic Syndrome and Biotherapeutic Activity of Dairy (Cow and Buffalo) Milk Proteins and Peptides: Fast Food-Induced Obesity Perspective-A Narrative Review. Biomolecules 2024; 14:478. [PMID: 38672494 PMCID: PMC11048494 DOI: 10.3390/biom14040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic syndrome (MS) is defined by the outcome of interconnected metabolic factors that directly increase the prevalence of obesity and other metabolic diseases. Currently, obesity is considered one of the most relevant topics of discussion because an epidemic heave of the incidence of obesity in both developing and underdeveloped countries has been reached. According to the World Obesity Atlas 2023 report, 38% of the world population are presently either obese or overweight. One of the causes of obesity is an imbalance of energy intake and energy expenditure, where nutritional imbalance due to consumption of high-calorie fast foods play a pivotal role. The dynamic interactions among different risk factors of obesity are highly complex; however, the underpinnings of hyperglycemia and dyslipidemia for obesity incidence are recognized. Fast foods, primarily composed of soluble carbohydrates, non-nutritive artificial sweeteners, saturated fats, and complexes of macronutrients (protein-carbohydrate, starch-lipid, starch-lipid-protein) provide high metabolic calories. Several experimental studies have pointed out that dairy proteins and peptides may modulate the activities of risk factors of obesity. To justify the results precisely, peptides from dairy milk proteins were synthesized under in vitro conditions and their contributions to biomarkers of obesity were assessed. Comprehensive information about the impact of proteins and peptides from dairy milks on fast food-induced obesity is presented in this narrative review article.
Collapse
Affiliation(s)
- Kenbon Beyene Abdisa
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| | - Emőke Szerdahelyi
- Department of Nutrition, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, HU-1118 Budapest, Hungary;
| | - Máté András Molnár
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| | - László Friedrich
- Department of Refrigeration and Livestock Product Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, HU-1118 Budapest, Hungary
| | - Zoltán Lakner
- Department of Agricultural Business and Economics, Institute of Agricultural and Food Economics, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, HU-1118 Budapest, Hungary
| | - András Koris
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Móricz Zsigmond út 22, HU-4032 Debrecen, Hungary
| | - Arijit Nath
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| |
Collapse
|
4
|
Zhao H, Yang C, Xing F. Correlation of the Serum Fatty Acids with Cognitive Function: An NHANES 2011-2014 and Multivariate Mendelian Randomization Analysis. J Alzheimers Dis 2024; 101:835-845. [PMID: 39269844 DOI: 10.3233/jad-240715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background The relationship between serum fatty acids and cognitive function has been the subject of extensive study. Objective To analyze the relationship between serum fatty acids composition and cognitive function by NHANES database and multivariate Mendelian randomization (MR) analysis. Methods A sub-cohort of 1,339 individuals with serum fatty acids and Digit Symbol Substitution Test (DSST) examinations from the 2011-2014 wave of the NHANES were analyzed using fully adjusted multiple linear regression models for associations between serum hydrolyzed fatty acid levels and cognitive function. Univariable and multivariable MR was used to analyze the correlation between 98 exposures related to serum fatty acids and cognitive function. Results from different database sources were combined using meta-analysis. Results The fully adjusted regression analysis showed that linoleic acid (LA), Omega 6, fatty acids (FAs), and LA/FAs were positively correlated with DSST. 27 exposures were included for univariate MR analysis. Ultimately, only 2 traits had IVW test p-values ranging between 0.0019 and 0.05, both of which were LA/FAs. The meta-analysis of univariate MR revealed that LA/FAs was positively associated with cognitive function (β: 0.040, 95% CI = 0.013-0.067, p = 0.0041). In multivariate MR analysis, after adjusting for education, ischemic stroke, and age, LA/FAs was positively independently associated with cognitive function (IVW β: 0.049, 95% CI = 0.021-0.077, p = 0.0006). The results of MVMR are well in line with the univariate results. Conclusions Both the Cross-sectional observational analyses and MR-based studies supported a suggestive causal relationship between the serum ratio of Linoleic acid in fatty acids and cognitive function.
Collapse
Affiliation(s)
- Huimin Zhao
- Department of General Medicine, No. 970 Hospitalof the People's Liberation Army Joint Logistics Support Force, Yantai, Shandong, China
| | - Changlin Yang
- Department of General Medicine, No. 970 Hospitalof the People's Liberation Army Joint Logistics Support Force, Yantai, Shandong, China
| | - Fangkai Xing
- Unit 71217 of People's Liberation Army, Yantai, Shandong, China
| |
Collapse
|
5
|
Valentin-Escalera J, Leclerc M, Calon F. High-Fat Diets in Animal Models of Alzheimer's Disease: How Can Eating Too Much Fat Increase Alzheimer's Disease Risk? J Alzheimers Dis 2024; 97:977-1005. [PMID: 38217592 PMCID: PMC10836579 DOI: 10.3233/jad-230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
High dietary intake of saturated fatty acids is a suspected risk factor for neurodegenerative diseases, including Alzheimer's disease (AD). To decipher the causal link behind these associations, high-fat diets (HFD) have been repeatedly investigated in animal models. Preclinical studies allow full control over dietary composition, avoiding ethical concerns in clinical trials. The goal of the present article is to provide a narrative review of reports on HFD in animal models of AD. Eligibility criteria included mouse models of AD fed a HFD defined as > 35% of fat/weight and western diets containing > 1% cholesterol or > 15% sugar. MEDLINE and Embase databases were searched from 1946 to August 2022, and 32 preclinical studies were included in the review. HFD-induced obesity and metabolic disturbances such as insulin resistance and glucose intolerance have been replicated in most studies, but with methodological variability. Most studies have found an aggravating effect of HFD on brain Aβ pathology, whereas tau pathology has been much less studied, and results are more equivocal. While most reports show HFD-induced impairment on cognitive behavior, confounding factors may blur their interpretation. In summary, despite conflicting results, exposing rodents to diets highly enriched in saturated fat induces not only metabolic defects, but also cognitive impairment often accompanied by aggravated neuropathological markers, most notably Aβ burden. Although there are important variations between methods, particularly the lack of diet characterization, these studies collectively suggest that excessive intake of saturated fat should be avoided in order to lower the incidence of AD.
Collapse
Affiliation(s)
- Josue Valentin-Escalera
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| |
Collapse
|
6
|
Mei M, Liu M, Mei Y, Zhao J, Li Y. Sphingolipid metabolism in brain insulin resistance and neurological diseases. Front Endocrinol (Lausanne) 2023; 14:1243132. [PMID: 37867511 PMCID: PMC10587683 DOI: 10.3389/fendo.2023.1243132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Sphingolipids, as members of the large lipid family, are important components of plasma membrane. Sphingolipids participate in biological signal transduction to regulate various important physiological processes such as cell growth, apoptosis, senescence, and differentiation. Numerous studies have demonstrated that sphingolipids are strongly associated with glucose metabolism and insulin resistance. Insulin resistance, including peripheral insulin resistance and brain insulin resistance, is closely related to the occurrence and development of many metabolic diseases. In addition to metabolic diseases, like type 2 diabetes, brain insulin resistance is also involved in the progression of neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. However, the specific mechanism of sphingolipids in brain insulin resistance has not been systematically summarized. This article reviews the involvement of sphingolipids in brain insulin resistance, highlighting the role and molecular biological mechanism of sphingolipid metabolism in cognitive dysfunctions and neuropathological abnormalities of the brain.
Collapse
Affiliation(s)
- Meng Mei
- Department of Pharmacy, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maochang Liu
- Department of Pharmacy, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Mei
- Department of Pharmacy, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhao
- Administrative Office, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Li
- Department of Pharmacy, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Mackei M, Sebők C, Vöröházi J, Tráj P, Mackei F, Oláh B, Fébel H, Neogrády Z, Mátis G. Detrimental consequences of tebuconazole on redox homeostasis and fatty acid profile of honeybee brain. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103990. [PMID: 37488035 DOI: 10.1016/j.ibmb.2023.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Excessive use of azole fungicides in agriculture poses a potential threat to honeybees and other pollinator insects; however, the detailed effects of these molecules remain largely unclear. Hence, in the present study it was aimed to investigate the acute sublethal effects of tebuconazole on the redox homeostasis and fatty acid composition in the brain of honeybees. Our findings demonstrate that tebuconazole decreased total antioxidant capacity, the ratio of reduced to oxidized glutathione and disturbed the function of key antioxidant defense enzymes along with the induction of lipid peroxidation indicated by increased malondialdehyde levels, while it also altered the fatty acid profile of the brain. The present study highlights the negative impact of tebuconazole on honeybees and contributes to the understanding of potential consequences related to azole exposure on pollinator insects' health, such as the occurrence of colony collapse disorder.
Collapse
Affiliation(s)
- Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary.
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Júlia Vöröházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Fruzsina Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Barnabás Oláh
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Hedvig Fébel
- Nutrition Physiology Research Group, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Gesztenyés Street 1, H-2053 Herceghalom, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| |
Collapse
|