1
|
Schopp EM, Okwara L, Tichnell C, Turriff A, Murray B, Barth AS, Calkins H, Jamal L, James CA. Patient Perceptions of Emerging Gene Therapies for Arrhythmogenic Right Ventricular Cardiomyopathy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004759. [PMID: 39611272 DOI: 10.1161/circgen.124.004759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND No disease-specific therapy currently exists for arrhythmogenic right ventricular cardiomyopathy (ARVC), a progressive cardiogenetic condition conferring elevated risk for ventricular arrhythmias, heart failure, and sudden cardiac death. Emerging gene therapies have the potential to fill this gap. However, little is known about how adults with ARVC, or any other inherited cardiomyopathy or arrhythmia syndrome, appraise the risks and benefits of gene therapy research and which considerations may influence their decisions about clinical trial participation. METHODS Twenty adults with clinically diagnosed and gene-positive ARVC participated in semi-structured interviews that explored perceptions of gene therapy and hypothetical decision-making for gene therapy clinical trial participation. Interview transcripts were qualitatively coded and analyzed. RESULTS Participants expressed enthusiasm for gene therapy with varied levels of personal interest in trial participation. Although clinical severity appeared to be associated with an elevated interest in early trial participation, participants anticipated weighing both personal and trial-specific factors including life stage, trial stage, risks, benefits, participation burden, study leadership, and anticipated cost of future gene therapy. Adaptation to living with ARVC and involvement in the ARVC patient community were also relevant to decision-making about trial participation. Potential ethical concerns included unquestioning trust in clinical teams collaborating on industry-led trials and vulnerability of those recently diagnosed or with high perceived severity of ARVC symptoms. CONCLUSIONS Several characteristics of the individual and trial warrant consideration during the informed consent process. Insights from this study may affect trial planning and communication with participants who have inherited cardiac conditions.
Collapse
Affiliation(s)
- Emma M Schopp
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD (E.M.S., A.T.)
- Department of Health, Behavior, and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (E.M.S.)
- Military Cardiovascular Outcomes Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD (E.M.S.)
| | - Leonore Okwara
- Division of Cardiology, Johns Hopkins University, Baltimore, MD (L.O., C.T., B.M., A.S.B., H.C., C.A.J.)
| | - Crystal Tichnell
- Division of Cardiology, Johns Hopkins University, Baltimore, MD (L.O., C.T., B.M., A.S.B., H.C., C.A.J.)
| | - Amy Turriff
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD (E.M.S., A.T.)
| | - Brittney Murray
- Division of Cardiology, Johns Hopkins University, Baltimore, MD (L.O., C.T., B.M., A.S.B., H.C., C.A.J.)
| | - Andreas S Barth
- Division of Cardiology, Johns Hopkins University, Baltimore, MD (L.O., C.T., B.M., A.S.B., H.C., C.A.J.)
| | - Hugh Calkins
- Division of Cardiology, Johns Hopkins University, Baltimore, MD (L.O., C.T., B.M., A.S.B., H.C., C.A.J.)
| | - Leila Jamal
- Genetics Branch, Center for Cancer Research, National Cancer Institute (L.J.)
- Department of Bioethics, NIH, Bethesda, MD (L.J.)
| | - Cynthia A James
- Division of Cardiology, Johns Hopkins University, Baltimore, MD (L.O., C.T., B.M., A.S.B., H.C., C.A.J.)
| |
Collapse
|
2
|
Peñarroya A, Lorca R, Rodríguez Reguero JJ, Gómez J, Avanzas P, Tejedor JR, Fernandez AF, Fraga MF. Epigenetic Study of Cohort of Monozygotic Twins With Hypertrophic Cardiomyopathy Due to MYBPC3 (Cardiac Myosin-Binding Protein C). J Am Heart Assoc 2024; 13:e035777. [PMID: 39470061 DOI: 10.1161/jaha.124.035777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/12/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy is an autosomal dominant cardiac disease. The mechanisms that determine its variable expressivity are poorly understood. Epigenetics could play a crucial role in bridging the gap between genotype and phenotype by orchestrating the interplay between the environment and the genome regulation. In this study we aimed to establish a possible correlation between the peripheral blood DNA methylation patterns and left ventricular hypertrophy severity in patients with hypertrophic cardiomyopathy, evaluating the potential impact of lifestyle variables and providing a biological context to the observed changes. METHODS AND RESULTS Methylation data were obtained from peripheral blood samples (Infinium MethylationEPIC BeadChip arrays). We employed multiple pair-matched models to extract genomic positions whose methylation correlates with the degree of left ventricular hypertrophy in 3 monozygotic twin pairs carrying the same founder pathogenic variant (MYBPC3 p.Gly263Ter). This model enables the isolation of the environmental influence, beyond age, on DNA methylation changes by removing the genetic background. Our results revealed a more anxious personality among more severely affected individuals. We identified 56 differentially methylated positions that exhibited moderate, proportional changes in methylation associated with left ventricular hypertrophy. These differentially methylated positions were enriched in regions regulated by repressor histone marks and tended to cluster at genes involved in left ventricular hypertrophy development, such as HOXA5, TRPC3, UCN3, or PLSCR2, suggesting that changes in peripheral blood may reflect myocardial alterations. CONCLUSIONS We present a unique pair-matched model, based on 3 monozygotic twin pairs carrying the same founder pathogenic variant and different phenotypes. This study provides further evidence of the pivotal role of epigenetics in hypertrophic cardiomyopathy variable expressivity.
Collapse
Affiliation(s)
- Alfonso Peñarroya
- Nanomaterials and Nanotechnology Research Center (CINN) Spanish National Research Council (CSIC) El Entrego Asturias Spain
- Health Research Institute of the Principality of Asturias (ISPA) Oviedo Asturias Spain
| | - Rebeca Lorca
- Health Research Institute of the Principality of Asturias (ISPA) Oviedo Asturias Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular Hospital Universitario Central Asturias Oviedo Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs) Madrid Spain
- Departamento de Biología Funcional Universidad de Oviedo Oviedo Spain
| | - José Julián Rodríguez Reguero
- Health Research Institute of the Principality of Asturias (ISPA) Oviedo Asturias Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular Hospital Universitario Central Asturias Oviedo Spain
| | - Juan Gómez
- Health Research Institute of the Principality of Asturias (ISPA) Oviedo Asturias Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular Hospital Universitario Central Asturias Oviedo Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs) Madrid Spain
| | - Pablo Avanzas
- Health Research Institute of the Principality of Asturias (ISPA) Oviedo Asturias Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular Hospital Universitario Central Asturias Oviedo Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs) Madrid Spain
- Departamento de Medicina Universidad de Oviedo Oviedo Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) Oviedo Spain
| | - Juan Ramon Tejedor
- Nanomaterials and Nanotechnology Research Center (CINN) Spanish National Research Council (CSIC) El Entrego Asturias Spain
- Health Research Institute of the Principality of Asturias (ISPA) Oviedo Asturias Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER) Madrid Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo Oviedo Asturias Spain
| | - Agustín F Fernandez
- Nanomaterials and Nanotechnology Research Center (CINN) Spanish National Research Council (CSIC) El Entrego Asturias Spain
- Health Research Institute of the Principality of Asturias (ISPA) Oviedo Asturias Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER) Madrid Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo Oviedo Asturias Spain
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN) Spanish National Research Council (CSIC) El Entrego Asturias Spain
- Health Research Institute of the Principality of Asturias (ISPA) Oviedo Asturias Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER) Madrid Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo Oviedo Asturias Spain
| |
Collapse
|
3
|
Satish T, Hong KN, Kaski JP, Greenberg BH. Challenges in Cardiomyopathy Gene Therapy Clinical Trial Design. JACC. HEART FAILURE 2024:S2213-1779(24)00721-2. [PMID: 39545889 DOI: 10.1016/j.jchf.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 11/17/2024]
Abstract
Gene therapy has emerged as a possible treatment for progressive, debilitating Mendelian cardiomyopathies with limited therapeutic options. This paper arises from discussions at the 2023 Cardiovascular Clinical Trialists Forum and highlights several challenges relevant to gene therapy clinical trials, including low prevalence and high phenotypic heterogeneity of Mendelian cardiomyopathies, outcome selection complexities and resulting regulatory uncertainty, and immune responses to the adeno-associated viral vectors that are being used in ongoing studies. Avenues to address these challenges such as natural history studies, external controls, novel regulatory pathways, and immunosuppression are discussed. Relevant cases of recent therapy approvals are highlighted. Ultimately, this work aims to broadly frame discussions on and provide potential future avenues for clinical trial design for rare cardiomyopathy gene therapies.
Collapse
Affiliation(s)
- Tejus Satish
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kimberly N Hong
- University of California San Diego Health, San Diego, California, USA
| | - Juan Pablo Kaski
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Barry H Greenberg
- University of California San Diego Health, San Diego, California, USA.
| |
Collapse
|
4
|
Chen N, Zhang L, Zhong Z, Zhang W, Gong Q, Xu N, Zhou Y, Wang J, Zheng P. PARP9 affects myocardial function through TGF-β/Smad axis and pirfenidone. BIOMOLECULES & BIOMEDICINE 2024; 24:1199-1215. [PMID: 39213416 PMCID: PMC11379006 DOI: 10.17305/bb.2024.10246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 09/04/2024]
Abstract
Cardiac arrhythmias are often linked to the overactivity of cardiac fibroblasts (CFs). Investigating the impact of poly (ADP-ribose) polymerase 9 (PARP9) on Angiotensin II (Ang II)-induced fibroblast activation and the therapeutic effects of pirfenidone (PFD) offers valuable insights into cardiac arrhythmias. This study utilized weighted gene co-expression network analysis (WGCNA), differential gene expression (DEG) analysis, protein-protein interaction (PPI), and receiver operating characteristic (ROC) analysis on the GSE42955 dataset to identify the hub gene with a significant diagnostic value. The ImmuCellAI tool revealed an association between PARP9 and immune cell infiltration. Our in vitro assessments focused on the influence of PFD on myofibroblast differentiation, transforming growth factor-beta (TGF-β) expression, and Ang II-induced proliferation and migration in CFs. Additionally, we explored the impact on fibrosis markers and the TGF-β/Smad signaling pathway in the context of PARP9 overexpression. Analysis of the GSE42955 dataset revealed PARP9 as a central gene with high clinical diagnostic value, linked to seven types of immune cells. The in vitro studies demonstrated that PFD significantly mitigates Ang II-induced CF proliferation, migration, and fibrosis. It also reduces Ang II-induced PARP9 expression and decreases fibrosis markers, including TGF-β, collagen I, collagen III, and α-SMA. Notably, PARP9 overexpression can partially counteract PFD's inhibitory effects on CFs and modify the expression of fibronectin, CTGF, α-SMA, collagen I, collagen III, MMP2, MMP9, TGF-β, and p-Smad2/3 in the TGF-β/Smad signaling pathway. In summary, our findings suggest that PFD effectively counteracts the adverse effects of Ang II-induced CF proliferation and fibrosis, and modulates the TGF-β/Smad signaling pathway and PARP9 expression. This identifies a potential therapeutic approach for managing myocardial fibrosis.
Collapse
Affiliation(s)
- Nannan Chen
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lianzhi Zhang
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhang Zhong
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjia Zhang
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qunlin Gong
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nan Xu
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yimeng Zhou
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiahong Wang
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Pengxiang Zheng
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Arnautu DA, Cozma D, Lala IR, Arnautu SF, Tomescu MC, Andor M. Risk Assessment and Personalized Treatment Options in Inherited Dilated Cardiomyopathies: A Narrative Review. Biomedicines 2024; 12:1643. [PMID: 39200108 PMCID: PMC11351202 DOI: 10.3390/biomedicines12081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Considering the worldwide impact of heart failure, it is crucial to develop approaches that can help us comprehend its root cause and make accurate predictions about its outcome. This is essential for lowering the suffering and death rates connected with this widespread illness. Cardiomyopathies frequently result from genetic factors, and the study of heart failure genetics is advancing quickly. Dilated cardiomyopathy (DCM) is the most prevalent kind of cardiomyopathy, encompassing both genetic and nongenetic abnormalities. It is distinguished by the enlargement of the left ventricle or both ventricles, accompanied by reduced contractility. The discovery of the molecular origins and subsequent awareness of the molecular mechanism is broadening our knowledge of DCM development. Additionally, it emphasizes the complicated nature of DCM and the necessity to formulate several different strategies to address the diverse underlying factors contributing to this disease. Genetic variants that can be transmitted from one generation to another can be a significant contributor to causing family or sporadic hereditary DCM. Genetic variants also play a significant role in determining susceptibility for acquired triggers for DCM. The genetic causes of DCM can have a large range of phenotypic expressions. It is crucial to select patients who are most probable to gain advantages from genetic testing. The purpose of this research is to emphasize the significance of identifying genetic DCM, the relationships between genotype and phenotype, risk assessment, and personalized therapy for both those affected and their relatives. This approach is expected to gain importance once treatment is guided by genotype-specific advice and disease-modifying medications.
Collapse
Affiliation(s)
- Diana-Aurora Arnautu
- Multidisciplinary Heart Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.-A.A.); (M.-C.T.)
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dragos Cozma
- Department of Cardiology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ioan-Radu Lala
- Department of Cardiology, Western University Vasile Goldis, 310025 Arad, Romania
| | - Sergiu-Florin Arnautu
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Mirela-Cleopatra Tomescu
- Multidisciplinary Heart Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.-A.A.); (M.-C.T.)
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Minodora Andor
- Multidisciplinary Heart Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.-A.A.); (M.-C.T.)
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
6
|
Falcão-Pires I, Ferreira AF, Trindade F, Bertrand L, Ciccarelli M, Visco V, Dawson D, Hamdani N, Van Laake LW, Lezoualc'h F, Linke WA, Lunde IG, Rainer PP, Abdellatif M, Van der Velden J, Cosentino N, Paldino A, Pompilio G, Zacchigna S, Heymans S, Thum T, Tocchetti CG. Mechanisms of myocardial reverse remodelling and its clinical significance: A scientific statement of the ESC Working Group on Myocardial Function. Eur J Heart Fail 2024; 26:1454-1479. [PMID: 38837573 DOI: 10.1002/ejhf.3264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbimortality in Europe and worldwide. CVD imposes a heterogeneous spectrum of cardiac remodelling, depending on the insult nature, that is, pressure or volume overload, ischaemia, arrhythmias, infection, pathogenic gene variant, or cardiotoxicity. Moreover, the progression of CVD-induced remodelling is influenced by sex, age, genetic background and comorbidities, impacting patients' outcomes and prognosis. Cardiac reverse remodelling (RR) is defined as any normative improvement in cardiac geometry and function, driven by therapeutic interventions and rarely occurring spontaneously. While RR is the outcome desired for most CVD treatments, they often only slow/halt its progression or modify risk factors, calling for novel and more timely RR approaches. Interventions triggering RR depend on the myocardial insult and include drugs (renin-angiotensin-aldosterone system inhibitors, beta-blockers, diuretics and sodium-glucose cotransporter 2 inhibitors), devices (cardiac resynchronization therapy, ventricular assist devices), surgeries (valve replacement, coronary artery bypass graft), or physiological responses (deconditioning, postpartum). Subsequently, cardiac RR is inferred from the degree of normalization of left ventricular mass, ejection fraction and end-diastolic/end-systolic volumes, whose extent often correlates with patients' prognosis. However, strategies aimed at achieving sustained cardiac improvement, predictive models assessing the extent of RR, or even clinical endpoints that allow for distinguishing complete from incomplete RR or adverse remodelling objectively, remain limited and controversial. This scientific statement aims to define RR, clarify its underlying (patho)physiologic mechanisms and address (non)pharmacological options and promising strategies to promote RR, focusing on the left heart. We highlight the predictors of the extent of RR and review the prognostic significance/impact of incomplete RR/adverse remodelling. Lastly, we present an overview of RR animal models and potential future strategies under pre-clinical evaluation.
Collapse
Affiliation(s)
- Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Ana Filipa Ferreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Fábio Trindade
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Luc Bertrand
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle of Cardiovascular Research, Brussels, Belgium
- WELBIO, Department, WEL Research Institute, Wavre, Belgium
| | - Michele Ciccarelli
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Valeria Visco
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Dana Dawson
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Department of Physiology, Cardiovascular Research Institute Maastricht University Maastricht, Maastricht, the Netherlands
| | - Linda W Van Laake
- Division Heart and Lungs, Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank Lezoualc'h
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
- KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Peter P Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| | - Mahmoud Abdellatif
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | | | - Nicola Cosentino
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alessia Paldino
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulio Pompilio
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Stephane Heymans
- Department of Cardiology, CARIM Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- Centre of Cardiovascular Research, University of Leuven, Leuven, Belgium
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences (DISMET), Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| |
Collapse
|
7
|
Beghini A, Sammartino AM, Papp Z, von Haehling S, Biegus J, Ponikowski P, Adamo M, Falco L, Lombardi CM, Pagnesi M, Savarese G, Metra M, Tomasoni D. 2024 update in heart failure. ESC Heart Fail 2024. [PMID: 38806171 DOI: 10.1002/ehf2.14857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024] Open
Abstract
In the last years, major progress has occurred in heart failure (HF) management. The 2023 ESC focused update of the 2021 HF guidelines introduced new key recommendations based on the results of the last years of science. First, two drugs, sodium-glucose co-transporter-2 (SGLT2) inhibitors and finerenone, a novel nonsteroidal, selective mineralocorticoid receptor antagonist (MRA), are recommended for the prevention of HF in patients with diabetic chronic kidney disease (CKD). Second, SGLT2 inhibitors are now recommended for the treatment of HF across the entire left ventricular ejection fraction spectrum. The benefits of quadruple therapy in patients with HF with reduced ejection fraction (HFrEF) are well established. Its rapid and early up-titration along with a close follow-up with frequent clinical and laboratory re-assessment after an episode of acute HF (the so-called 'high-intensity care' strategy) was associated with better outcomes in the STRONG-HF trial. Patients experiencing an episode of worsening HF might require a fifth drug, vericiguat. In the STEP-HFpEF-DM and STEP-HFpEF trials, semaglutide 2.4 mg once weekly administered for 1 year decreased body weight and significantly improved quality of life and the 6 min walk distance in obese patients with HF with preserved ejection fraction (HFpEF) with or without a history of diabetes. Further data on safety and efficacy, including also hard endpoints, are needed to support the addition of acetazolamide or hydrochlorothiazide to a standard diuretic regimen in patients hospitalized due to acute HF. In the meantime, PUSH-AHF supported the use of natriuresis-guided diuretic therapy. Further options and most recent evidence for the treatment of HF, including specific drugs for cardiomyopathies (i.e., mavacamten in hypertrophic cardiomyopathy and tafamidis in transthyretin cardiac amyloidosis), device therapies, cardiac contractility modulation and percutaneous treatment of valvulopathies, with the recent finding from the TRILUMINATE Pivotal trial, are also reviewed in this article.
Collapse
Affiliation(s)
- Alberto Beghini
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Antonio Maria Sammartino
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Jan Biegus
- Institute of Heart Diseases, Wrocław Medical University, Wrocław, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wrocław Medical University, Wrocław, Poland
| | - Marianna Adamo
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Luigi Falco
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital Naples, Naples, Italy
| | - Carlo Mario Lombardi
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Matteo Pagnesi
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Gianluigi Savarese
- Cardiology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Heart and Vascular and Neuro Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Marco Metra
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Daniela Tomasoni
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
- Cardiology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Steen H, Montenbruck M, Kallifatidis A, André F, Frey N, Kelle S, Korosoglou G. Multi-parametric non-contrast cardiac magnetic resonance for the differentiation between cardiac amyloidosis and hypertrophic cardiomyopathy. Clin Res Cardiol 2024; 113:469-480. [PMID: 38095711 DOI: 10.1007/s00392-023-02348-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/20/2023] [Indexed: 02/22/2024]
Abstract
AIM To evaluate the ability of fast strain-encoded (SENC) cardiac magnetic resonance (CMR) derived myocardial strain and native T1 mapping to discriminate between hypertrophic cardiomyopathy (HCM) and cardiac amyloidosis. METHODS Ninety nine patients (57 with hypertrophic cardiomyopathy and 42 with cardiac amyloidosis) were systematically analysed. LV-ejection fraction, LV-mass index, septal wall thickness and native T1 mapping values were assessed. In addition, global circumferential and longitudinal strain and segmental circumferential and longitudinal strain in basal, mid-ventricular, and apical segments were calculated. A ratio was built by dividing native T1 values by basal segmental strain (T1-to-basal segmental strain ratio). RESULTS Myocardial strain was equally distributed in apical and basal segments in HCM patients, whereas an apical sparing with less impaired apical strain was noticed in cardiac amyloidosis (apical-to-basal-ratio of 1.01 ± 0.23 versus 1.20 ± 0.28, p < 0.001). T1 values were significantly higher in amyloidosis compared to HCM patients (1170.7 ± 66.4 ms versus 1078.3 ± 57.4ms, p < 0.001). The T1-to-basal segmental strain ratio exhibited high accuracy for the differentiation between the two clinical entities (Sensitivity = 85%, Specificity = 77%, AUC = 0.90, 95% CI = 0.81-0.95, p < 0.001). Multivariable analysis showed that age and the T1-to-basal-strain-ratio were the most robust factors for the differentiation between HCM and cardiac amyloidosis. CONCLUSION The T1-to-basal-segmental strain ratio, combining information from segmental circumferential and longitudinal strain and native T1 mapping aids the differentiation between HCM and cardiac amyloidosis with high accuracy and within a fast CMR protocol, obviating the need for contrast agent administration.
Collapse
Affiliation(s)
- Henning Steen
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg, Heidelberg, Germany
| | | | | | - Florian André
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg, Heidelberg, Germany
| | - Sebastian Kelle
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Grigorios Korosoglou
- Departments of Cardiology, Vascular Medicine and Pneumology, GRN Hospital Weinheim, Roentgenstrasse 1, 69469, Weinheim, Germany.
- Weinheim Imaging Center, GRN Hospital Weinheim, Hector Foundation, Weinheim, Germany.
| |
Collapse
|
9
|
Chen P, Yawar W, Farooqui AR, Ali S, Lathiya N, Ghous Z, Sultan R, Alhomrani M, Alghamdi SA, Almalki AA, Alghamdi AA, ALSuhaymi N, Razi Ul Islam Hashmi M, Hameed Y. Transcriptomics data integration and analysis to uncover hallmark genes in hypertrophic cardiomyopathy. Am J Transl Res 2024; 16:637-653. [PMID: 38463581 PMCID: PMC10918138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Hypertrophic cardiomyopathy (HCM) is a heterogeneous disease that mainly affects the myocardium. In the current study, we aim to explore HCM-related hub genes through the analysis of differentially expressed genes (DEGs) between HCM and normal sample groups. METHODS The GSE68316 and GSE36961 expression profiles were obtained from the Gene Expression Omnibus (GEO) database for the identification of DEGs, to explore hub genes, and to perform their expression analysis. Clinical HCM and control tissue samples were taken for expression and promoter methylation validation analysis via RNA-sequencing (RNA-seq) and targeted bisulfite sequencing (bisulfite-seq) analyses. Then, other different bioinformatics tools were employed to perform STRING, lncRNA-miRNA-mRNA regulatory networks, gene enrichment, and drug prediction analyses. RESULTS In total, the top 20 DEGs, including 10 up-regulated and 10 down-regulated, were obtained from GSE68316. Out of the 20 DEGs, we subsequently identified the 8 most important hub genes including 5 up-regulated genes (EPB42, UQCRH, CA1, PFDN5, and LSM5) and 3 down-regulated genes (RPS24, TNS1, and RPL26). Expression and promoter methylation dysregulation of these genes were further validated on clinical HCM samples paired with controls. Next, we further investigated hub genes' regulatory 6 miRNAs (has-mir-1-3p, has-mir-129-5p, has-mir-16-5p, has-mir-23b-3p, has-mir-27-3p, and has-mir-182-5p) and miRNAs regulatory 4 lncRNAs (NUTMB2-AS1, NEAT1, XIST, and GABPB1-AS1) in this study via the lncRNA-cricRNA-miRNA-mRNA regulatory network. Later on, gene enrichment analysis revealed that hub genes were enriched in various important pathways including Nitrogen metabolism, Ribosome, RNA degradation, Cardiac muscle contraction, and Coronavirus disease, etc. Finally, the drug prediction analysis highlighted different potential candidate drugs for altering the expression of hub genes in the treatment of HCM. CONCLUSION In summary, the identification of key hub genes and their enrichment analysis in the current study may shed light on the mechanisms behind the occurrence and development of HCM.
Collapse
Affiliation(s)
- Peng Chen
- Department of Cardiovascular Medicine, Taiyuan Central HospitalTaiyuan 030000, Shanxi, China
| | - Warda Yawar
- Department of Emergency, PPHISindh, Karachi 74800, Pakistan
| | | | - Saqib Ali
- Department of Computer Science, University of AgricultureFaisalabad 38040, Pakistan
| | - Nida Lathiya
- Department of Physiology, Jinnah Medical and Dental College, Sohail UniversityKarachi 74800, Pakistan
| | - Zeeshan Ghous
- Department of Cardiology, Punjab Institute of CardiologyLahore 54000, Pakistan
| | - Rizwana Sultan
- Department of Pathology, Faculty of Veterinary and Animal Sciences, Cholistan University of Veterinary and Animal SciencesBahawalpur, Pakistan
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
- Research Centre for Health Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Saleh A Alghamdi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Abdulraheem Ali Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Ahmad A Alghamdi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Naif ALSuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences - AlQunfudah, Umm Al-Qura UniversityMekkah, Saudi Arabia
| | | | - Yasir Hameed
- Department of Biotechnology, Institute of Biochemistry Biotechnology and Bioinformatics, The Islamia University of BahawalpurBahawalpur 63100, Pakistan
| |
Collapse
|
10
|
Goldie FC, Lee MMY, Coats CJ, Nordin S. Advances in Multi-Modality Imaging in Hypertrophic Cardiomyopathy. J Clin Med 2024; 13:842. [PMID: 38337535 PMCID: PMC10856479 DOI: 10.3390/jcm13030842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal growth of the myocardium with myofilament disarray and myocardial hyper-contractility, leading to left ventricular hypertrophy and fibrosis. Where culprit genes are identified, they typically relate to cardiomyocyte sarcomere structure and function. Multi-modality imaging plays a crucial role in the diagnosis, monitoring, and risk stratification of HCM, as well as in screening those at risk. Following the recent publication of the first European Society of Cardiology (ESC) cardiomyopathy guidelines, we build on previous reviews and explore the roles of electrocardiography, echocardiography, cardiac magnetic resonance (CMR), cardiac computed tomography (CT), and nuclear imaging. We examine each modality's strengths along with their limitations in turn, and discuss how they can be used in isolation, or in combination, to facilitate a personalized approach to patient care, as well as providing key information and robust safety and efficacy evidence within new areas of research.
Collapse
Affiliation(s)
- Fraser C. Goldie
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (F.C.G.); (M.M.Y.L.); (C.J.C.)
| | - Matthew M. Y. Lee
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (F.C.G.); (M.M.Y.L.); (C.J.C.)
| | - Caroline J. Coats
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (F.C.G.); (M.M.Y.L.); (C.J.C.)
- Department of Cardiology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Sabrina Nordin
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (F.C.G.); (M.M.Y.L.); (C.J.C.)
- Department of Cardiology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| |
Collapse
|
11
|
Keil L, Berisha F, Ritter S, Skibowski J, Subramanian H, Nikolaev VO, Kubisch C, Woitschach R, Fabritz L, Twerenbold R, Blankenberg S, Weidemann S, Zeller T, Kirchhof P, Reichart D, Magnussen C. Multimodal characterization of dilated cardiomyopathy: Geno- And Phenotyping of PrImary Cardiomyopathy (GrAPHIC). ESC Heart Fail 2024; 11:541-549. [PMID: 37964758 PMCID: PMC10804161 DOI: 10.1002/ehf2.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 11/16/2023] Open
Abstract
AIMS Cardiomyopathies (CMPs) are a heterogeneous group of diseases that are defined by structural and functional abnormalities of the cardiac muscle. Dilated cardiomyopathy (DCM), the most common CMP, is defined by left ventricular dilation and impaired contractility and represents a common cause of heart failure. Different phenotypes result from various underlying genetic and acquired causes with variable effects on disease development and progression, prognosis, and response to medical treatment. Current treatment algorithms do not consider these different aetiologies, due to lack of insights into treatable drivers of cardiac failure in patients with DCM. Our study aims to precisely phenotype and genotype the various subtypes of DCM and hereby lay the foundation for individualized therapy. METHODS AND RESULTS The Geno- And Phenotyping of PrImary Cardiomyopathy (GrAPHIC) is a currently ongoing prospective observational monocentric cohort study that recruits patients with DCM after exclusion of other causes such as coronary artery disease, valvular dysfunction, myocarditis, exposure to toxins, and peripartum CMP. Patients are enrolled at our heart failure outpatient clinic or during hospitalization at the University Hospital Hamburg. Clinical parameters, multimodal imaging and functional assessment, cardiac biopsies, and blood samples are obtained to enable an integrated genomic, functional, and biomarker analysis. CONCLUSIONS The GrAPHIC will contribute to a better understanding of the heterogeneous nature of primary CMPs focusing on DCM and provide improved prognostic approaches and more individualized therapies.
Collapse
Affiliation(s)
- Laura Keil
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Filip Berisha
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- Institute of Experimental Cardiovascular ResearchUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Stella Ritter
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Johanna Skibowski
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Hariharan Subramanian
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- Institute of Experimental Cardiovascular ResearchUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Viacheslav O. Nikolaev
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- Institute of Experimental Cardiovascular ResearchUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christian Kubisch
- Institute of Human GeneticsUniversity Hospital Hamburg‐EppendorfHamburgGermany
| | - Rixa Woitschach
- Institute of Human GeneticsUniversity Hospital Hamburg‐EppendorfHamburgGermany
| | - Larissa Fabritz
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- University Centre of Cardiovascular Science, UKE HamburgHamburgGermany
| | - Raphael Twerenbold
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- University Centre of Cardiovascular Science, UKE HamburgHamburgGermany
| | - Stefan Blankenberg
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
| | - Sören Weidemann
- Department of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Tanja Zeller
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- University Centre of Cardiovascular Science, UKE HamburgHamburgGermany
| | - Paulus Kirchhof
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
| | - Daniel Reichart
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
| | - Christina Magnussen
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
| |
Collapse
|
12
|
Polovina M, Tschöpe C, Rosano G, Metra M, Crea F, Mullens W, Bauersachs J, Sliwa K, de Boer RA, Farmakis D, Thum T, Corrado D, Bayes-Genis A, Bozkurt B, Filippatos G, Keren A, Skouri H, Moura B, Volterrani M, Abdelhamid M, Ašanin M, Krljanac G, Tomić M, Savarese G, Adamo M, Lopatin Y, Chioncel O, Coats AJS, Seferović PM. Incidence, risk assessment and prevention of sudden cardiac death in cardiomyopathies. Eur J Heart Fail 2023; 25:2144-2163. [PMID: 37905371 DOI: 10.1002/ejhf.3076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023] Open
Abstract
Cardiomyopathies are a significant contributor to cardiovascular morbidity and mortality, mainly due to the development of heart failure and increased risk of sudden cardiac death (SCD). Despite improvement in survival with contemporary treatment, SCD remains an important cause of mortality in cardiomyopathies. It occurs at a rate ranging between 0.15% and 0.7% per year (depending on the cardiomyopathy), which significantly surpasses SCD incidence in the age- and sex-matched general population. The risk of SCD is affected by multiple factors including the aetiology, genetic basis, age, sex, physical exertion, the extent of myocardial disease severity, conduction system abnormalities, and electrical instability, as measured by various metrics. Over the past decades, the knowledge on the mechanisms and risk factors for SCD has substantially improved, allowing for a better-informed risk stratification. However, unresolved issues still challenge the guidance of SCD prevention in patients with cardiomyopathies. In this review, we aim to provide an in-depth discussion of the contemporary concepts pertinent to understanding the burden, risk assessment and prevention of SCD in cardiomyopathies (dilated, non-dilated left ventricular, hypertrophic, arrhythmogenic right ventricular, and restrictive). The review first focuses on SCD incidence in cardiomyopathies and then summarizes established and emerging risk factors for life-threatening arrhythmias/SCD. Finally, it discusses validated approaches to the risk assessment and evidence-based measures for SCD prevention in cardiomyopathies, pointing to the gaps in evidence and areas of uncertainties that merit future clarification.
Collapse
Affiliation(s)
- Marija Polovina
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Carsten Tschöpe
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Cardiovascular Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Marco Metra
- Cardiology, ASST Spedali Civili, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Filippo Crea
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Wilfried Mullens
- Hasselt University, Hasselt, Belgium
- Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Karen Sliwa
- Cape Heart Institute. Division of Cardiology, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rudolf A de Boer
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Domenico Corrado
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Antoni Bayes-Genis
- Servicio de Cardiología, Hospital Universitari Germans Trias i Pujol, CIBERCV, Universidad Autónoma de Barcelona, Badalona, Spain
| | - Biykem Bozkurt
- Section of Cardiology, Winters Center for Heart Failure, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Department of Cardiology, Attikon University Hospital, Athens, Greece
| | - Andre Keren
- Hadassah-Hebrew University Medical Center Jerusalem, Clalit Services District of Jerusalem, Jerusalem, Israel
| | - Hadi Skouri
- Division of Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Brenda Moura
- Armed Forces Hospital, Porto, & Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maurizio Volterrani
- IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Rome, Italy
| | - Magdy Abdelhamid
- Department of Cardiovascular Medicine, Faculty of Medicine, Kasr Al Ainy, Cairo University, Giza, Egypt
| | - Milika Ašanin
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Gordana Krljanac
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Milenko Tomić
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Gianluigi Savarese
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Marianna Adamo
- Cardiology, ASST Spedali Civili, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Yuri Lopatin
- Volgograd Medical University, Cardiology Centre, Volgograd, Russian Federation
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. Dr. C.C. Iliescu', Bucharest, Romania
- University for Medicine and Pharmacy 'Carol Davila', Bucharest, Romania
| | | | - Petar M Seferović
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
13
|
Tomasoni D, Adamo M, Metra M. November 2023 at a glance: Focus on cardiogenic shock, post-discharge outcomes and cardiomyopathies. Eur J Heart Fail 2023; 25:1887-1890. [PMID: 38091255 DOI: 10.1002/ejhf.3096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Daniela Tomasoni
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Marianna Adamo
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Marco Metra
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
14
|
Seferović PM, Polovina M, Rosano G, Bozkurt B, Metra M, Heymans S, Mullens W, Bauersachs J, Sliwa K, de Boer RA, Farmakis D, Thum T, Olivotto I, Rapezzi C, Linhart A, Corrado D, Tschöpe C, Milinković I, Bayes Genis A, Filippatos G, Keren A, Ašanin M, Krljanac G, Maksimović R, Skouri H, Ben Gal T, Moura B, Volterrani M, Abdelhamid M, Lopatin Y, Chioncel O, Coats AJS. State-of-the-art document on optimal contemporary management of cardiomyopathies. Eur J Heart Fail 2023; 25:1899-1922. [PMID: 37470300 DOI: 10.1002/ejhf.2979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
Cardiomyopathies represent significant contributors to cardiovascular morbidity and mortality. Over the past decades, a progress has occurred in characterization of the genetic background and major pathophysiological mechanisms, which has been incorporated into a more nuanced diagnostic approach and risk stratification. Furthermore, medications targeting core disease processes and/or their downstream adverse effects have been introduced for several cardiomyopathies. Combined with standard care and prevention of sudden cardiac death, these novel and emerging targeted therapies offer a possibility of improving the outcomes in several cardiomyopathies. Therefore, the aim of this document is to summarize practical approaches to the treatment of cardiomyopathies, which includes the evidence-based novel therapeutic concepts and established principles of care, tailored to the individual patient aetiology and clinical presentation of the cardiomyopathy. The scope of the document encompasses contemporary treatment of dilated, hypertrophic, restrictive and arrhythmogenic cardiomyopathy. It was based on an expert consensus reached at the Heart Failure Association online Workshop, held on 18 March 2021.
Collapse
Affiliation(s)
- Petar M Seferović
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Marija Polovina
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | | | - Biykem Bozkurt
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Marco Metra
- Cardiology, ASST Spedali Civili, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Stephane Heymans
- Department of Cardiology, CARIM, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wilfried Mullens
- Hasselt University, Hasselt, Belgium
- Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Karen Sliwa
- Cape Heart Institute, Division of Cardiology, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rudolf A de Boer
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children's Hospital and Careggi University Hospital, Florence, Italy
| | - Claudio Rapezzi
- Cardiology Centre, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Aleš Linhart
- Second Department of Medicine-Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Domenico Corrado
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Carsten Tschöpe
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Centre for Cardiovascular Research, Berlin, Germany
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ivan Milinković
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Antoni Bayes Genis
- Servicio de Cardiología, Hospital Universitari Germans Trias i Pujol, CIBERCV, Universidad Autónoma de Barcelona, Badalona, Spain
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Department of Cardiology, Attikon University Hospital, Athens, Greece
| | - Andre Keren
- Heart Institute, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Milika Ašanin
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Gordana Krljanac
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Ružica Maksimović
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Center for Radiology and Magnetic Resonance, University Clinical Center of Serbia, Belgrade, Serbia
| | - Hadi Skouri
- Division of Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tuvia Ben Gal
- Heart Failure Unit, Cardiology Department, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Brenda Moura
- Armed Forces Hospital, Porto, & Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maurizio Volterrani
- IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Rome, Italy
| | - Magdy Abdelhamid
- Department of Cardiovascular Medicine, Faculty of Medicine, Kasr Al Ainy, Cairo University, Giza, Egypt
| | - Yuri Lopatin
- Volgograd Medical University, Cardiology Centre, Volgograd, Russian Federation
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. Dr. C.C. Iliescu' Bucharest; University for Medicine and Pharmacy 'Carol Davila' Bucharest, Bucharest, Romania
| | | |
Collapse
|
15
|
Palmieri G, D’Ambrosio MF, Correale M, Brunetti ND, Santacroce R, Iacoviello M, Margaglione M. The Role of Genetics in the Management of Heart Failure Patients. Int J Mol Sci 2023; 24:15221. [PMID: 37894902 PMCID: PMC10607512 DOI: 10.3390/ijms242015221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Over the last decades, the relevance of genetics in cardiovascular diseases has expanded, especially in the context of cardiomyopathies. Its relevance extends to the management of patients diagnosed with heart failure (HF), given its capacity to provide invaluable insights into the etiology of cardiomyopathies and identify individuals at a heightened risk of poor outcomes. Notably, the identification of an etiological genetic variant necessitates a comprehensive evaluation of the family lineage of the affected patients. In the future, these genetic variants hold potential as therapeutic targets with the capability to modify gene expression. In this complex setting, collaboration among cardiologists, specifically those specializing in cardiomyopathies and HF, and geneticists becomes paramount to improving individual and family health outcomes, as well as therapeutic clinical results. This review is intended to offer geneticists and cardiologists an updated perspective on the value of genetic research in HF and its implications in clinical practice.
Collapse
Affiliation(s)
- Gianpaolo Palmieri
- School of Cardiology, Department of Medical and Surgical Sciences, University of Foggia, 70122 Foggia, Italy; (G.P.); (M.C.); (N.D.B.)
| | - Maria Francesca D’Ambrosio
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.F.D.); (R.S.); (M.M.)
| | - Michele Correale
- School of Cardiology, Department of Medical and Surgical Sciences, University of Foggia, 70122 Foggia, Italy; (G.P.); (M.C.); (N.D.B.)
| | - Natale Daniele Brunetti
- School of Cardiology, Department of Medical and Surgical Sciences, University of Foggia, 70122 Foggia, Italy; (G.P.); (M.C.); (N.D.B.)
| | - Rosa Santacroce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.F.D.); (R.S.); (M.M.)
| | - Massimo Iacoviello
- University Cardiology Unit, Polyclinic Hospital of Bari, 70124 Bari, Italy
| | - Maurizio Margaglione
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.F.D.); (R.S.); (M.M.)
| |
Collapse
|
16
|
Arbelo E, Protonotarios A, Gimeno JR, Arbustini E, Barriales-Villa R, Basso C, Bezzina CR, Biagini E, Blom NA, de Boer RA, De Winter T, Elliott PM, Flather M, Garcia-Pavia P, Haugaa KH, Ingles J, Jurcut RO, Klaassen S, Limongelli G, Loeys B, Mogensen J, Olivotto I, Pantazis A, Sharma S, Van Tintelen JP, Ware JS, Kaski JP. 2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J 2023; 44:3503-3626. [PMID: 37622657 DOI: 10.1093/eurheartj/ehad194] [Citation(s) in RCA: 547] [Impact Index Per Article: 273.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
|
17
|
Crotti L, Brugada P, Calkins H, Chevalier P, Conte G, Finocchiaro G, Postema PG, Probst V, Schwartz PJ, Behr ER. From gene-discovery to gene-tailored clinical management: 25 years of research in channelopathies and cardiomyopathies. Europace 2023; 25:euad180. [PMID: 37622577 PMCID: PMC10450790 DOI: 10.1093/europace/euad180] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 08/26/2023] Open
Abstract
In the early nineties, few years before the birth of Europace, the clinical and scientific world of familial arrhythmogenic conditions was revolutionized by the identification of the first disease-causing genes. The explosion of genetic studies over a 15-year period led to the discovery of major disease-causing genes in practically all channelopathies and cardiomyopathies, bringing insight into the pathophysiological mechanisms of these conditions. The birth of next generation sequencing allowed a further step forward and other significant genes, as CALM1-3 in channelopathies and FLN C and TTN in cardiomyopathies were identified. Genotype-phenotype studies allowed the implementation of the genetic results in diagnosis, risk stratification, and therapeutic management with a different level of evidence in different arrhythmogenic conditions. The influence of common genetic variants, i.e. SNPs, on disease manifestation was proved in mid-twenties, and in the last 10 years with the advent of genome-wide association studies performed in familial arrhythmogenic diseases, the concept of polygenic risk score has been consolidated. Now, we are at the start of another amazing phase, i.e. the initiation of first gene therapy clinical trials.
Collapse
Affiliation(s)
- Lia Crotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Piazza dell'Ateneo Nuovo, 1 - 20126, Italy
- IRCCS Istituto Auxologico Italiano, Department of Cardiology, Cardiomyopathy Unit, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Piazzale Brescia, 20, 20149 Milan, Italy
| | - Pedro Brugada
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Laarbeeklaan 101, Brussels 1090, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philippe Chevalier
- Neuromyogene Institute, Claude Bernard University, Lyon 1, Lyon, France
- Service de Rythmologie, Hospices Civils de Lyon, Lyon, France
| | - Giulio Conte
- Division of Cardiology, Istituto Cardiocentro Ticino, Ente Cantonale Ospedaliero, Lugano, Switzerland
| | - Gherardo Finocchiaro
- Cardiovascular Sciences Research Centre, St. George’s, University of London, London, UK
| | - Pieter G Postema
- Department of Cardiology, Amsterdam University Medical Centers, location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Vincent Probst
- Centre Hospitalier Universitaire Nantes, Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Peter J Schwartz
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy
| | - Elijah R Behr
- Cardiology Section, Institute of Molecular and Clinical Sciences, St. George's, University of London, London SW17 0RE, UK
- Department of Cardiology, Mayo Clinic Healthcare, 15 Portland Pl, London W1B 1PT, UK
- Department of Cardiology, St. George's University Hospitals NHS Foundation Trust, London SW17 0QT
| |
Collapse
|
18
|
Muniyandi P, O’Hern C, Popa MA, Aguirre A. Biotechnological advances and applications of human pluripotent stem cell-derived heart models. Front Bioeng Biotechnol 2023; 11:1214431. [PMID: 37560538 PMCID: PMC10407810 DOI: 10.3389/fbioe.2023.1214431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
In recent years, significant biotechnological advancements have been made in engineering human cardiac tissues and organ-like models. This field of research is crucial for both basic and translational research due to cardiovascular disease being the leading cause of death in the developed world. Additionally, drug-associated cardiotoxicity poses a major challenge for drug development in the pharmaceutical and biotechnological industries. Progress in three-dimensional cell culture and microfluidic devices has enabled the generation of human cardiac models that faithfully recapitulate key aspects of human physiology. In this review, we will discuss 3D pluripotent stem cell (PSC)-models of the human heart, such as engineered heart tissues and organoids, and their applications in disease modeling and drug screening.
Collapse
Affiliation(s)
- Priyadharshni Muniyandi
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Colin O’Hern
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Mirel Adrian Popa
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
19
|
Buongiorno AL, Blandino A, Bianchi F, Masi AS, Pierri A, Mabritto B, Bongioanni S, Grossi S, Mascia G, Porto I, Musumeci G. Effectiveness of 2014 ESC HCM-Risk-SCD score in prediction of appropriate implantable-cardioverter-defibrillator shocks. J Cardiovasc Med (Hagerstown) 2023; 24:313-314. [PMID: 36957982 DOI: 10.2459/jcm.0000000000001458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Affiliation(s)
- Antonia L Buongiorno
- Cardiology Department, Azienda Ospedaliera Ordine Mauriziano Umberto I, Turin
- Cardiovascular Disease Unit, Cardiothoracic and Vascular Department, IRCCS Ospedale Policlinico San Martino, Genova
| | - Alessandro Blandino
- Cardiology Department, Azienda Ospedaliera Ordine Mauriziano Umberto I, Turin
| | - Francesca Bianchi
- Cardiology Department, Azienda Ospedaliera Ordine Mauriziano Umberto I, Turin
| | - Andrea S Masi
- Cardiology Department, Azienda Ospedaliera Ordine Mauriziano Umberto I, Turin
| | - Alessandro Pierri
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI)
- Department of Medical Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Barbara Mabritto
- Cardiology Department, Azienda Ospedaliera Ordine Mauriziano Umberto I, Turin
| | - Sergio Bongioanni
- Cardiology Department, Azienda Ospedaliera Ordine Mauriziano Umberto I, Turin
| | - Stefano Grossi
- Cardiology Department, Azienda Ospedaliera Ordine Mauriziano Umberto I, Turin
| | - Giuseppe Mascia
- Cardiovascular Disease Unit, Cardiothoracic and Vascular Department, IRCCS Ospedale Policlinico San Martino, Genova
| | - Italo Porto
- Cardiovascular Disease Unit, Cardiothoracic and Vascular Department, IRCCS Ospedale Policlinico San Martino, Genova
| | - Giuseppe Musumeci
- Cardiology Department, Azienda Ospedaliera Ordine Mauriziano Umberto I, Turin
| |
Collapse
|
20
|
Paul C, Peters S, Perrin M, Fatkin D, Amerena J. Non-ischaemic dilated cardiomyopathy: recognising the genetic links. Intern Med J 2023; 53:178-185. [PMID: 36043846 DOI: 10.1111/imj.15921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022]
Abstract
The landscape of genetically related cardiac disease continues to evolve. Heritable genetic variants can be a primary cause of familial or sporadic dilated cardiomyopathy (DCM). There is also increasing recognition that genetic variation is an important determinant of susceptibility to acquired causes of DCM. Genetic forms of DCM can show a wide variety of phenotypic manifestations. Identifying patients who are most likely to benefit from genetic testing is paramount. The objective of this review is to highlight the importance of recognising genetic DCM, key genotype-phenotype correlations and the value of genetic testing in clinical management for both the individual and their family. This is likely to become more relevant as management strategies continue to be refined with genotype-specific recommendations and disease-modifying therapies.
Collapse
Affiliation(s)
- Caitlin Paul
- Department of Cardiology, University Hospital Geelong, Geelong, Victoria, Australia.,Department of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Stacey Peters
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Department of Genomic Medicine, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Mark Perrin
- Department of Cardiology, University Hospital Geelong, Geelong, Victoria, Australia.,Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.,School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, New South Wales, Australia.,Cardiology Department, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - John Amerena
- Department of Cardiology, University Hospital Geelong, Geelong, Victoria, Australia.,Department of Medicine, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
21
|
Tomasoni D, Adamo M, Metra M. February 2023 at a glance: focus on pathophysiology and treatment. Eur J Heart Fail 2023; 25:135-138. [PMID: 36823990 DOI: 10.1002/ejhf.2806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/22/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Affiliation(s)
- Daniela Tomasoni
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Marianna Adamo
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Marco Metra
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
22
|
Dominguez F, Cabrera E. Mavacamten in obstructive hypertrophic cardiomyopathy - Are beta-blockers blocking part of its shine? Eur J Heart Fail 2023; 25:271-273. [PMID: 36597820 DOI: 10.1002/ejhf.2768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
- Fernando Dominguez
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Eva Cabrera
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Madrid, Madrid, Spain
| |
Collapse
|
23
|
Gaar-Humphreys KR, van den Brink A, Wekking M, Asselbergs FW, van Steenbeek FG, Harakalova M, Pei J. Targeting lipid metabolism as a new therapeutic strategy for inherited cardiomyopathies. Front Cardiovasc Med 2023; 10:1114459. [PMID: 36760574 PMCID: PMC9907444 DOI: 10.3389/fcvm.2023.1114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Inherited cardiomyopathies caused by pathological genetic variants include multiple subtypes of heart disease. Advances in next-generation sequencing (NGS) techniques have allowed for the identification of numerous genetic variants as pathological variants. However, the disease penetrance varies among mutated genes. Some can be associated with more than one disease subtype, leading to a complex genotype-phenotype relationship in inherited cardiomyopathies. Previous studies have demonstrated disrupted metabolism in inherited cardiomyopathies and the importance of metabolic adaptations in disease onset and progression. In addition, genotype- and phenotype-specific metabolic alterations, especially in lipid metabolism, have been revealed. In this mini-review, we describe the metabolic changes that are associated with dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), which account for the largest proportion of inherited cardiomyopathies. We also summarize the affected expression of genes involved in fatty acid oxidation (FAO) in DCM and HCM, highlighting the potential of PPARA-targeting drugs as FAO modulators in treating patients with inherited cardiomyopathies.
Collapse
Affiliation(s)
- Karen R. Gaar-Humphreys
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alyssa van den Brink
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mark Wekking
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Folkert W. Asselbergs
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Health Data Research United Kingdom and Institute of Health Informatics, University College London, London, United Kingdom
| | - Frank G. van Steenbeek
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Magdalena Harakalova
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
| | - Jiayi Pei
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
| |
Collapse
|
24
|
Mechanism based therapies enable personalised treatment of hypertrophic cardiomyopathy. Sci Rep 2022; 12:22501. [PMID: 36577774 PMCID: PMC9797561 DOI: 10.1038/s41598-022-26889-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiomyopathies have unresolved genotype-phenotype relationships and lack disease-specific treatments. Here we provide a framework to identify genotype-specific pathomechanisms and therapeutic targets to accelerate the development of precision medicine. We use human cardiac electromechanical in-silico modelling and simulation which we validate with experimental hiPSC-CM data and modelling in combination with clinical biomarkers. We select hypertrophic cardiomyopathy as a challenge for this approach and study genetic variations that mutate proteins of the thick (MYH7R403Q/+) and thin filaments (TNNT2R92Q/+, TNNI3R21C/+) of the cardiac sarcomere. Using in-silico techniques we show that the destabilisation of myosin super relaxation observed in hiPSC-CMs drives disease in virtual cells and ventricles carrying the MYH7R403Q/+ variant, and that secondary effects on thin filament activation are necessary to precipitate slowed relaxation of the cell and diastolic insufficiency in the chamber. In-silico modelling shows that Mavacamten corrects the MYH7R403Q/+ phenotype in agreement with hiPSC-CM experiments. Our in-silico model predicts that the thin filament variants TNNT2R92Q/+ and TNNI3R21C/+ display altered calcium regulation as central pathomechanism, for which Mavacamten provides incomplete salvage, which we have corroborated in TNNT2R92Q/+ and TNNI3R21C/+ hiPSC-CMs. We define the ideal characteristics of a novel thin filament-targeting compound and show its efficacy in-silico. We demonstrate that hybrid human-based hiPSC-CM and in-silico studies accelerate pathomechanism discovery and classification testing, improving clinical interpretation of genetic variants, and directing rational therapeutic targeting and design.
Collapse
|
25
|
Cimino G, Pancaldi E, Tomasoni D, Lombardi CM, Metra M, Adamo M. Updates in heart failure: sodium glucose co-transporter 2 inhibitors and beyond – major changes are coming. J Cardiovasc Med (Hagerstown) 2022; 23:761-769. [PMID: 36349941 DOI: 10.2459/jcm.0000000000001409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prevalence of heart failure is increasing worldwide mainly due to the ageing of the population and the improvement in diagnosis and treatment. In recent years, huge progress has been made in the management of heart failure patients. A new definition of chronic heart failure based on left ventricular ejection fraction and its possible trajectories has been reported. New drug classes have been introduced for the treatment of chronic heart failure. In particular, the prognostic benefit of sodium glucose co-transporter 2 inhibitors was demonstrated across all the heart failure phenotypes. Therapies for patients with advanced heart failure (long-term mechanical circulatory supports and heart transplantation) are now indicated also in the case of mild-to-moderate symptoms but with high risk of progression. In patients with acute heart failure, monitoring of urinary sodium and the use of acetazolamide may lead to better decongestion. Importantly, pre- and postdischarge assessment should lead to optimal treatment. Devices and telemonitoring can also be of help. Cardiovascular and noncardiovascular comorbidities are major determinants of the clinical course and need proper management. This review will summarize these important advances.
Collapse
|
26
|
Avkiran M. CureHeart wins Big Beat Challenge, a £30 million research award from the British Heart Foundation. Eur Heart J 2022; 43:4450-4452. [PMID: 36151852 PMCID: PMC9637421 DOI: 10.1093/eurheartj/ehac510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
27
|
Novel Therapies for the Treatment of Cardiac Fibrosis Following Myocardial Infarction. Biomedicines 2022; 10:biomedicines10092178. [PMID: 36140279 PMCID: PMC9496565 DOI: 10.3390/biomedicines10092178] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Cardiac fibrosis is a common pathological consequence of most myocardial diseases. It is associated with the excessive accumulation of extracellular matrix proteins as well as fibroblast differentiation into myofibroblasts in the cardiac interstitium. This structural remodeling often results in myocardial dysfunctions such as arrhythmias and impaired systolic function in patients with heart conditions, ultimately leading to heart failure and death. An understanding of the precise mechanisms of cardiac fibrosis is still limited due to the numerous signaling pathways, cells, and mediators involved in the process. This review article will focus on the pathophysiological processes associated with the development of cardiac fibrosis. In addition, it will summarize the novel strategies for anti-fibrotic therapies such as epigenetic modifications, miRNAs, and CRISPR technologies as well as various medications in cellular and animal models.
Collapse
|
28
|
Tomasoni D, Adamo M, Metra M. March 2022 at a glance: focus on medical therapy, prevention and comorbidities. Eur J Heart Fail 2022; 24:403-405. [PMID: 35384200 DOI: 10.1002/ejhf.2226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/22/2021] [Accepted: 05/06/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Daniela Tomasoni
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Marianna Adamo
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Marco Metra
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|