1
|
Garmany A, Arrell DK, Yamada S, Jeon R, Behfar A, Park S, Terzic A. Decoded cardiopoietic cell secretome linkage to heart repair biosignature. Stem Cells Transl Med 2024:szae067. [PMID: 39259666 DOI: 10.1093/stcltm/szae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/03/2024] [Indexed: 09/13/2024] Open
Abstract
Cardiopoiesis-primed human stem cells exert sustained benefit in treating heart failure despite limited retention following myocardial delivery. To assess potential paracrine contribution, the secretome of cardiopoiesis conditioned versus naïve human mesenchymal stromal cells was decoded by directed proteomics augmented with machine learning and systems interrogation. Cardiopoiesis doubled cellular protein output generating a distinct secretome that segregated the conditioned state. Altering the expression of 1035 secreted proteins, cardiopoiesis reshaped the secretome across functional classes. The resolved differential cardiopoietic secretome was enriched in mesoderm development and cardiac progenitor signaling processes, yielding a cardiovasculogenic profile bolstered by upregulated cardiogenic proteins. In tandem, cardiopoiesis enhanced the secretion of immunomodulatory proteins associated with cytokine signaling, leukocyte migration, and chemotaxis. Network analysis integrated the differential secretome within an interactome of 1745 molecules featuring prioritized regenerative processes. Secretome contribution to the repair signature of cardiopoietic cell-treated infarcted hearts was assessed in a murine coronary ligation model. Intramyocardial delivery of cardiopoietic cells improved the performance of failing hearts, with undirected proteomics revealing 50 myocardial proteins responsive to cell therapy. Pathway analysis linked the secretome to cardiac proteome remodeling, pinpointing 17 cardiopoiesis-upregulated secretome proteins directly upstream of 44% of the cell therapy-responsive cardiac proteome. Knockout, in silico, of this 22-protein secretome-dependent myocardial ensemble eliminated indices of the repair signature. Accordingly, in vivo, cell therapy rendered the secretome-dependent myocardial proteome of an infarcted heart indiscernible from healthy counterparts. Thus, the secretagogue effect of cardiopoiesis transforms the human stem cell secretome, endows regenerative competency, and upregulates candidate paracrine effectors of cell therapy-mediated molecular restitution.
Collapse
Affiliation(s)
- Armin Garmany
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Alix School of Medicine, Regenerative Sciences Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - D Kent Arrell
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
| | - Satsuki Yamada
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
- Section of Geriatric Medicine & Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ryounghoon Jeon
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Sungjo Park
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
| | - Andre Terzic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Department of Medical Genetics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
2
|
Wang B, Gao C, Lim S, Wang R, Zhu CJ, Onuma Y, Wang Y, Gao R, Serruys PWJC, Lee RJ, Tao L. Percutaneous Alginate Hydrogel Endomyocardial Injection with a Novel Dedicated Catheter Delivery System: An Animal Feasibility Study. J Cardiovasc Transl Res 2024; 17:842-850. [PMID: 38376702 PMCID: PMC11371841 DOI: 10.1007/s12265-024-10497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
The objective of this preclinical study was to evaluate the feasibility and safety of transcatheter endocardial alginate hydrogel injection (TEAi) in a large animal model, utilizing the high-stiffness XDROP® alginate hydrogel in combination with the dedicated EndoWings® catheter-based system. All swine (n = 9) successfully underwent TEAi without complications. Acute results from a subset of animals (n = 5) demonstrated the ability of the catheter to access a wide range of endomyocardial areas and achieve consecutive circumferential hydrogel distribution patterns within the mid-left ventricular wall. Histological examinations at 6 months (n = 4) demonstrated that the XDROP® remained localized within the cardiac tissue. In addition, serial echocardiographic imaging showed that XDROP® had no adverse impacts on LV systolic and diastolic functions. In conclusion, this innovative combination technology has the potential to overcome the translational barriers related to alginate hydrogel delivery to the myocardium.
Collapse
Affiliation(s)
- Bo Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Corrib Research Centre for Advanced Imaging and Core Laboratory, University of Galway, Galway, Ireland
| | - Chao Gao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Scott Lim
- Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Rutao Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Cun-Jun Zhu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yoshinobu Onuma
- Corrib Research Centre for Advanced Imaging and Core Laboratory, University of Galway, Galway, Ireland
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan, China
| | - Runlin Gao
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Patrick W J C Serruys
- Corrib Research Centre for Advanced Imaging and Core Laboratory, University of Galway, Galway, Ireland.
| | - Randall J Lee
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA.
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
3
|
Jihwaprani MC, Sula I, Charbat MA, Haider KH. Establishing delivery route-dependent safety and efficacy of living biodrug mesenchymal stem cells in heart failure patients. World J Cardiol 2024; 16:339-354. [PMID: 38993584 PMCID: PMC11235206 DOI: 10.4330/wjc.v16.i6.339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) as living biopharmaceuticals with unique properties, i.e., stemness, viability, phenotypes, paracrine activity, etc., need to be administered such that they reach the target site, maintaining these properties unchanged and are retained at the injury site to participate in the repair process. Route of delivery (RoD) remains one of the critical determinants of safety and efficacy. This study elucidates the safety and effectiveness of different RoDs of MSC treatment in heart failure (HF) based on phase II randomized clinical trials (RCTs). We hypothesize that the RoD modulates the safety and efficacy of MSC-based therapy and determines the outcome of the intervention. AIM To investigate the effect of RoD of MSCs on safety and efficacy in HF patients. METHODS RCTs were retrieved from six databases. Safety endpoints included mortality and serious adverse events (SAEs), while efficacy outcomes encompassed changes in left ventricular ejection fraction (LVEF), 6-minute walk distance (6MWD), and pro-B-type natriuretic peptide (pro-BNP). Subgroup analyses on RoD were performed for all study endpoints. RESULTS Twelve RCTs were included. Overall, MSC therapy demonstrated a significant decrease in mortality [relative risk (RR): 0.55, 95% confidence interval (95%CI): 0.33-0.92, P = 0.02] compared to control, while SAE outcomes showed no significant difference (RR: 0.84, 95%CI: 0.66-1.05, P = 0.11). RoD subgroup analysis revealed a significant difference in SAE among the transendocardial (TESI) injection subgroup (RR = 0.71, 95%CI: 0.54-0.95, P = 0.04). The pooled weighted mean difference (WMD) demonstrated an overall significant improvement of LVEF by 2.44% (WMD: 2.44%, 95%CI: 0.80-4.29, P value ≤ 0.001), with only intracoronary (IC) subgroup showing significant improvement (WMD: 7.26%, 95%CI: 5.61-8.92, P ≤ 0.001). Furthermore, the IC delivery route significantly improved 6MWD by 115 m (WMD = 114.99 m, 95%CI: 91.48-138.50), respectively. In biochemical efficacy outcomes, only the IC subgroup showed a significant reduction in pro-BNP by -860.64 pg/mL (WMD: -860.64 pg/Ml, 95%CI: -944.02 to -777.26, P = 0.001). CONCLUSION Our study concluded that all delivery methods of MSC-based therapy are safe. Despite the overall benefits in efficacy, the TESI and IC routes provided better outcomes than other methods. Larger-scale trials are warranted before implementing MSC-based therapy in routine clinical practice.
Collapse
Affiliation(s)
| | - Idris Sula
- Basic Sciences, SRC, Al Bukayriyah 52736, AlQaseem, Saudi Arabia
| | | | | |
Collapse
|
4
|
Yamada S, Bartunek J, Povsic TJ, Cotter G, Davison BA, Edwards C, Behfar A, Metra M, Filippatos GS, Vanderheyden M, Wijns W, Terzic A. Cell Therapy Improves Quality-of-Life in Heart Failure: Outcomes From a Phase III Clinical Trial. Stem Cells Transl Med 2024; 13:116-124. [PMID: 38006196 PMCID: PMC10872684 DOI: 10.1093/stcltm/szad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023] Open
Abstract
Patients with heart failure experience limitations in daily activity and poor quality-of-life. Prospective surveillance of health-related quality-of-life supplemented traditional death and hospitalization outcomes in the multinational, randomized, double-blinded CHART-1 clinical trial that assessed cardiopoiesis-guided cell therapy in ischemic heart failure patients with reduced left ventricular ejection fraction. The Minnesota Living with Heart Failure Questionnaire (MLHFQ), a Food and Drug Administration qualified instrument for evaluating therapeutic effectiveness, was applied through the 1-year follow-up. Cell treated (n = 109) and sham procedure (n = 140) cohorts reported improved MLHFQ scores comparable between the 2 study arms (mean treatment difference with baseline adjustment -3.2 points, P = .107). Superiority of cell treatment over sham in betterment of the MLHFQ score was demonstrated in patients with pre-existing advanced left ventricular enlargement (baseline-adjusted mean treatment difference -6.4 points, P = .009). In this highly responsive subpopulation, benefit on the MLHFQ score paralleled reduction in death and hospitalization post-cell therapy (adjusted Mann-Whitney odds 1.43, 95% CI, 1.01-2.01; P = .039). The potential of cell therapy in addressing the quality-of-life dimension of heart failure requires further evaluation for disease relief.
Collapse
Affiliation(s)
- Satsuki Yamada
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, USA
| | | | - Thomas J Povsic
- Program for Advanced Coronary Disease, Duke Clinical Research Institute and Duke University Medical Center, Durham, NC, USA
| | - Gad Cotter
- Momentum Research, Inc., Durham, NC, USA
- Université Paris Cité; Inserm UMR-S 942, MASCOT, Paris, France
| | - Beth A Davison
- Momentum Research, Inc., Durham, NC, USA
- Université Paris Cité; Inserm UMR-S 942, MASCOT, Paris, France
| | | | - Atta Behfar
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University and Spedali Civili, Brescia, Italy
| | - Gerasimos S Filippatos
- Department of Cardiology, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | | | - William Wijns
- The Lambe Institute for Translational Medicine, the Smart Sensors Laboratory and CURAM, University of Galway, Galway, Ireland
| | - Andre Terzic
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Tominaga Y, Kawamura T, Ito E, Takeda M, Harada A, Torigata K, Sakaniwa R, Sawa Y, Miyagawa S. Pleiotropic effects of extracellular vesicles from induced pluripotent stem cell-derived cardiomyocytes on ischemic cardiomyopathy: A preclinical study. J Heart Lung Transplant 2024; 43:85-99. [PMID: 37611882 DOI: 10.1016/j.healun.2023.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Stem cell-secreted extracellular vesicles (EVs) play essential roles in intercellular communication and restore cardiac function in animal models of ischemic heart disease. However, few studies have used EVs derived from clinical-grade stem cells and their derivatives with stable quality. Moreover, there is little information on the mechanism and time course of the multifactorial effect of EV therapy from the acute to the chronic phase, the affected cells, and whether the effects are direct or indirect. METHODS Induced pluripotent stem cell-derived cardiomyocytes (iPSCM) were produced using a clinical-grade differentiation induction system. EVs were isolated from the conditioned medium by ultracentrifugation and characterized in silico, in vitro, and in vivo. A rat model of myocardial infarction was established by left anterior descending artery ligation and treated with iPSCM-derived EVs. RESULTS iPSCM-derived EVs contained microRNAs and proteins associated with angiogenesis, antifibrosis, promotion of M2 macrophage polarization, cell proliferation, and antiapoptosis. iPSCM-derived EV treatment improved left ventricular function and reduced mortality in the rat model by improving vascularization and suppressing fibrosis and chronic inflammation in the heart. EVs were uptaken by cardiomyocytes, endothelial cells, fibroblasts, and macrophages in the cardiac tissues. The pleiotropic effects occurred due to the direct effects of microRNAs and proteins encapsulated in EVs and indirect paracrine effects on M2 macrophages. CONCLUSIONS Clinical-grade iPSCM-derived EVs improve cardiac function by regulating various genes and pathways in various cell types and may have clinical potential for treating ischemic heart disease.
Collapse
Affiliation(s)
- Yuji Tominaga
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Emiko Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Maki Takeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kosuke Torigata
- Department of Frontier Regenerative Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryoto Sakaniwa
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Future Medicine, Division of Health Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
6
|
Bartunek J, Terzic A. Optimized Catheter System Demonstrates Utility for Endomyocardial Delivery of Cardiopoietic Stem Cells in Target Patients With Heart Failure. Tex Heart Inst J 2023; 50:e238247. [PMID: 37881036 PMCID: PMC10658137 DOI: 10.14503/thij-23-8247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Affiliation(s)
- Jozef Bartunek
- Cardiovascular Center, Onze-Lieve-Vrouwziekenhuis Hospital, Aalst, Belgium
| | - Andre Terzic
- Marriott Heart Disease Research Program, Center for Regenerative Medicine and Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
7
|
Renard Triché L, Futier E, De Carvalho M, Piñol-Domenech N, Bodet-Contentin L, Jabaudon M, Pereira B. Sample size estimation in clinical trials using ventilator-free days as the primary outcome: a systematic review. Crit Care 2023; 27:303. [PMID: 37528425 PMCID: PMC10394791 DOI: 10.1186/s13054-023-04562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Ventilator-free days (VFDs) are a composite endpoint increasingly used as the primary outcome in critical care trials. However, because of the skewed distribution and competitive risk between components, sample size estimation remains challenging. This systematic review was conducted to systematically assess whether the sample size was congruent, as calculated to evaluate VFDs in trials, with VFDs' distribution and the impact of alternative methods on sample size estimation. METHODS A systematic literature search was conducted within the PubMed and Embase databases for randomized clinical trials in adults with VFDs as the primary outcome until December 2021. We focused on peer-reviewed journals with 2021 impact factors greater than five. After reviewing definitions of VFDs, we extracted the sample size and methods used for its estimation. The data were collected by two independent investigators and recorded in a standardized, pilot-tested forms tool. Sample sizes were calculated using alternative statistical approaches, and risks of bias were assessed with the Cochrane risk-of-bias tool. RESULTS Of the 26 clinical trials included, 19 (73%) raised "some concerns" when assessing risks of bias. Twenty-four (92%) trials were two-arm superiority trials, and 23 (89%) were conducted at multiple sites. Almost all the trials (96%) were unable to consider the unique distribution of VFDs and death as a competitive risk. Moreover, significant heterogeneity was found in the definitions of VFDs, especially regarding varying start time and type of respiratory support. Methods for sample size estimation were also heterogeneous, and simple models, such as the Mann-Whitney-Wilcoxon rank-sum test, were used in 14 (54%) trials. Finally, the sample sizes calculated varied by a factor of 1.6 to 17.4. CONCLUSIONS A standardized definition and methodology for VFDs, including the use of a core outcome set, seems to be required. Indeed, this could facilitate the interpretation of findings in clinical trials, as well as their construction, especially the sample size estimation which is a trade-off between cost, ethics, and statistical power. Systematic review registration PROSPERO ID: CRD42021282304. Registered 15 December 2021 ( https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021282304 ).
Collapse
Affiliation(s)
- Laurent Renard Triché
- Department of Perioperative Medicine, CHU Clermont-Ferrand, 58 Rue Montalembert, 63000, Clermont-Ferrand, France. lrenard--
| | - Emmanuel Futier
- Department of Perioperative Medicine, CHU Clermont-Ferrand, 58 Rue Montalembert, 63000, Clermont-Ferrand, France
- iGReD, CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | | | | | - Laëtitia Bodet-Contentin
- Medical Intensive Care Unit, CHRU de Tours, Tours, France
- INSERM, SPHERE, UMR1246, Université de Tours et Nantes, Tours et Nantes, France
| | - Matthieu Jabaudon
- Department of Perioperative Medicine, CHU Clermont-Ferrand, 58 Rue Montalembert, 63000, Clermont-Ferrand, France
- iGReD, CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit, Department of Clinical Research, and Innovation (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
8
|
Guo QY, Yang JQ, Feng XX, Zhou YJ. Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Mil Med Res 2023; 10:18. [PMID: 37098604 PMCID: PMC10131330 DOI: 10.1186/s40779-023-00452-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/22/2023] [Indexed: 04/27/2023] Open
Abstract
Heart injury such as myocardial infarction leads to cardiomyocyte loss, fibrotic tissue deposition, and scar formation. These changes reduce cardiac contractility, resulting in heart failure, which causes a huge public health burden. Military personnel, compared with civilians, is exposed to more stress, a risk factor for heart diseases, making cardiovascular health management and treatment innovation an important topic for military medicine. So far, medical intervention can slow down cardiovascular disease progression, but not yet induce heart regeneration. In the past decades, studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury. Insights have emerged from studies in animal models and early clinical trials. Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease. In this review, we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.
Collapse
Affiliation(s)
- Qian-Yun Guo
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jia-Qi Yang
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xun-Xun Feng
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yu-Jie Zhou
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
9
|
Doan HT, Van Pham P, Vu NB. Intravenous Infusion of Exosomes Derived from Human Adipose Tissue-Derived Stem Cells Promotes Angiogenesis and Muscle Regeneration: An Observational Study in a Murine Acute Limb Ischemia Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023. [PMID: 36991295 DOI: 10.1007/5584_2023_769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Recent studies have demonstrated that adipose tissue-derived stem cell (ADSC) transplantation could promote neoangiogenesis in various ischemic diseases. However, as whole cells, ADSCs have some disadvantages, such as shipping and storage issues, high costs, and controversies related to the fates of grafted cells in the recipients. Therefore, this study aimed to investigate the effects of intravenously infused exosomes purified from human ADSCs on ischemic disease in a murine hindlimb ischemia model. METHODS ADSCs were cultured in exosome-free medium for 48 h before the conditioned medium was collected for exosome isolation by ultracentrifugation. The murine ischemic hindlimb models were created by cutting and burning the hindlimb arteries. Exosomes were intravenously infused into murine models (ADSC-Exo group), with phosphate-buffered saline (PBS) used as a placebo (PBS group). Treatment efficacy was determined using a murine mobility assay (frequency of pedaling in water per 10 s), peripheral blood oxygen saturation (SpO2 index), and the recovery of vascular circulation by trypan blue staining. The formation of blood vessels was shown by X-ray. Expression levels of genes related to angiogenesis and muscle tissue repair were quantified by quantitative reverse-transcription polymerase chain reaction. Finally, H&E staining was used to determine the histological structure of muscle in the treatment and placebo groups. RESULTS The rates of acute limb ischemia in the PBS and ADSC-Exo injection groups were 66% (9/16 mice) and 43% (6/14 mice), respectively. The mobility of the limbs 28 days after surgery was significantly different between the ADSC-Exo treatment group (41 ± 1 times/10 s) and the PBS group (24 ± 1 times/10 s; n = 3; p < 0.05). Peripheral blood oxygen saturation 21 days after treatment was 83.83% ± 2.02% in the PBS group and 83% ± 1.73% in the ADSC-Exo treatment group, and the difference was not statistically significant (n = 3, p > 0.05). On day 7 after treatment, the time required to stain the toes after trypan blue injection was 20.67 ± 12.5 s and 85 ± 7.09 s in the ADSC-Exo and PBS groups, respectively (n = 3, p < 0.05). On day 3 after the operation, the expression of genes promoting angiogenesis and muscle remodeling, such as Flk1, Vwf, Ang1, Tgfb1, Myod, and Myf5, was increased 4-8 times in the ADSC-Exo group compared with the PBS group. No mice in either group died during the experimental period. CONCLUSIONS These results revealed that intravenous infusion of human ADSC-derived exosomes is a safe and effective method to treat ischemic disease, especially hindlimb ischemia, by promoting angiogenesis and muscle regeneration.
Collapse
Affiliation(s)
- Hue Thi Doan
- Faculty of Biological Sciences, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Phuc Van Pham
- Vietnam National University, Ho Chi Minh City, Vietnam
- Stem Cell Institute, University of Science, Ho Chi Minh City, Vietnam
| | - Ngoc Bich Vu
- Vietnam National University, Ho Chi Minh City, Vietnam.
- Stem Cell Institute, University of Science, Ho Chi Minh City, Vietnam.
- Laboratory of Stem Cell Research and Application, University of Science, Ho Chi Minh City, Vietnam.
| |
Collapse
|
10
|
Kishino Y, Fukuda K. Unlocking the Pragmatic Potential of Regenerative Therapies in Heart Failure with Next-Generation Treatments. Biomedicines 2023; 11:biomedicines11030915. [PMID: 36979894 PMCID: PMC10046277 DOI: 10.3390/biomedicines11030915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Patients with chronic heart failure (HF) have a poor prognosis due to irreversible impairment of left ventricular function, with 5-year survival rates <60%. Despite advances in conventional medicines for HF, prognosis remains poor, and there is a need to improve treatment further. Cell-based therapies to restore the myocardium offer a pragmatic approach that provides hope for the treatment of HF. Although first-generation cell-based therapies using multipotent cells (bone marrow-derived mononuclear cells, mesenchymal stem cells, adipose-derived regenerative cells, and c-kit-positive cardiac cells) demonstrated safety in preclinical models of HF, poor engraftment rates, and a limited ability to form mature cardiomyocytes (CMs) and to couple electrically with existing CMs, meant that improvements in cardiac function in double-blind clinical trials were limited and largely attributable to paracrine effects. The next generation of stem cell therapies uses CMs derived from human embryonic stem cells or, increasingly, from human-induced pluripotent stem cells (hiPSCs). These cell therapies have shown the ability to engraft more successfully and improve electromechanical function of the heart in preclinical studies, including in non-human primates. Advances in cell culture and delivery techniques promise to further improve the engraftment and integration of hiPSC-derived CMs (hiPSC-CMs), while the use of metabolic selection to eliminate undifferentiated cells will help minimize the risk of teratomas. Clinical trials of allogeneic hiPSC-CMs in HF are now ongoing, providing hope for vast numbers of patients with few other options available.
Collapse
Affiliation(s)
| | - Keiichi Fukuda
- Correspondence: ; Tel.: +81-3-5363-3874; Fax: +81-3-5363-3875
| |
Collapse
|
11
|
Qayyum AA, Mouridsen M, Nilsson B, Gustafsson I, Schou M, Nielsen OW, Hove JD, Mathiasen AB, Jørgensen E, Helqvist S, Joshi FR, Johansen EM, Follin B, Juhl M, Højgaard LD, Haack-Sørensen M, Ekblond A, Kastrup J. Danish phase II trial using adipose tissue derived mesenchymal stromal cells for patients with ischaemic heart failure. ESC Heart Fail 2023; 10:1170-1183. [PMID: 36638837 PMCID: PMC10053281 DOI: 10.1002/ehf2.14281] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
AIMS Patients suffering from chronic ischaemic heart failure with reduced left ventricular ejection fraction (HFrEF) have reduced quality-of-life, repetitive hospital admissions, and reduced life expectancy. Allogeneic cell therapy is currently investigated as a potential treatment option after initially encouraging results from clinical autologous and allogeneic trials in patients with HFrEF. We aimed to investigate the allogeneic Cardiology Stem Cell Centre Adipose tissue derived mesenchymal Stromal Cell product (CSCC_ASC) as an add-on therapy in patients with chronic HFrEF. METHODS AND RESULTS This is a Danish multi-centre double-blinded placebo-controlled phase II study with direct intra-myocardial injections of allogeneic CSCC_ASC. A total of 81 HFrEF patients were included and randomized 2:1 to CSCC_ASC or placebo injections. The inclusion criteria were reduced left ventricular ejection fraction (LVEF ≤ 45%), New York Heart Association (NYHA) class II-III despite optimal anti-congestive heart failure medication and no further revascularization options. Injections of 0.3 mL CSCC_ASC (total cell dose 100 × 106 ASCs) (n = 54) or isotonic saline (n = 27) were performed into the viable myocardium in the border zone of infarcted tissue using the NOGA Myostar® catheter (Biological Delivery System, Cordis, Johnson & Johnson, USA). The primary endpoint, left ventricular end systolic volume (LVESV), was evaluated at 6-month follow-up. The safety was measured during a 3-years follow-up period. RESULTS Mean age was 67.0 ± 9.0 years and 66.6 ± 8.1 years in the ASC and placebo groups, respectively. LVESV was unchanged from baseline to 6-month follow-up in the ASC (125.7 ± 68.8 mL and 126.3 ± 72.5 mL, P = 0.827) and placebo (134.6 ± 45.8 mL and 135.3 ± 49.6 mL, P = 0.855) group without any differences between the groups (0.0 mL (95% CI -9.1 to 9.0 mL, P = 0.992). Neither were there significant changes in left ventricular end diastolic volume or LVEF within the two groups or between groups -5.7 mL (95% CI -16.7 to 5.3 mL, P = 0.306) and -1.7% (95% CI -4.4. to 1.0, P = 0.212), respectively). NYHA classification and 6-min walk test did not alter significantly in the two groups (P > 0.05). The quality-of-life, total symptom, and overall summary score improved significantly only in the ASC group but not between groups. There were 24 serious adverse events (SAEs) in the ASC group and 11 SAEs in the placebo group without any significant differences between the two groups at 1-year follow-up. Kaplan-Meier plot using log-rank test of combined cardiac events showed an overall mean time to event of 30 ± 2 months in the ASC group and 29 ± 2 months in the placebo group without any differences between the groups during the 3 years follow-up period (P = 0.994). CONCLUSIONS Intramyocardial CSCC_ASC injections in patients with chronic HFrEF were safe but did not improve myocardial function or structure, nor clinical symptoms.
Collapse
Affiliation(s)
- Abbas Ali Qayyum
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mette Mouridsen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Brian Nilsson
- Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ida Gustafsson
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Morten Schou
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Olav Wendelboe Nielsen
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Dahlgaard Hove
- Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bruun Mathiasen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Erik Jørgensen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Helqvist
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Francis Richard Joshi
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ellen Mønsted Johansen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bjarke Follin
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Morten Juhl
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Drozd Højgaard
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Annette Ekblond
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Vrachatis DA, Papathanasiou KA, Giotaki SG, Raisakis K, Kaoukis A, Kossyvakis C, Theodorakis A, Pediotidis S, Avramides D, Siasos G, Deftereos S. Advances in the Management of Heart Failure with Reduced Ejection Fraction; The Role of SGLT2is, ARNI, Myotropes, Vericiguat, and Anti-inflammatory Agents: A Mini-review. Curr Pharm Des 2023; 29:509-518. [PMID: 36927423 DOI: 10.2174/1381612829666230316142450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 03/18/2023]
Abstract
Heart failure with reduced ejection fraction (HFrEF) has been associated with poor prognosis, reduced quality of life, and increased healthcare expenditure. Despite tremendous advances in HFrEF management, reduced survival and a high rate of hospitalization remain unsolved issues. Furthermore, HFrEF morbidity and economic burden are estimated to increase in the following years; hence, new therapies are constantly emerging. In the last few years, a series of landmark clinical trials have expanded our therapeutic armamentarium with a ground-breaking change in HFrEF-related outcomes. Sodium-glucose co-transporter 2 inhibitors (mainly dapagliflozin and empagliflozin) have already revolutionized the management of HFrEF patients via a significant reduction in cardiovascular mortality and heart failure hospitalizations. Furthermore, vericiguat and omecamtiv mecarbil have emerged as promising and novel disease-modifying therapies. The former restores the impaired cyclic guanosine monophosphate pathway, and the latter stimulates cardiac myosin without marked arrhythmogenesis. Both vericiguat and omecamtiv mecarbil have been shown to reduce heart failure admissions. Sacubitril/valsartan is an established and effective therapy in HFrEF patients and should be considered as a replacement for angiotensin-converting enzyme inhibitors (ACEi) or angiotensin II receptor blockers (ARBs). Lastly, inflammasome activity is implicated in HFrEF pathophysiology, and the role of anti-inflammatory agents in HFrEF trajectories is readily scrutinized, yet available therapies are ineffective. This mini-review summarizes the major and most recent studies in this field, thus covering the current advances in HFrEF therapeutics.
Collapse
Affiliation(s)
| | - Konstantinos A Papathanasiou
- Second Department of Cardiology, National & Kapodistrian University of Athens, School of Medicine, University General Hospital ATTIKON, Athens, Greece
| | - Sotiria G Giotaki
- Second Department of Cardiology, National & Kapodistrian University of Athens, School of Medicine, University General Hospital ATTIKON, Athens, Greece
| | | | - Andreas Kaoukis
- Deparment of Cardiology, General Hospital of Athens "G.Gennimatas", Athens, Greece
| | | | - Andreas Theodorakis
- Deparment of Cardiology, General Hospital of Athens "G.Gennimatas", Athens, Greece
| | - Stauros Pediotidis
- Deparment of Cardiology, General Hospital of Athens "G.Gennimatas", Athens, Greece
| | - Dimitrios Avramides
- Deparment of Cardiology, General Hospital of Athens "G.Gennimatas", Athens, Greece
| | - Gerasimos Siasos
- Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens, Greece
| | - Spyridon Deftereos
- Department of Cardiology, National & Kapodistrian University of Athens, School of Medicine, University General Hospital ATTIKON, Athens, Greece
| |
Collapse
|
13
|
Banovic M, Poglajen G, Vrtovec B, Ristic A. Contemporary Challenges of Regenerative Therapy in Patients with Ischemic and Non-Ischemic Heart Failure. J Cardiovasc Dev Dis 2022; 9:jcdd9120429. [PMID: 36547426 PMCID: PMC9783726 DOI: 10.3390/jcdd9120429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
It has now been almost 20 years since first clinical trials of stem cell therapy for heart repair were initiated. While initial preclinical data were promising and suggested that stem cells may be able to directly restore a diseased myocardium, this was never unequivocally confirmed in the clinical setting. Clinical trials of cell therapy did show the process to be feasible and safe. However, the clinical benefits of this treatment modality in patients with ischemic and non-ischemic heart failure have not been consistently confirmed. What is more, in the rapidly developing field of stem cell therapy in patients with heart failure, relevant questions regarding clinical trials' protocol streamlining, optimal patient selection, stem cell type and dose, and the mode of cell delivery remain largely unanswered. Recently, novel approaches to myocardial regeneration, including the use of pluripotent and allogeneic stem cells and cell-free therapeutic approaches, have been proposed. Thus, in this review, we aim to outline current knowledge and highlight contemporary challenges and dilemmas in clinical aspects of stem cell and regenerative therapy in patients with chronic ischemic and non-ischemic heart failure.
Collapse
Affiliation(s)
- Marko Banovic
- Cardiology Department, University Clinical Center of Serbia, 11000 Beograd, Serbia
- Belgrade Medical School, 11000 Belgrade, Serbia
- Correspondence: (M.B.); (G.P.)
| | - Gregor Poglajen
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Medical Faculty Ljubljana, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (M.B.); (G.P.)
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Medical Faculty Ljubljana, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Arsen Ristic
- Cardiology Department, University Clinical Center of Serbia, 11000 Beograd, Serbia
- Belgrade Medical School, 11000 Belgrade, Serbia
| |
Collapse
|
14
|
Riccardi M, Sammartino AM, Piepoli M, Adamo M, Pagnesi M, Rosano G, Metra M, von Haehling S, Tomasoni D. Heart failure: an update from the last years and a look at the near future. ESC Heart Fail 2022; 9:3667-3693. [PMID: 36546712 PMCID: PMC9773737 DOI: 10.1002/ehf2.14257] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
In the last years, major progress occurred in heart failure (HF) management. Quadruple therapy is now mandatory for all the patients with HF with reduced ejection fraction. Whilst verciguat is becoming available across several countries, omecamtiv mecarbil is waiting to be released for clinical use. Concurrent use of potassium-lowering agents may counteract hyperkalaemia and facilitate renin-angiotensin-aldosterone system inhibitor implementations. The results of the EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Preserved Ejection Fraction (EMPEROR-Preserved) trial were confirmed by the Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction (DELIVER) trial, and we now have, for the first time, evidence for treatment of also patients with HF with preserved ejection fraction. In a pre-specified meta-analysis of major randomized controlled trials, sodium-glucose co-transporter-2 inhibitors reduced all-cause mortality, cardiovascular (CV) mortality, and HF hospitalization in the patients with HF regardless of left ventricular ejection fraction. Other steps forward have occurred in the treatment of decompensated HF. Acetazolamide in Acute Decompensated Heart Failure with Volume Overload (ADVOR) trial showed that the addition of intravenous acetazolamide to loop diuretics leads to greater decongestion vs. placebo. The addition of hydrochlorothiazide to loop diuretics was evaluated in the CLOROTIC trial. Torasemide did not change outcomes, compared with furosemide, in TRANSFORM-HF. Ferric derisomaltose had an effect on the primary outcome of CV mortality or HF rehospitalizations in IRONMAN (rate ratio 0.82; 95% confidence interval 0.66-1.02; P = 0.070). Further options for the treatment of HF, including device therapies, cardiac contractility modulation, and percutaneous treatment of valvulopathies, are summarized in this article.
Collapse
Affiliation(s)
- Mauro Riccardi
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Antonio Maria Sammartino
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Massimo Piepoli
- Clinical Cardiology, IRCCS Policlinico San DonatoUniversity of MilanMilanItaly
- Department of Preventive CardiologyUniversity of WrocławWrocławPoland
| | - Marianna Adamo
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Matteo Pagnesi
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | | | - Marco Metra
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Goettingen Medical CenterGottingenGermany
- German Center for Cardiovascular Research (DZHK), Partner Site GöttingenGottingenGermany
| | - Daniela Tomasoni
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| |
Collapse
|
15
|
Do the Current Guidelines for Heart Failure Diagnosis and Treatment Fit with Clinical Complexity? J Clin Med 2022; 11:jcm11030857. [PMID: 35160308 PMCID: PMC8836547 DOI: 10.3390/jcm11030857] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a clinical syndrome defined by specific symptoms and signs due to structural and/or functional heart abnormalities, which lead to inadequate cardiac output and/or increased intraventricular filling pressure. Importantly, HF becomes progressively a multisystemic disease. However, in August 2021, the European Society of Cardiology published the new Guidelines for the diagnosis and treatment of acute and chronic HF, according to which the left ventricular ejection fraction (LVEF) continues to represent the pivotal parameter for HF patients’ evaluation, risk stratification and therapeutic management despite its limitations are well known. Indeed, HF has a complex pathophysiology because it first involves the heart, progressively becoming a multisystemic disease, leading to multiorgan failure and death. In these terms, HF is comparable to cancer. As for cancer, surviving, morbidity and hospitalisation are related not only to the primary neoplastic mass but mainly to the metastatic involvement. In HF, multiorgan involvement has a great impact on prognosis, and multiorgan protective therapies are equally important as conventional cardioprotective therapies. In the light of these considerations, a revision of the HF concept is needed, starting from its definition up to its therapy, to overcome the old and simplistic HF perspective.
Collapse
|
16
|
Stretti L, Zippo D, Coats AJ, Anker MS, von Haehling S, Metra M, Tomasoni D. A year in heart failure: an update of recent findings. ESC Heart Fail 2021; 8:4370-4393. [PMID: 34918477 PMCID: PMC9073717 DOI: 10.1002/ehf2.13760] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022] Open
Abstract
Major changes have occurred in these last years in heart failure (HF) management. Landmark trials and the 2021 European Society of Cardiology guidelines for the diagnosis and treatment of HF have established four classes of drugs for treatment of HF with reduced ejection fraction: angiotensin-converting enzyme inhibitors or an angiotensin receptor-neprilysin inhibitor, beta-blockers, mineralocorticoid receptor antagonists, and sodium-glucose co-transporter 2 inhibitors, namely, dapagliflozin or empagliflozin. These drugs consistently showed benefits on mortality, HF hospitalizations, and quality of life. Correction of iron deficiency is indicated to improve symptoms and reduce HF hospitalizations. AFFIRM-AHF showed 26% reduction in total HF hospitalizations with ferric carboxymaltose vs. placebo in patients hospitalized for acute HF (P = 0.013). The guanylate cyclase activator vericiguat and the myosin activator omecamtiv mecarbil improved outcomes in randomized placebo-controlled trials, and vericiguat is now approved for clinical practice. Treatment of HF with preserved ejection fraction (HFpEF) was a major unmet clinical need until this year when the results of EMPEROR-Preserved (EMPagliflozin outcomE tRial in Patients With chrOnic HFpEF) were issued. Compared with placebo, empagliflozin reduced by 21% (hazard ratio, 0.79; 95% confidence interval, 0.69 to 0.90; P < 0.001), the primary outcome of cardiovascular death or HF hospitalization. Advances in the treatment of specific phenotypes of HF, including atrial fibrillation, valvular heart disease, cardiomyopathies, cardiac amyloidosis, and cancer-related HF, also occurred. Coronavirus disease 2019 (COVID-19) pandemic still plays a major role in HF epidemiology and management. All these aspects are highlighted in this review.
Collapse
Affiliation(s)
- Lorenzo Stretti
- Cardiology, Cardio‐Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Dauphine Zippo
- Cardiology, Cardio‐Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | | | - Markus S. Anker
- Department of Cardiology (CBF)Charité ‐ Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT)BerlinGermany
- German Centre for Cardiovascular Research (DZHK), partner site BerlinBerlinGermany
| | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
- German Center for Cardiovascular Research (DZHK), partner site GöttingenGöttingenGermany
| | - Marco Metra
- Cardiology, Cardio‐Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Daniela Tomasoni
- Cardiology, Cardio‐Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| |
Collapse
|
17
|
Yamada S, Bartunek J, Behfar A, Terzic A. Mass Customized Outlook for Regenerative Heart Failure Care. Int J Mol Sci 2021; 22:11394. [PMID: 34768825 PMCID: PMC8583673 DOI: 10.3390/ijms222111394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Heart failure pathobiology is permissive to reparative intent. Regenerative therapies exemplify an emerging disruptive innovation aimed at achieving structural and functional organ restitution. However, mixed outcomes, complexity in use, and unsustainable cost have curtailed broader adoption, mandating the development of novel cardio-regenerative approaches. Lineage guidance offers a standardized path to customize stem cell fitness for therapy. A case in point is the molecular induction of the cardiopoiesis program in adult stem cells to yield cardiopoietic cell derivatives designed for heart failure treatment. Tested in early and advanced clinical trials in patients with ischemic heart failure, clinical grade cardiopoietic cells were safe and revealed therapeutic improvement within a window of treatment intensity and pre-treatment disease severity. With the prospect of mass customization, cardiopoietic guidance has been streamlined from the demanding, recombinant protein cocktail-based to a protein-free, messenger RNA-based single gene protocol to engineer affordable cardiac repair competent cells. Clinical trial biobanked stem cells enabled a systems biology deconvolution of the cardiopoietic cell secretome linked to therapeutic benefit, exposing a paracrine mode of action. Collectively, this new knowledge informs next generation regenerative therapeutics manufactured as engineered cellular or secretome mimicking cell-free platforms. Launching biotherapeutics tailored for optimal outcome and offered at mass production cost would contribute to advancing equitable regenerative care that addresses population health needs.
Collapse
Affiliation(s)
- Satsuki Yamada
- Center for Regenerative Medicine, Marriott Family Comprehensive Cardiac Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.Y.); (A.B.)
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jozef Bartunek
- Cardiovascular Center, OLV Hospital, 9300 Aalst, Belgium
| | - Atta Behfar
- Center for Regenerative Medicine, Marriott Family Comprehensive Cardiac Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.Y.); (A.B.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Marriott Family Comprehensive Cardiac Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.Y.); (A.B.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
18
|
Nummi A, Mulari S, Stewart JA, Kivistö S, Teittinen K, Nieminen T, Lampinen M, Pätilä T, Sintonen H, Juvonen T, Kupari M, Suojaranta R, Kankuri E, Harjula A, Vento A. Epicardial Transplantation of Autologous Cardiac Micrografts During Coronary Artery Bypass Surgery. Front Cardiovasc Med 2021; 8:726889. [PMID: 34595223 PMCID: PMC8476794 DOI: 10.3389/fcvm.2021.726889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Cardio-regenerative cell therapies offer additional biologic support to coronary artery bypass surgery (CABG) and are aimed at functionally repairing the myocardium that suffers from or is damaged by ischemia. This non-randomized open-label study assessed the safety and feasibility of epicardial transplantation of atrial appendage micrografts (AAMs) in patients undergoing CABG surgery. Methods: Twelve consecutive patients destined for CABG surgery were included in the study. Six patients received AAMs during their operation and six patients were CABG-operated without AAMs transplantation. Data from 30 elective CABG patients was collected for a center- and time-matched control group. The AAMs were processed during the operation from a biopsy collected from the right atrial appendage. They were delivered epicardially onto the infarct scar site identified in preoperative late gadolinium enhancement cardiac magnetic resonance imaging (CMRI). The primary outcome measures at the 6-month follow-up were (i) patient safety in terms of hemodynamic and cardiac function over time and (ii) feasibility of therapy administration in a clinical setting. Secondary outcome measures were left ventricular wall thickness, change in myocardial scar tissue volume, changes in left ventricular ejection fraction, plasma concentrations of N-terminal pro-B-type natriuretic peptide levels, NYHA class, number of days in hospital and changes in the quality of life. Results: Epicardial transplantation of AAMs was safe and feasible to be performed during CABG surgery. CMRI demonstrated an increase in viable cardiac tissue at the infarct site in patients receiving AAMs treatment. Conclusions and Relevance: Transplantation of AAMs shows good clinical applicability as performed during cardiac surgery, shows initial therapeutic effect on the myocardium and has the potential to serve as a delivery platform for cardiac gene therapies. Trial Registration:ClinicalTrials.gov, identifier: NCT02672163.
Collapse
Affiliation(s)
- Annu Nummi
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Severi Mulari
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juhani A. Stewart
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sari Kivistö
- Department of Radiology, Helsinki University Hospital (HUS) Medical Imaging Center and Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kari Teittinen
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tuomo Nieminen
- Department of Internal Medicine, Päijät-Häme Central Hospital, Lahti, Finland
| | - Milla Lampinen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tommi Pätilä
- Pediatric Cardiac Surgery, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Harri Sintonen
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Tatu Juvonen
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markku Kupari
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Raili Suojaranta
- Department of Anesthesiology and Intensive Care, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ari Harjula
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
19
|
Sato Y, Kuragaichi T, Saga S, Nakayama H, Obata T, Watanabe M, Fujikura K, Watanabe M, Hata KI, Ohgushi H. Safety of Intravenous Autologous Bone Marrow-Derived Mesenchymal Cell Transplantation in 5 Patients With Reduced Left Ventricular Ejection Fraction. Circ Rep 2021; 3:550-554. [PMID: 34568634 PMCID: PMC8423613 DOI: 10.1253/circrep.cr-21-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 11/25/2022] Open
Abstract
Background:
Although intracardiac injection or intracoronary delivery of mesenchymal stem cells (MSCs) has been reported, there have been few studies on the intravenous injection of MSCs, particularly in Japan. Methods and Results:
Five patients with left ventricular ejection fraction (LVEF) ≤45% received 1.0×108
MSCs intravenously. The procedure did not induce significant changes in vital signs. One patient had an elevated body temperature after 1 day, but recovered spontaneously. Laboratory tests remained normal for 1 month after cell delivery. Computed tomography was performed after 1–2 years, and there was no evidence of malignancy. Conclusions:
In this pilot study of patients with reduced LVEF, intravenous MSC delivery had no adverse effects.
Collapse
Affiliation(s)
- Yukihito Sato
- Department of Cardiology, Hyogo Prefectural Amagasaki General Medical Center Amagasaki Japan
| | - Takashi Kuragaichi
- Department of Cardiology, Hyogo Prefectural Amagasaki General Medical Center Amagasaki Japan
| | - Shunsuke Saga
- Department of Cardiology, Hyogo Prefectural Amagasaki General Medical Center Amagasaki Japan
| | - Hiroyuki Nakayama
- Department of Cardiology, Hyogo Prefectural Amagasaki General Medical Center Amagasaki Japan
| | - Tomoe Obata
- Department of Clinical Laboratory, Hyogo Prefectural Amagasaki General Medical Center Amagasaki Japan
| | - Mitsumasa Watanabe
- Department of Hematology, Hyogo Prefectural Amagasaki General Medical Center Amagasaki Japan
| | - Kie Fujikura
- Japan Tissue Engineering Co., Ltd. (J-TEC) Gamagori Japan
| | | | | | - Hajime Ohgushi
- Department of Orthopedic Surgery, Ookuma Hospital Nagoya Japan
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Heart failure remains a major public health concern with high burden of morbidity and mortality despite advances in pharmacotherapy, device therapy, and surgical and percutaneous techniques. Cardiac regeneration may have a role to play in these patients with a huge unmet need for these therapies in patients with chronic ischemic heart disease, post-infarct heart failure, dilated cardiomyopathy, and heart failure with preserved ejection fraction. RECENT FINDINGS In this review, we focus on the pre-clinical and translational basis for different modes of cardiac regenerative medicine and then critically appraise the clinical evidence amassed from pivotal clinical trials focused on cardiac regeneration for ischemic and non-ischemic cardiomyopathies. Cardiac regenerative medicine is rapidly evolving with novel approaches involving cell-based, cell-free, tissue engineering, and hybrid therapies to achieve myocardial regeneration and repair. Further studies are warranted with a robust comparison arm with optimal contemporary medical therapy to translate regenerative therapies to a clinical reality.
Collapse
|
21
|
Yamada S, Jeon R, Garmany A, Behfar A, Terzic A. Screening for regenerative therapy responders in heart failure. Biomark Med 2021; 15:775-783. [PMID: 34169733 PMCID: PMC8252977 DOI: 10.2217/bmm-2020-0683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Risk of outcome variability challenges therapeutic innovation. Selection of the most suitable candidates is predicated on reliable response indicators. Especially for emergent regenerative biotherapies, determinants separating success from failure in achieving disease rescue remain largely unknown. Accordingly, (pre)clinical development programs have placed increased emphasis on the multi-dimensional decoding of repair capacity and disease resolution, attributes defining responsiveness. To attain regenerative goals for each individual, phenotype-based patient selection is poised for an upgrade guided by new insights into disease biology, translated into refined surveillance of response regulators and deep learning-amplified clinical decision support.
Collapse
Affiliation(s)
- Satsuki Yamada
- Department of Cardiovascular Medicine, Mayo Clinic, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Rochester, MN 55905, USA
- Department of Medicine, Division of Geriatric Medicine & Gerontology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ryounghoon Jeon
- Department of Cardiovascular Medicine, Mayo Clinic, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Rochester, MN 55905, USA
| | - Armin Garmany
- Department of Cardiovascular Medicine, Mayo Clinic, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Rochester, MN 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine, Regenerative Sciences Track, Rochester, MN 55905, USA
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Rochester, MN 55905, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Medicine, Mayo Clinic, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Rochester, MN 55905, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Ghodrat S, Hoseini SJ, Asadpour S, Nazarnezhad S, Alizadeh Eghtedar F, Kargozar S. Stem cell-based therapies for cardiac diseases: The critical role of angiogenic exosomes. Biofactors 2021; 47:270-291. [PMID: 33606893 DOI: 10.1002/biof.1717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022]
Abstract
Finding effective treatments for cardiac diseases is among the hottest subjects in medicine; cell-based therapies have brought great promises for managing a broad range of life-threatening heart complications such as myocardial infarction. After clarifying the critical role of angiogenesis in tissue repair and regeneration, various stem/progenitor cell were utilized to accelerate the healing of injured cardiac tissue. Embryonic, fetal, adult, and induced pluripotent stem cells have shown the appropriate proangiogenic potential for tissue repair strategies. The capability of stem cells for differentiating into endothelial lineages was initially introduced as the primary mechanism involved in improving angiogenesis and accelerated heart tissue repair. However, recent studies have demonstrated the leading role of paracrine factors secreted by stem cells in advancing neo-vessel formation. Genetically modified stem cells are also being applied for promoting angiogenesis regarding their ability to considerably overexpress and secrete angiogenic bioactive molecules. Yet, conducting further research seems necessary to precisely identify molecular mechanisms behind the proangiogenic potential of stem cells, including the signaling pathways and regulatory molecules such as microRNAs. In conclusion, stem cells' pivotal roles in promoting angiogenesis and consequent improved cardiac healing and remodeling processes should not be ignored, especially in the case of stem cell-derived extracellular vesicles.
Collapse
Affiliation(s)
- Sara Ghodrat
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Alizadeh Eghtedar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Yamada S, Behfar A, Terzic A. Regenerative medicine clinical readiness. Regen Med 2021; 16:309-322. [PMID: 33622049 PMCID: PMC8050983 DOI: 10.2217/rme-2020-0178] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine, poised to transform 21st century healthcare, has aspired to enrich care options by bringing cures to patients in need. Science-driven responsible and regulated translation of innovative technology has enabled the launch of previously unimaginable care pathways adopted prudently for select serious diseases and disabilities. The collective resolve to advance the design, manufacture and validity of affordable regenerative solutions aims to democratize such health benefits for all. The objective of this Review is to outline the framework and prerequisites that underpin clinical readiness of regenerative care. Integrated research and development, specialized workforce education and accessible evidence-based practice implementation are at the core of realizing an equitable regenerative medicine vision.
Collapse
Affiliation(s)
- Satsuki Yamada
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, 55905 MN, USA
- Division of Geriatric Medicine & Gerontology, Department of Medicine, Mayo Clinic, Rochester, 55905 MN, USA
| | - Atta Behfar
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, 55905 MN, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, 55905 MN, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, 55905 MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, 55905 MN, USA
| |
Collapse
|
24
|
Bartunek J, Terzic A, Davison BA, Behfar A, Sanz-Ruiz R, Wojakowski W, Sherman W, Heyndrickx GR, Metra M, Filippatos GS, Waldman SA, Teerlink JR, Henry TD, Gersh BJ, Hajjar R, Tendera M, Senger S, Cotter G, Povsic TJ, Wijns W. Cardiopoietic stem cell therapy in ischaemic heart failure: long-term clinical outcomes. ESC Heart Fail 2020; 7:3345-3354. [PMID: 33094909 PMCID: PMC7754898 DOI: 10.1002/ehf2.13031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Aims This study aims to explore long‐term clinical outcomes of cardiopoiesis‐guided stem cell therapy for ischaemic heart failure assessed in the Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART‐1) trial. Methods and results CHART‐1 is a multinational, randomized, and double‐blind trial conducted in 39 centres in heart failure patients (n = 315) on standard‐of‐care therapy. The ‘active’ group received cardiopoietic stem cells delivered intramyocardially using a retention‐enhanced catheter. The ‘control’ group underwent patient‐level sham procedure. Patients were followed up to 104 weeks. In the entire study population, results of the primary hierarchical composite outcome were maintained neutral at Week 52 [Mann–Whitney estimator 0.52, 95% confidence interval (CI) 0.45–0.59, P = 0.51]. Landmark analyses suggested late clinical benefit in patients with significant left ventricular enlargement receiving adequate dosing. Specifically, beyond 100 days of follow‐up, patients with left ventricular end‐diastolic volume of 200–370 mL treated with ≤19 injections of cardiopoietic stem cells showed reduced risk of death or cardiovascular hospitalization (hazard ratio 0.38, 95% CI 0.16–0.91, P = 0.031) and cardiovascular death or heart failure hospitalization (hazard ratio 0.28, 95% CI 0.09–0.94, P = 0.040). Cardiopoietic stem cell therapy was well tolerated long term with no difference in safety readouts compared with sham at 2 years. Conclusions Longitudinal follow‐up documents that cardiopoietic stem cell therapy is overall safe, and post hoc analyses suggest benefit in an ischaemic heart failure subpopulation defined by advanced left ventricular enlargement on tolerable stem cell dosing. The long‐term clinical follow‐up thus offers guidance for future targeted trials.
Collapse
Affiliation(s)
- Jozef Bartunek
- Cardiovascular Center, OLV Hospital, Moorselbaan 164, Aalst, B-9300, Belgium
| | - Andre Terzic
- Cardiovascular Center, OLV Hospital, Moorselbaan 164, Aalst, B-9300, Belgium.,Department of Cardiovascular Medicine, Mayo Clinic, Center for Regenerative Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Center for Regenerative Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ricardo Sanz-Ruiz
- Cardiology Department, Hospital General Universitario Gregorio Marañón and CIBERCV (Instituto de Salud Carlos III), Madrid, Spain
| | - Wojciech Wojakowski
- Department of Cardiology and Structural Heart Disease, Medical University of Silesia, Katowice, Poland
| | | | - Guy R Heyndrickx
- Cardiovascular Center, OLV Hospital, Moorselbaan 164, Aalst, B-9300, Belgium
| | - Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University and Spedali Civili, Brescia, Italy
| | - Gerasimos S Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | - Scott A Waldman
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - John R Teerlink
- School of Medicine, University of California San Francisco, San Francisco, CA, USA.,Section of Cardiology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Timothy D Henry
- The Carl Edyth Lindner Center for Research and Education at The Christ Hospital, Cincinnati, OH, USA
| | - Bernard J Gersh
- Department of Cardiovascular Medicine, Mayo Clinic, Center for Regenerative Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Roger Hajjar
- Phospholamban Foundation, Amsterdam, Netherlands
| | - Michal Tendera
- Department of Cardiology and Structural Heart Disease, Medical University of Silesia, Katowice, Poland
| | | | - Gad Cotter
- Momentum Research, Inc., Durham, NC, USA
| | - Thomas J Povsic
- Duke Clinical Research Institute and Duke University Medical Center, Durham, NC, USA
| | - William Wijns
- The Lambe Institute for Translational Medicine and Curam, National University of Ireland Galway and Saolta University Healthcare Group, Galway, Ireland
| | | |
Collapse
|