1
|
De Luca M, Crisci G, Armentaro G, Cicco S, Talerico G, Bobbio E, Lanzafame L, Green CG, McLellan AG, Debiec R, Caferra P, Scicali R, Cannatà A, Israr MZ, Heaney LM, Salzano A. Endothelial Dysfunction and Heart Failure with Preserved Ejection Fraction-An Updated Review of the Literature. Life (Basel) 2023; 14:30. [PMID: 38255646 PMCID: PMC10817572 DOI: 10.3390/life14010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Heart failure (HF) is a clinical syndrome consisting of typical symptoms and signs due to structural and/or functional abnormalities of the heart, resulting in elevated intracardiac pressures and/or inadequate cardiac output. The vascular system plays a crucial role in the development and progression of HF regardless of ejection fraction, with endothelial dysfunction (ED) as one of the principal features of HF. The main ED manifestations (i.e., impaired endothelium-dependent vasodilation, increased oxidative stress, chronic inflammation, leukocyte adhesion, and endothelial cell senescence) affect the systemic and pulmonary haemodynamic and the renal and coronary circulation. The present review is aimed to discuss the contribution of ED to HF pathophysiology-in particular, HF with preserved ejection fraction-ED role in HF patients, and the possible effects of pharmacological and non-pharmacological approaches. For this purpose, relevant data from a literature search (PubMed, Scopus, EMBASE, and Medline) were reviewed. As a result, ED, assessed via venous occlusion plethysmography or flow-mediated dilation, was shown to be independently associated with poor outcomes in HF patients (e.g., mortality, cardiovascular events, and hospitalization due to worsening HF). In addition, SGLT2 inhibitors, endothelin antagonists, endothelial nitric oxide synthase cofactors, antioxidants, and exercise training were shown to positively modulate ED in HF. Despite the need for future research to better clarify the role of the vascular endothelium in HF, ED represents an interesting and promising potential therapeutic target.
Collapse
Affiliation(s)
- Mariarosaria De Luca
- Department of Translational Medical Sciences, Federico II University, 80131 Naples, Italy
- Italian Clinical Outcome Research and Reporting Program (I-CORRP), 80131 Naples, Italy
| | - Giulia Crisci
- Department of Translational Medical Sciences, Federico II University, 80131 Naples, Italy
- Italian Clinical Outcome Research and Reporting Program (I-CORRP), 80131 Naples, Italy
| | - Giuseppe Armentaro
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario di Germaneto, V.le Europa, 88100 Catanzaro, Italy
| | - Sebastiano Cicco
- Internal Medicine Unit “Guido Baccelli” and Arterial Hypertension Unit “Anna Maria Pirrelli”, Department of Precision and Regenerative Medicine and Jonic Area (DiMePReJ), University of Bari Aldo Moro, Azienda Ospedaliero-Universitaria Policlinico, 70124 Bari, Italy
| | | | - Emanuele Bobbio
- Department of Cardiology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Kuggen, 417 56 Gothenburg, Sweden
| | - Lorena Lanzafame
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Christopher G. Green
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Abbie G. McLellan
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Radek Debiec
- Department of Cardiovascular Sciences, University of Leicester, Leicester (UK), IHR Leicester Biomedical Research Centre, Groby Road, Leicester LE3 9QP, UK
| | - Paolo Caferra
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Antonio Cannatà
- Department of Cardiology, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
- Department of Cardiovascular Sciences, Faculty of Life Sciences & Medicine, King’s College, London SE1 8WA, UK
| | - Muhammad Zubair Israr
- Department of Cardiovascular Sciences, University of Leicester, Leicester (UK), IHR Leicester Biomedical Research Centre, Groby Road, Leicester LE3 9QP, UK
| | - Liam M. Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Andrea Salzano
- Cardiac Unit, AORN A Cardarelli, 80131 Naples, Italy
- Cardiac Unit, University Hospital of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| |
Collapse
|
2
|
Smart CD, Madhur MS. The immunology of heart failure with preserved ejection fraction. Clin Sci (Lond) 2023; 137:1225-1247. [PMID: 37606086 PMCID: PMC10959189 DOI: 10.1042/cs20230226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) now accounts for the majority of new heart failure diagnoses and continues to increase in prevalence in the United States. Importantly, HFpEF is a highly morbid, heterogeneous syndrome lacking effective therapies. Inflammation has emerged as a potential contributor to the pathogenesis of HFpEF. Many of the risk factors for HFpEF are also associated with chronic inflammation, such as obesity, hypertension, aging, and renal dysfunction. A large amount of preclinical evidence suggests that immune cells and their associated cytokines play important roles in mediating fibrosis, oxidative stress, metabolic derangements, and endothelial dysfunction, all potentially important processes in HFpEF. How inflammation contributes to HFpEF pathogenesis, however, remains poorly understood. Recently, a variety of preclinical models have emerged which may yield much needed insights into the causal relationships between risk factors and the development of HFpEF, including the role of specific immune cell subsets or inflammatory pathways. Here, we review evidence in animal models and humans implicating inflammation as a mediator of HFpEF and identify gaps in knowledge requiring further study. As the understanding between inflammation and HFpEF evolves, it is hoped that a better understanding of the mechanisms underlying immune cell activation in HFpEF can open up new therapeutic avenues.
Collapse
Affiliation(s)
- Charles Duncan Smart
- Department of Molecular Physiology and Biophysics,
Vanderbilt University School of Medicine, Nashville, TN, U.S.A
| | - Meena S. Madhur
- Department of Molecular Physiology and Biophysics,
Vanderbilt University School of Medicine, Nashville, TN, U.S.A
- Department of Medicine, Division of Cardiovascular
Medicine, Vanderbilt University Medical Center, Nashville, TN, U.S.A
- Department of Medicine, Division of Clinical Pharmacology,
Vanderbilt University Medical Center, Nashville, TN, U.S.A
- Vanderbilt Institute for Infection, Immunology, and
Inflammation, Nashville, TN, U.S.A
| |
Collapse
|
3
|
Maximal Exercise Improves the Levels of Endothelial Progenitor Cells in Heart Failure Patients. Curr Issues Mol Biol 2023; 45:1950-1960. [PMID: 36975495 PMCID: PMC10046939 DOI: 10.3390/cimb45030125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
The impact of exercise on the levels of endothelial progenitor cells (EPCs), a marker of endothelial repair and angiogenesis, and circulating endothelial cells (CECs), an indicator of endothelial damage, in heart failure patients is largely unknown. This study aims to evaluate the effects of a single exercise bout on the circulating levels of EPCs and CECs in heart failure patients. Thirteen patients with heart failure underwent a symptom-limited maximal cardiopulmonary exercise test to assess exercise capacity. Before and after exercise testing, blood samples were collected to quantify EPCs and CECs by flow cytometry. The circulating levels of both cells were also compared to the resting levels of 13 volunteers (age-matched group). The maximal exercise bout increased the levels of EPCs by 0.5% [95% Confidence Interval, 0.07 to 0.93%], from 4.2 × 10−3 ± 1.5 × 10−3% to 4.7 × 10−3 ± 1.8 × 10−3% (p = 0.02). No changes were observed in the levels of CECs. At baseline, HF patients presented reduced levels of EPCs compared to the age-matched group (p = 0.03), but the exercise bout enhanced circulating EPCs to a level comparable to the age-matched group (4.7 × 10−3 ± 1.8 × 10−3% vs. 5.4 × 10−3 ± 1.7 × 10−3%, respectively, p = 0.14). An acute bout of exercise improves the potential of endothelial repair and angiogenesis capacity by increasing the circulating levels of EPCs in patients with heart failure.
Collapse
|
4
|
Gevaert AB, Böhm B, Hartmann H, Goovaerts I, Stoop T, Van De Heyning CM, Beckers PJ, Baldassarri F, Mueller S, Oberhoffer R, Duvinage A, Haykowsky MJ, Wisløff U, Adams V, Pieske B, Halle M, Van Craenenbroeck EM. Effect of Training on Vascular Function and Repair in Heart Failure With Preserved Ejection Fraction. JACC. HEART FAILURE 2023; 11:454-464. [PMID: 36892488 DOI: 10.1016/j.jchf.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/16/2022] [Accepted: 12/14/2022] [Indexed: 03/05/2023]
Abstract
BACKGROUND Exercise training improves peak oxygen uptake (V̇O2peak) in heart failure with preserved ejection fraction (HFpEF). Multiple adaptations have been addressed, but the role of circulating endothelium-repairing cells and vascular function have not been well defined. OBJECTIVES The authors investigated effects of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) on vascular function and repair in HFpEF. METHODS This study is a subanalysis of the OptimEx-Clin Study randomizing patients with HFpEF (n = 180) to HIIT, MICT, or guideline control. At baseline, 3, and 12 months, the authors measured peripheral arterial tonometry (valid baseline measurement in n = 109), flow-mediated dilation (n = 59), augmentation index (n = 94), and flow cytometry (n = 136) for endothelial progenitor cells and angiogenic T cells. Abnormal values were defined as outside 90% of published sex-specific reference values. RESULTS At baseline, abnormal values (%) were observed for augmentation index in 66%, peripheral arterial tonometry in 17%, flow-mediated dilation in 25%, endothelial progenitor cells in 42%, and angiogenic T cells in 18%. These parameters did not change significantly after 3 or 12 months of HIIT or MICT. Results remained unchanged when confining analysis to patients with high adherence to training. CONCLUSIONS In patients with HFpEF, high augmentation index was common, but endothelial function and levels of endothelium-repairing cells were normal in most patients. Aerobic exercise training did not change vascular function or cellular endothelial repair. Improved vascular function did not significantly contribute to the V̇O2peak improvement after different training intensities in HFpEF, contrary to previous studies in heart failure with reduced ejection fraction and coronary artery disease. (Optimizing Exercise Training in Prevention and Treatment of Diastolic Heart Failure [OptimEx-Clin]; NCT02078947).
Collapse
Affiliation(s)
- Andreas B Gevaert
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium. https://twitter.com/AndreasGevaert
| | - Birgit Böhm
- Department of Preventive Pediatrics, Technical University of Munich, Munich, Germany
| | - Haley Hartmann
- Department Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Inge Goovaerts
- Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Tibor Stoop
- Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Caroline M Van De Heyning
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Paul J Beckers
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium; Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium
| | - Flavia Baldassarri
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Stephan Mueller
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Renate Oberhoffer
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - André Duvinage
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Mark J Haykowsky
- College of Health Sciences, Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Ulrik Wisløff
- Cardiac Exercise Research Group, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Volker Adams
- Heart Centre Dresden-University Hospital, Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Germany
| | - Burkert Pieske
- Department Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Martin Halle
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Emeline M Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| |
Collapse
|
5
|
Ferentinos P, Tsakirides C, Swainson M, Davison A, Martyn-St James M, Ispoglou T. The impact of different forms of exercise on circulating endothelial progenitor cells in cardiovascular and metabolic disease. Eur J Appl Physiol 2022. [PMID: 35022875 DOI: 10.1007/s00421-021-04876-1.pmid:35022875;pmcid:pmc8927049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
UNLABELLED Circulating endothelial progenitor cells (EPCs) contribute to vascular repair and their monitoring could have prognostic clinical value. Exercise is often prescribed for the management of cardiometabolic diseases, however, it is not fully understood how it regulates EPCs. OBJECTIVES to systematically examine the acute and chronic effects of different exercise modalities on circulating EPCs in patients with cardiovascular and metabolic disease. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS six electronic databases and reference lists of eligible studies were searched to April 2021. Thirty-six trials met the inclusion criteria including 1731 participants. Acute trials: in chronic heart failure (CHF), EPC mobilisation was acutely increased after high intensity interval or moderate intensity continuous exercise training, while findings were inconclusive after a cardiopulmonary cycling exercise test. Maximal exercise tests acutely increased EPCs in ischaemic or revascularized coronary artery disease (CAD) patients. In peripheral arterial disease (PAD), EPC levels increased up to 24 h post-exercise. In patients with compromised metabolic health, EPC mobilisation was blunted after a single exercise session. Chronic trials: in CHF and acute coronary syndrome, moderate intensity continuous protocols, with or without resistance exercise or calisthenics, increased EPCs irrespective of EPC identification phenotype. Findings were equivocal in CAD regardless of exercise mode, while in severe PAD disease EPCs increased. High intensity interval training increased EPCs in hypertensive metabolic syndrome and heart failure reduced ejection fraction. CONCLUSION the clinical condition and exercise modality influence the degree of EPC mobilisation and magnitude of EPC increases in the long term.
Collapse
Affiliation(s)
| | | | - Michelle Swainson
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Adam Davison
- Flow Cytometry Facility, Leeds Institute of Cancer and Pathology St James's University Hospital, University of Leeds, Leeds, UK
- Cytec Biosciences B.V, Amsterdam, The Netherlands
| | | | | |
Collapse
|
6
|
Weerts J, Mourmans SGJ, Barandiarán Aizpurua A, Schroen BLM, Knackstedt C, Eringa E, Houben AJHM, van Empel VPM. The Role of Systemic Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction. Biomolecules 2022; 12:biom12020278. [PMID: 35204779 PMCID: PMC8961612 DOI: 10.3390/biom12020278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a condition with increasing incidence, leading to a health care problem of epidemic proportions for which no curative treatments exist. Consequently, an urge exists to better understand the pathophysiology of HFpEF. Accumulating evidence suggests a key pathophysiological role for coronary microvascular dysfunction (MVD), with an underlying mechanism of low-grade pro-inflammatory state caused by systemic comorbidities. The systemic entity of comorbidities and inflammation in HFpEF imply that patients develop HFpEF due to systemic mechanisms causing coronary MVD, or systemic MVD. The absence or presence of peripheral MVD in HFpEF would reflect HFpEF being predominantly a cardiac or a systemic disease. Here, we will review the current state of the art of cardiac and systemic microvascular dysfunction in HFpEF (Graphical Abstract), resulting in future perspectives on new diagnostic modalities and therapeutic strategies.
Collapse
Affiliation(s)
- Jerremy Weerts
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
- Correspondence: ; Tel.: +31-43-387-7097
| | - Sanne G. J. Mourmans
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Arantxa Barandiarán Aizpurua
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Blanche L. M. Schroen
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Christian Knackstedt
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Etto Eringa
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6211 LK Maastricht, The Netherlands;
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Alfons J. H. M. Houben
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands;
| | - Vanessa P. M. van Empel
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| |
Collapse
|
7
|
Ferentinos P, Tsakirides C, Swainson M, Davison A, Martyn-St James M, Ispoglou T. The impact of different forms of exercise on circulating endothelial progenitor cells in cardiovascular and metabolic disease. Eur J Appl Physiol 2022; 122:815-860. [PMID: 35022875 PMCID: PMC8927049 DOI: 10.1007/s00421-021-04876-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) contribute to vascular repair and their monitoring could have prognostic clinical value. Exercise is often prescribed for the management of cardiometabolic diseases, however, it is not fully understood how it regulates EPCs. OBJECTIVES to systematically examine the acute and chronic effects of different exercise modalities on circulating EPCs in patients with cardiovascular and metabolic disease. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS six electronic databases and reference lists of eligible studies were searched to April 2021. Thirty-six trials met the inclusion criteria including 1731 participants. Acute trials: in chronic heart failure (CHF), EPC mobilisation was acutely increased after high intensity interval or moderate intensity continuous exercise training, while findings were inconclusive after a cardiopulmonary cycling exercise test. Maximal exercise tests acutely increased EPCs in ischaemic or revascularized coronary artery disease (CAD) patients. In peripheral arterial disease (PAD), EPC levels increased up to 24 h post-exercise. In patients with compromised metabolic health, EPC mobilisation was blunted after a single exercise session. Chronic trials: in CHF and acute coronary syndrome, moderate intensity continuous protocols, with or without resistance exercise or calisthenics, increased EPCs irrespective of EPC identification phenotype. Findings were equivocal in CAD regardless of exercise mode, while in severe PAD disease EPCs increased. High intensity interval training increased EPCs in hypertensive metabolic syndrome and heart failure reduced ejection fraction. CONCLUSION the clinical condition and exercise modality influence the degree of EPC mobilisation and magnitude of EPC increases in the long term.
Collapse
Affiliation(s)
| | | | - Michelle Swainson
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Adam Davison
- Flow Cytometry Facility, Leeds Institute of Cancer and Pathology St James's University Hospital, University of Leeds, Leeds, UK
- Cytec Biosciences B.V, Amsterdam, The Netherlands
| | | | | |
Collapse
|
8
|
Cauwenberghs N, Godderis S, Sabovčik F, Cornelissen V, Kuznetsova T. Subclinical heart remodeling and dysfunction in relation to peripheral endothelial dysfunction: A general population study. Microcirculation 2021; 28:e12731. [PMID: 34569675 DOI: 10.1111/micc.12731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
AIMS Epidemiological studies should substantiate the paradigm that endothelial dysfunction contributes to the development of heart failure with preserved ejection fraction (HFpEF). We investigated the association of cardiac remodeling and dysfunction with peripheral vasoreactivity in the general population. METHODS In 424 individuals, we echocardiographically assessed cardiac structure and function and determined digital vasomotor function by photoplethysmography (PPG) during reactive hyperemia (RH). We regressed echocardiographic indexes and abnormalities on RH ratios averaged for 30 s time intervals. We derived sex-specific peripheral vasoreactivity profiles from PPG time-series and compared their echocardiographic phenotypes. RESULTS Higher left ventricular (LV) mass index and lower E/A ratio and e' peak and left atrial reservoir strain were independently related to lower RH ratios. Participants with LV hypertrophy or diastolic dysfunction presented significantly lower RH ratios during the 30 to 240s intervals than normal counterparts. Low RH responders (n = 250) presented higher odds for LV hypertrophy (adjusted OR: 2.60; p = .0040) and LV diastolic dysfunction (adjusted OR: 2.66; p = .0037) than moderate-to-high responders (n = 174). CONCLUSION The association between subclinical heart maladaptation and decreased microvascular reactivity supports the involvement of endothelial dysfunction in HFpEF pathogenesis. Time-integrated profiling of microvascular vasoreactivity may enable early detection of HFpEF in the community.
Collapse
Affiliation(s)
- Nicholas Cauwenberghs
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Sarah Godderis
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - František Sabovčik
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Véronique Cornelissen
- Cardiovascular Exercise Physiology Unit, Department of Rehabilitation Sciences, University of Leuven, Leuven, Belgium
| | - Tatiana Kuznetsova
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Gao J, Pan X, Li G, Chatterjee E, Xiao J. Physical Exercise Protects Against Endothelial Dysfunction in Cardiovascular and Metabolic Diseases. J Cardiovasc Transl Res 2021; 15:604-620. [PMID: 34533746 PMCID: PMC8447895 DOI: 10.1007/s12265-021-10171-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022]
Abstract
Increasing evidence shows that endothelial cells play critical roles in maintaining vascular homeostasis, regulating vascular tone, inhibiting inflammatory response, suppressing lipid leakage, and preventing thrombosis. The damage or injury of endothelial cells induced by physical, chemical, and biological risk factors is a leading contributor to the development of mortal cardiovascular and cerebrovascular diseases. However, the underlying mechanism of endothelial injury remains to be elucidated. Notably, no drugs effectively targeting and mending injured vascular endothelial cells have been approved for clinical practice. There is an urgent need to understand pathways important for repairing injured vasculature that can be targeted with novel therapies. Exercise training-induced protection to endothelial injury has been well documented in clinical trials, and the underlying mechanism has been explored in animal models. This review mainly summarizes the protective effects of exercise on vascular endothelium and the recently identified potential therapeutic targets for endothelial dysfunction.
Collapse
Affiliation(s)
- Juan Gao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Xue Pan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| |
Collapse
|
10
|
Gevaert AB, Witvrouwen I, Van Craenenbroeck AH, Van Laere SJ, Boen JRA, Van de Heyning CM, Belyavskiy E, Mueller S, Winzer E, Duvinage A, Edelmann F, Beckers PJ, Heidbuchel H, Wisløff U, Pieske B, Adams V, Halle M, Van Craenenbroeck EM. miR-181c level predicts response to exercise training in patients with heart failure and preserved ejection fraction: an analysis of the OptimEx-Clin trial. Eur J Prev Cardiol 2021; 28:1722-1733. [PMID: 34508569 DOI: 10.1093/eurjpc/zwab151] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/11/2021] [Indexed: 12/12/2022]
Abstract
AIMS In patients with heart failure with preserved ejection fraction (HFpEF), exercise training improves the quality of life and aerobic capacity (peakV·O2). Up to 55% of HF patients, however, show no increase in peakV·O2 despite adequate training. We hypothesized that circulating microRNAs (miRNAs) can distinguish exercise low responders (LR) from exercise high responders (HR) among HFpEF patients. METHODS AND RESULTS We selected HFpEF patients from the Optimizing Exercise Training in Prevention and Treatment of Diastolic HF (OptimEx) study which attended ≥70% of training sessions during 3 months (n = 51). Patients were defined as HR with a change in peakV·O2 above median (6.4%), and LR as below median (n = 30 and n = 21, respectively). Clinical, ergospirometric, and echocardiographic characteristics were similar between LR and HR. We performed an miRNA array (n = 377 miRNAs) in 14 age- and sex-matched patients. A total of 10 miRNAs were upregulated in LR, of which 4 correlated with peakV·O2. Validation in the remaining 37 patients indicated that high miR-181c predicted reduced peakV·O2 response (multiple linear regression, β = -2.60, P = 0.011), and LR status (multiple logistic regression, odds ratio = 0.48, P = 0.010), independent of age, sex, body mass index, and resting heart rate. Furthermore, miR-181c decreased in LR after exercise training (P-group = 0.030, P-time = 0.048, P-interaction = 0.037). An in silico pathway analysis identified several downstream targets involved in exercise adaptation. CONCLUSIONS Circulating miR-181c is a marker of the response to exercise training in HFpEF patients. High miR-181c levels can aid in identifying LR prior to training, providing the possibility for individualized management.
Collapse
Affiliation(s)
- Andreas B Gevaert
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, 2610 Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Isabel Witvrouwen
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, 2610 Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Amaryllis H Van Craenenbroeck
- Research Group Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Steven J Van Laere
- Translational Cancer Research Unit, Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Jente R A Boen
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, 2610 Antwerp, Belgium.,Research Group Physiopharmacology, GENCOR Department, University of Antwerp, Antwerp, Belgium
| | - Caroline M Van de Heyning
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, 2610 Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Evgeny Belyavskiy
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Stephan Mueller
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Ephraim Winzer
- Heart Center Dresden - University Hospital, Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Germany
| | - André Duvinage
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Frank Edelmann
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Paul J Beckers
- Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, 2610 Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Ulrik Wisløff
- Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Volker Adams
- Heart Center Dresden - University Hospital, Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Germany
| | - Martin Halle
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Emeline M Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, 2610 Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | | |
Collapse
|
11
|
Mueller S, Winzer EB, Duvinage A, Gevaert AB, Edelmann F, Haller B, Pieske-Kraigher E, Beckers P, Bobenko A, Hommel J, Van de Heyning CM, Esefeld K, von Korn P, Christle JW, Haykowsky MJ, Linke A, Wisløff U, Adams V, Pieske B, van Craenenbroeck EM, Halle M. Effect of High-Intensity Interval Training, Moderate Continuous Training, or Guideline-Based Physical Activity Advice on Peak Oxygen Consumption in Patients With Heart Failure With Preserved Ejection Fraction: A Randomized Clinical Trial. JAMA 2021; 325:542-551. [PMID: 33560320 PMCID: PMC7873782 DOI: 10.1001/jama.2020.26812] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Endurance exercise is effective in improving peak oxygen consumption (peak V̇o2) in patients with heart failure with preserved ejection fraction (HFpEF). However, it remains unknown whether differing modes of exercise have different effects. OBJECTIVE To determine whether high-intensity interval training, moderate continuous training, and guideline-based advice on physical activity have different effects on change in peak V̇o2 in patients with HFpEF. DESIGN, SETTING, AND PARTICIPANTS Randomized clinical trial at 5 sites (Berlin, Leipzig, and Munich, Germany; Antwerp, Belgium; and Trondheim, Norway) from July 2014 to September 2018. From 532 screened patients, 180 sedentary patients with chronic, stable HFpEF were enrolled. Outcomes were analyzed by core laboratories blinded to treatment groups; however, the patients and staff conducting the evaluations were not blinded. INTERVENTIONS Patients were randomly assigned (1:1:1; n = 60 per group) to high-intensity interval training (3 × 38 minutes/week), moderate continuous training (5 × 40 minutes/week), or guideline control (1-time advice on physical activity according to guidelines) for 12 months (3 months in clinic followed by 9 months telemedically supervised home-based exercise). MAIN OUTCOMES AND MEASURES Primary end point was change in peak V̇o2 after 3 months, with the minimal clinically important difference set at 2.5 mL/kg/min. Secondary end points included changes in metrics of cardiorespiratory fitness, diastolic function, and natriuretic peptides after 3 and 12 months. RESULTS Among 180 patients who were randomized (mean age, 70 years; 120 women [67%]), 166 (92%) and 154 (86%) completed evaluation at 3 and 12 months, respectively. Change in peak V̇o2 over 3 months for high-intensity interval training vs guideline control was 1.1 vs -0.6 mL/kg/min (difference, 1.5 [95% CI, 0.4 to 2.7]); for moderate continuous training vs guideline control, 1.6 vs -0.6 mL/kg/min (difference, 2.0 [95% CI, 0.9 to 3.1]); and for high-intensity interval training vs moderate continuous training, 1.1 vs 1.6 mL/kg/min (difference, -0.4 [95% CI, -1.4 to 0.6]). No comparisons were statistically significant after 12 months. There were no significant changes in diastolic function or natriuretic peptides. Acute coronary syndrome was recorded in 4 high-intensity interval training patients (7%), 3 moderate continuous training patients (5%), and 5 guideline control patients (8%). CONCLUSIONS AND RELEVANCE Among patients with HFpEF, there was no statistically significant difference in change in peak V̇o2 at 3 months between those assigned to high-intensity interval vs moderate continuous training, and neither group met the prespecified minimal clinically important difference compared with the guideline control. These findings do not support either high-intensity interval training or moderate continuous training compared with guideline-based physical activity for patients with HFpEF. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02078947.
Collapse
Affiliation(s)
- Stephan Mueller
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Ephraim B. Winzer
- Heart Center Dresden–University Hospital, Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Germany
| | - André Duvinage
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Andreas B. Gevaert
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Frank Edelmann
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Bernhard Haller
- Institute of Medical Informatics, Statistics and Epidemiology, Technical University of Munich, Munich, Germany
| | - Elisabeth Pieske-Kraigher
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Paul Beckers
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Anna Bobenko
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Jennifer Hommel
- Heart Center Dresden–University Hospital, Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Germany
| | - Caroline M. Van de Heyning
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Katrin Esefeld
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Pia von Korn
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Jeffrey W. Christle
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Mark J. Haykowsky
- Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Axel Linke
- Heart Center Dresden–University Hospital, Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Germany
| | - Ulrik Wisløff
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Volker Adams
- Heart Center Dresden–University Hospital, Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Emeline M. van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Martin Halle
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
12
|
Boen JRA, Gevaert AB, De Keulenaer GW, Van Craenenbroeck EM, Segers VFM. The role of endothelial miRNAs in myocardial biology and disease. J Mol Cell Cardiol 2019; 138:75-87. [PMID: 31756323 DOI: 10.1016/j.yjmcc.2019.11.151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
Abstract
The myocardium is a highly structured pluricellular tissue which is governed by an intricate network of intercellular communication. Endothelial cells are the most abundant cell type in the myocardium and exert crucial roles in both healthy myocardium and during myocardial disease. In the last decade, microRNAs have emerged as new actors in the regulation of cellular function in almost every cell type. Here, we review recent evidence on the regulatory function of different microRNAs expressed in endothelial cells, also called endothelial microRNAs, in healthy and diseased myocardium. Endothelial microRNA emerged as modulators of angiogenesis in the myocardium, they are implicated in the paracrine role of endothelial cells in regulating cardiac contractility and homeostasis, and interfere in the crosstalk between endothelial cells and cardiomyocytes.
Collapse
Affiliation(s)
- Jente R A Boen
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Andreas B Gevaert
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium.
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, ZNA Middelheim Hospital, Lindendreef 1, 2020 Antwerp, Belgium.
| | - Emeline M Van Craenenbroeck
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium.
| | - Vincent F M Segers
- Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium; Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
13
|
Gevaert AB, Boen JRA, Segers VF, Van Craenenbroeck EM. Heart Failure With Preserved Ejection Fraction: A Review of Cardiac and Noncardiac Pathophysiology. Front Physiol 2019; 10:638. [PMID: 31191343 PMCID: PMC6548802 DOI: 10.3389/fphys.2019.00638] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is one of the largest unmet clinical needs in 21st-century cardiology. It is a complex disorder resulting from the influence of several comorbidities on the endothelium. A derangement in nitric oxide bioavailability leads to an intricate web of physiological abnormalities in the heart, blood vessels, and other organs. In this review, we examine the contribution of cardiac and noncardiac factors to the development of HFpEF. We zoom in on recent insights on the role of comorbidities and microRNAs in HFpEF. Finally, we address the potential of exercise training, which is currently the only available therapy to improve aerobic capacity and quality of life in HFpEF patients. Unraveling the underlying mechanisms responsible for this improvement could lead to new biomarkers and therapeutic targets for HFpEF.
Collapse
Affiliation(s)
- Andreas B Gevaert
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium.,Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Jente R A Boen
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium.,Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Vincent F Segers
- Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium.,Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Emeline M Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium.,Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|