1
|
Guo QY, Yang JQ, Feng XX, Zhou YJ. Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Mil Med Res 2023; 10:18. [PMID: 37098604 PMCID: PMC10131330 DOI: 10.1186/s40779-023-00452-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/22/2023] [Indexed: 04/27/2023] Open
Abstract
Heart injury such as myocardial infarction leads to cardiomyocyte loss, fibrotic tissue deposition, and scar formation. These changes reduce cardiac contractility, resulting in heart failure, which causes a huge public health burden. Military personnel, compared with civilians, is exposed to more stress, a risk factor for heart diseases, making cardiovascular health management and treatment innovation an important topic for military medicine. So far, medical intervention can slow down cardiovascular disease progression, but not yet induce heart regeneration. In the past decades, studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury. Insights have emerged from studies in animal models and early clinical trials. Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease. In this review, we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.
Collapse
Affiliation(s)
- Qian-Yun Guo
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jia-Qi Yang
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xun-Xun Feng
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yu-Jie Zhou
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
2
|
Qayyum AA, van Klarenbosch B, Frljak S, Cerar A, Poglajen G, Traxler-Weidenauer D, Nadrowski P, Paitazoglou C, Vrtovec B, Bergmann MW, Chamuleau SAJ, Wojakowski W, Gyöngyösi M, Kraaijeveld A, Hansen KS, Vrangbaek K, Jørgensen E, Helqvist S, Joshi FR, Johansen EM, Follin B, Juhl M, Højgaard LD, Mathiasen AB, Ekblond A, Haack-Sørensen M, Kastrup J. Effect of allogeneic adipose tissue-derived mesenchymal stromal cell treatment in chronic ischaemic heart failure with reduced ejection fraction - the SCIENCE trial. Eur J Heart Fail 2023; 25:576-587. [PMID: 36644821 DOI: 10.1002/ejhf.2772] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/27/2022] [Accepted: 01/08/2023] [Indexed: 01/17/2023] Open
Abstract
AIMS The aim of the SCIENCE trial was to investigate whether a single treatment with direct intramyocardial injections of adipose tissue-derived mesenchymal stromal cells (CSCC_ASCs) was safe and improved cardiac function in patients with chronic ischaemic heart failure with reduced ejection fraction (HFrEF). METHODS AND RESULTS The study was a European multicentre, double-blind, placebo-controlled phase II trial using allogeneic CSCC_ASCs from healthy donors or placebo (2:1 randomization). Main inclusion criteria were New York Heart Association (NYHA) class II-III, left ventricular ejection fraction (LVEF) <45%, and N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels >300 pg/ml. CSCC_ASCs or placebo (isotonic saline) were injected directly into viable myocardium. The primary endpoint was change in left ventricular end-systolic volume (LVESV) at 6-month follow-up measured by echocardiography. A total of 133 symptomatic HFrEF patients were included. The treatment was safe without any drug-related severe adverse events or difference in cardiac-related adverse events during a 3-year follow-up period. There were no significant differences between groups during follow-up in LVESV (0.3 ± 5.0 ml, p = 0.945), nor in secondary endpoints of left ventricular end-diastolic volume (-2.0 ± 6.0 ml, p = 0.736) and LVEF (-1.6 ± 1.0%, p = 0.119). The NYHA class improved slightly within the first year in both groups without any difference between groups. There were no changes in 6-min walk test, NT-proBNP, C-reactive protein or quality of life the first year in any groups. CONCLUSION The SCIENCE trial demonstrated safety of intramyocardial allogeneic CSCC_ASC therapy in patients with chronic HFrEF. However, it was not possible to improve the pre-defined endpoints and induce restoration of cardiac function or clinical symptoms.
Collapse
Affiliation(s)
- Abbas Ali Qayyum
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bas van Klarenbosch
- Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabina Frljak
- Advanced Heart Failure and Transplantation Center, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Andraz Cerar
- Advanced Heart Failure and Transplantation Center, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Gregor Poglajen
- Advanced Heart Failure and Transplantation Center, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | - Pawel Nadrowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | | | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Martin W Bergmann
- Department of Cardiology, Asklepios Klinik St. Georg, Hamburg, Germany
| | - Steven A J Chamuleau
- Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wojtek Wojakowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Adriaan Kraaijeveld
- Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kristian Schultz Hansen
- Faculty of Social Sciences and the Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karsten Vrangbaek
- Faculty of Social Sciences and the Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Jørgensen
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Helqvist
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Francis Richard Joshi
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ellen Mønsted Johansen
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bjarke Follin
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Morten Juhl
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Drozd Højgaard
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bruun Mathiasen
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Annette Ekblond
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
3
|
Abstract
Understanding how macrophages promote myocardial repair can help create new therapies for infarct repair. We aimed to determine what mechanisms underlie the reparative properties of macrophages. Cytokine arrays revealed that neonatal cardiac macrophages from the injured neonatal heart secreted high amounts of osteopontin (OPN). In vitro, recombinant OPN stimulated cardiac cell outgrowth, cardiomyocyte (CM) cell-cycle re-entry, and CM migration. In addition, OPN induced nuclear translocation of the cytoplasmatic yes-associated protein 1 (YAP1) and upregulated transcriptional factors and cell-cycle genes. Significantly, by blocking the OPN receptor CD44, we eliminated the effects of OPN on CMs. OPN also activated the proliferation and migration of non-CM cells: endothelial cells and cardiac mesenchymal stromal cells in vitro. Notably, the significant role of OPN in myocardial healing was demonstrated by impaired healing in OPN-deficient neonatal hearts. Finally, in the adult mice, a single injection of OPN into the border of the ischemic zone induced CM cell-cycle re-entry, improved scar formation, local and global cardiac function, and LV remodelling 30 days after MI. In summary, we have shown, for the first time, that recombinant OPN activates cell-cycle re-entry in CMs. In addition, recombinant OPN stimulates multiple cardiac cells and improves scar formation, LV remodelling, and regional and global function after MI. Therefore, we propose OPN as a new cell-free therapy to optimize infarct repair.
Collapse
|
4
|
Salerno N, Salerno L, Marino F, Scalise M, Chiefalo A, Panuccio G, De Angelis A, Cianflone E, Urbanek K, Torella D. Myocardial regeneration protocols towards the routine clinical scenario: An unseemly path from bench to bedside. EClinicalMedicine 2022; 50:101530. [PMID: 35799845 PMCID: PMC9253597 DOI: 10.1016/j.eclinm.2022.101530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Heart failure secondary to cardiomyocyte loss and/or dysfunction is the number one killer worldwide. The field of myocardial regeneration with its far-reaching primary goal of cardiac remuscularization and its hard-to-accomplish translation from bench to bedside, has been filled with ups and downs, steps forward and steps backward, controversies galore and, unfortunately, scientific scandals. Despite the present morass in which cardiac remuscularization is stuck in, the search for clinically effective regenerative approaches remains keenly active. Starting with a concise overview of the still highly debated regenerative capacity of the adult mammalian heart, we focus on the main interventions, that have reached or are close to clinical use, critically discussing key findings, successes, and failures. Finally, some promising and innovative approaches for myocardial repair/regeneration still at the pre-clinical stage are discussed to offer a holistic view on the future of myocardial repair/regeneration for the prevention/management of heart failure in the clinical scenario. FUNDING This research was funded by Grants from the Ministry of University and Research PRIN2015 2015ZTT5KB_004; PRIN2017NKB2N4_005; PON-AIM - 1829805-2.
Collapse
Affiliation(s)
- Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Antonio Chiefalo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Giuseppe Panuccio
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80125, Naples, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
- Corresponding author.
| |
Collapse
|
5
|
Cardiovascular Diseases in the Digital Health Era: A Translational Approach from the Lab to the Clinic. BIOTECH 2022; 11:biotech11030023. [PMID: 35892928 PMCID: PMC9326743 DOI: 10.3390/biotech11030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Translational science has been introduced as the nexus among the scientific and the clinical field, which allows researchers to provide and demonstrate that the evidence-based research can connect the gaps present between basic and clinical levels. This type of research has played a major role in the field of cardiovascular diseases, where the main objective has been to identify and transfer potential treatments identified at preclinical stages into clinical practice. This transfer has been enhanced by the intromission of digital health solutions into both basic research and clinical scenarios. This review aimed to identify and summarize the most important translational advances in the last years in the cardiovascular field together with the potential challenges that still remain in basic research, clinical scenarios, and regulatory agencies.
Collapse
|
6
|
Gyöngyösi M, Pokushalov E, Romanov A, Perin E, Hare JM, Kastrup J, Fernández-Avilés F, Sanz-Ruiz R, Mathur A, Wojakowski W, Martin-Rendon E, Pavo N, Pavo IJ, Hemetsberger R, Traxler D, Spannbauer A, Haller PM. Meta-Analysis of Percutaneous Endomyocardial Cell Therapy in Patients with Ischemic Heart Failure by Combination of Individual Patient Data (IPD) of ACCRUE and Publication-Based Aggregate Data. J Clin Med 2022; 11:jcm11113205. [PMID: 35683592 PMCID: PMC9181462 DOI: 10.3390/jcm11113205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Individual patient data (IPD)-based meta-analysis (ACCRUE, meta-analysis of cell-based cardiac studies, NCT01098591) revealed an insufficient effect of intracoronary cell-based therapy in acute myocardial infarction. Patients with ischemic heart failure (iHF) have been treated with reparative cells using percutaneous endocardial, surgical, transvenous or intracoronary cell delivery methods, with variable effects in small randomized or cohort studies. The objective of this meta-analysis was to investigate the safety and efficacy of percutaneous transendocardial cell therapy in patients with iHF. Two investigators extracted the data. Individual patient data (IPD) (n = 8 studies) and publication-based (n = 10 studies) aggregate data were combined for the meta-analysis, including patients (n = 1715) with chronic iHF. The data are reported in accordance with PRISMA guidelines. The primary safety and efficacy endpoints were all-cause mortality and changes in global ejection fraction. The secondary safety and efficacy endpoints were major adverse events, hospitalization and changes in end-diastolic and end-systolic volumes. Post hoc analyses were performed using the IPD of eight studies to find predictive factors for treatment safety and efficacy. Cell therapy was significantly (p < 0.001) in favor of survival, major adverse events and hospitalization during follow-up. A forest plot analysis showed that cell therapy presents a significant benefit of increasing ejection fraction with a mean change of 2.51% (95% CI: 0.48; 4.54) between groups and of significantly decreasing end-systolic volume. The analysis of IPD data showed an improvement in the NYHA and CCS classes. Cell therapy significantly decreased the end-systolic volume in male patients; in patients with diabetes mellitus, hypertension or hyperlipidemia; and in those with previous myocardial infarction and baseline ejection fraction ≤ 45%. The catheter-based transendocardial delivery of regenerative cells proved to be safe and effective for improving mortality and cardiac performance. The greatest benefit was observed in male patients with significant atherosclerotic co-morbidities.
Collapse
Affiliation(s)
- Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.P.); (R.H.); (D.T.); (A.S.)
- Correspondence: ; Tel.: +43-1-40400-46140
| | - Evgeny Pokushalov
- Center of the New and Modern Medical Technologies, 630090 Novosibirsk, Russia;
| | - Aleksander Romanov
- E. Meshalkin National Medical Research Center, 630055 Novosibirsk, Russia;
| | - Emerson Perin
- Stem Cell Center and Adult Cardiology, Texas Heart Institute, Houston, TX 37660, USA;
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, Cardiovascular Division, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Jens Kastrup
- Cardiology Stem Cell Centre, The Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
| | | | - Ricardo Sanz-Ruiz
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.F.-A.); (R.S.-R.)
| | - Anthony Mathur
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Wojcieh Wojakowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, 40-635 Katowice, Poland;
| | - Enca Martin-Rendon
- R&D Division, National Health Service (NHS)-Blood and Transplant, Oxford Centre, Oxford OX3 9DU, UK;
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.P.); (R.H.); (D.T.); (A.S.)
| | - Imre J. Pavo
- Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria;
| | - Rayyan Hemetsberger
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.P.); (R.H.); (D.T.); (A.S.)
| | - Denise Traxler
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.P.); (R.H.); (D.T.); (A.S.)
| | - Andreas Spannbauer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.P.); (R.H.); (D.T.); (A.S.)
| | - Paul M. Haller
- Department of Cardiology, University Heart and Vascular Center UKE Hamburg, 20246 Hamburg, Germany;
| |
Collapse
|
7
|
Cianflone E, Scalise M, Salerno N, Torella D. Cardiac stem cell therapy towards the clinic: The way forward re-starts from within. Int J Cardiol 2021; 345:105-106. [PMID: 34687806 DOI: 10.1016/j.ijcard.2021.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/14/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Nadia Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy.
| |
Collapse
|
8
|
Yamada S, Bartunek J, Behfar A, Terzic A. Mass Customized Outlook for Regenerative Heart Failure Care. Int J Mol Sci 2021; 22:11394. [PMID: 34768825 PMCID: PMC8583673 DOI: 10.3390/ijms222111394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Heart failure pathobiology is permissive to reparative intent. Regenerative therapies exemplify an emerging disruptive innovation aimed at achieving structural and functional organ restitution. However, mixed outcomes, complexity in use, and unsustainable cost have curtailed broader adoption, mandating the development of novel cardio-regenerative approaches. Lineage guidance offers a standardized path to customize stem cell fitness for therapy. A case in point is the molecular induction of the cardiopoiesis program in adult stem cells to yield cardiopoietic cell derivatives designed for heart failure treatment. Tested in early and advanced clinical trials in patients with ischemic heart failure, clinical grade cardiopoietic cells were safe and revealed therapeutic improvement within a window of treatment intensity and pre-treatment disease severity. With the prospect of mass customization, cardiopoietic guidance has been streamlined from the demanding, recombinant protein cocktail-based to a protein-free, messenger RNA-based single gene protocol to engineer affordable cardiac repair competent cells. Clinical trial biobanked stem cells enabled a systems biology deconvolution of the cardiopoietic cell secretome linked to therapeutic benefit, exposing a paracrine mode of action. Collectively, this new knowledge informs next generation regenerative therapeutics manufactured as engineered cellular or secretome mimicking cell-free platforms. Launching biotherapeutics tailored for optimal outcome and offered at mass production cost would contribute to advancing equitable regenerative care that addresses population health needs.
Collapse
Affiliation(s)
- Satsuki Yamada
- Center for Regenerative Medicine, Marriott Family Comprehensive Cardiac Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.Y.); (A.B.)
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jozef Bartunek
- Cardiovascular Center, OLV Hospital, 9300 Aalst, Belgium
| | - Atta Behfar
- Center for Regenerative Medicine, Marriott Family Comprehensive Cardiac Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.Y.); (A.B.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Marriott Family Comprehensive Cardiac Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.Y.); (A.B.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Cardiac Extracellular Matrix Hydrogel Enriched with Polyethylene Glycol Presents Improved Gelation Time and Increased On-Target Site Retention of Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms22179226. [PMID: 34502146 PMCID: PMC8431142 DOI: 10.3390/ijms22179226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022] Open
Abstract
Stem-cell-derived extracellular vesicles (EVs) have demonstrated multiple beneficial effects in preclinical models of cardiac diseases. However, poor retention at the target site may limit their therapeutic efficacy. Cardiac extracellular matrix hydrogels (cECMH) seem promising as drug-delivery materials and could improve the retention of EVs, but may be limited by their long gelation time and soft mechanical properties. Our objective was to develop and characterize an optimized product combining cECMH, polyethylene glycol (PEG), and EVs (EVs–PEG–cECMH) in an attempt to overcome their individual limitations: long gelation time of the cECMH and poor retention of the EVs. The new combined product presented improved physicochemical properties (60% reduction in half gelation time, p < 0.001, and threefold increase in storage modulus, p < 0.01, vs. cECMH alone), while preserving injectability and biodegradability. It also maintained in vitro bioactivity of its individual components (55% reduction in cellular senescence vs. serum-free medium, p < 0.001, similar to EVs and cECMH alone) and increased on-site retention in vivo (fourfold increase vs. EVs alone, p < 0.05). In conclusion, the combination of EVs–PEG–cECMH is a potential multipronged product with improved gelation time and mechanical properties, increased on-site retention, and maintained bioactivity that, all together, may translate into boosted therapeutic efficacy.
Collapse
|
10
|
Vilahur G, Nguyen PH, Badimon L. Impact of Diabetes Mellitus on the Potential of Autologous Stem Cells and Stem Cell-Derived Microvesicles to Repair the Ischemic Heart. Cardiovasc Drugs Ther 2021; 36:933-949. [PMID: 34251593 DOI: 10.1007/s10557-021-07208-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 10/20/2022]
Abstract
Ischemic heart disease remains the leading cause of morbidity and mortality worldwide. Despite the advances in medical management and catheter-based therapy, mortality remains high, as does the risk of developing heart failure. Regenerative therapies have been widely used as an alternative option to repair the damaged heart mainly because of their paracrine-related beneficial effects. Although cell-based therapy has been demonstrated as feasible and safe, randomized controlled trials and meta-analyses show little consistent benefit from treatments with adult-derived stem cells. Mounting evidence from our group and others supports that cardiovascular risk factors and comorbidities impair stem cell potential thus hampering their autologous use. This review aims to better understand the influence of diabetes on stem cell potential. For this purpose, we will first discuss the most recent advances in the mechanistic understanding of the effects of diabetes on stem cell phenotype, function, and molecular fingerprint to further elaborate on diabetes-induced alterations in stem cell extracellular vesicle profile. Although we acknowledge that multiple sources of stem or progenitor cells are used for regenerative purposes, we will focus on bone marrow hematopoietic stem/progenitor cells, mesenchymal stem cells residing in the bone marrow, and adipose tissue and briefly discuss endothelial colony-forming cells.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain.,Ciber CV - ISCIII, Madrid, Spain
| | - Phuong Hue Nguyen
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain. .,Ciber CV - ISCIII, Madrid, Spain. .,Cardiovascular Research Chair UAB, Barcelona, Spain.
| |
Collapse
|
11
|
Povsic TJ, Sanz-Ruiz R, Climent AM, Bolli R, Taylor DA, Gersh BJ, Menasché P, Perin EC, Pompilio G, Atsma DE, Badimon L, DeMaria AN, Hare JM, Henry TD, Janssens S, Kastrup J, Torella D, Traverse JH, Willerson JT, Fernández-Avilés F. Reparative cell therapy for the heart: critical internal appraisal of the field in response to recent controversies. ESC Heart Fail 2021; 8:2306-2309. [PMID: 33652498 PMCID: PMC8120359 DOI: 10.1002/ehf2.13256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/25/2021] [Indexed: 01/25/2023] Open
Abstract
The concept that cell‐based repair of myocardial injury might be possible was introduced almost two decades ago; however, the field of cardiovascular reparative medicine has been criticized as translation to clinically effective approaches has been slow. The recent retraction of a series of papers has further impacted perception of this area of research. As researchers, clinicians, and teachers in this field, we felt it incumbent to critically appraise the current state of cardiac cell repair, determine what can be learned from past mistakes, and formulate best practices for future work. This special communication summarizes an introspective assessment of what has fallen short, how to prevent similar issues, and how the field might best move forward in the service of science and patients.
Collapse
Affiliation(s)
- Thomas J Povsic
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Ricardo Sanz-Ruiz
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, CIBERCV, Madrid, Spain
| | - Andreu M Climent
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, CIBERCV, Madrid, Spain
| | - Roberto Bolli
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Doris A Taylor
- Center for Cell and Organ Biotechnology, Texas Heart Institute, Houston, TX, USA
| | - Bernard J Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Georges Pompidou European Hospital, Paris, France
| | - Emerson C Perin
- Center for Clinical Research, Texas Heart Institute, Houston, TX, USA
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit and Dept. of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Douwe E Atsma
- Faculteit der Sociale Wetenschappen, Instituut Psychologie, Gezondheids, Medische-Neuropsychologie, Leiden, The Netherlands
| | - Lina Badimon
- Cardiovascular Program (ICCC), IR Hospital de la Santa Creu i Sant Pau, CIBERCV, Barcelona, Spain
| | - Anthony N DeMaria
- Sulpizio Cardiovascular Center, UC San Diego Health, San Diego, CA, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute and Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Timothy D Henry
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, OH, USA
| | - Stefan Janssens
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Jens Kastrup
- Department of Cardiology, Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Daniele Torella
- Molecular and Cellular Cardiology LAB, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Jay H Traverse
- Minneapolis Heart Institute Foundation, Abbott Northwestern Hospital, Minneapolis, MN, USA
| | - James T Willerson
- Center for Clinical Research, Texas Heart Institute, Houston, TX, USA
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, CIBERCV, Madrid, Spain
| |
Collapse
|