1
|
Chang MF, Samson R, Pandey A, Le Jemtel TH. Therapeutic appraisal in protracted heart failure. Am J Med Sci 2025:S0002-9629(25)00915-2. [PMID: 39894164 DOI: 10.1016/j.amjms.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Data from pivotal randomized controlled trials established the four pillars of guideline-directed medical therapy in heart failure with reduced ejection fraction. The randomized controlled trials enrolled stable patients with New York Heart Association functional class II-III and a low incidence of cardiovascular death and hospitalization for heart failure. Whether the four pillars retain therapeutic value when a patient's symptoms worsen and life expectancy decreases has received scarce attention. We review the observational studies that point to the fading benefit of neurohormonal modulation and cardiac afterload reduction in the late stages of cardiovascular or renal diseases. We then propose a pragmatic approach for collecting evidence-based data on sequential withdrawal of the four pillars in patients with heart failure and reduced ejection fraction after years of guideline-directed medical therapy.
Collapse
Affiliation(s)
- Marjorie Flores Chang
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA 70112, United States
| | - Rohan Samson
- Advanced Heart Failure Therapies Program, University of Louisville Health-Jewish Hospital, 201 Abraham Flexner Way, Suite 1001, Louisville, KY 40202, United States
| | - Amitabh Pandey
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA 70112, United States; Department of Medicine, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, United States
| | - Thierry H Le Jemtel
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA 70112, United States.
| |
Collapse
|
2
|
Fernando MB, Ferreira I, Lourenço P. Admission and discharge sodium: Chloride ratio in acute heart failure - The importance of electrolytes. Int J Cardiol 2024; 417:132528. [PMID: 39251073 DOI: 10.1016/j.ijcard.2024.132528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Chloride has prognostic implications in heart failure (HF). The sodium:chloride (Na:Cl) ratio gathers information of both ions. OBJECTIVES To study the prognostic impact of Na:Cl ratio in acute HF. METHODS We retrospectively analysed patients included in an acute HF cohort in 2009-2010. PRIMARY ENDPOINT all-cause mortality. FOLLOW-UP 1-year from admission to study the impact of admission Na:Cl ratio; 1-year post-discharge to study the discharge ratio impact. ROC curves of the association of Na, Cl, and the Na:Cl ratio with 1-year mortality were determined and the AUC compared. The association of Na:Cl ratio with mortality was assessed in multivariate analyses. RESULTS We studied 616 patients. Median admission Na:Cl ratio = 1.34 (1.31-1.38). During 1-year since admission, 229 patients died, AUC for death-association of admission Na, Cl and Na:Cl ratio = 0.42 (0.38-0.47), 0.39 (0.35-0.44) and 0.58 (0.53-0.63), respectively, with significant difference between Na:Cl ratio curve and the others. When admission Na:Cl ratio ≥ 1.34, the multivariate-adjusted death-risk was 1.41 (1.04-1.89); 1.32 (1.04-1.68), per each 0.1 increase in ratio. In-hospital death rate was 4.1 %, median discharge Na:Cl ratio = 1.40 (1.37-1.45). During 1-year post-discharge, 205 patients (34.9 %) died; AUC for Na, Cl and Na:Cl ratio: 0.45 (0.40-0.50), 0.41 (0.36-0.46) and 0.57 (0.52-0.62), with differences between Na:Cl ratio curve and the others. When discharge Na:Cl ratio ≥ 1.43 (percentile 66.7), the adjusted-HR of death was 1.43 (1.04-1.97), p = 0.03, 1.54 (1.23-1.92) per 0.1 increase. CONCLUSIONS Elevated Na:Cl ratio is independently associated with all-cause death. Per each 0.1 increase in Na:Cl ratio at admission and discharged, there was a 32 % and 54 % higher risk, respectively.
Collapse
Affiliation(s)
| | - Inês Ferreira
- Internal Medicine Department, Centro Hospitalar Universitário São João, Portugal
| | - Patrícia Lourenço
- Internal Medicine Department, Centro Hospitalar Universitário São João, Portugal; Faculty of Medicine, Porto University, Department of Medicine, Portugal.
| |
Collapse
|
3
|
Kurisu S, Fujiwara H. Efficacy of Sacubitril/Valsartan in a Patient With Heart Failure and Impaired Secretion of Atrial Natriuretic Peptide Due to Long-Standing Persistent Atrial Fibrillation. Cureus 2024; 16:e71844. [PMID: 39559600 PMCID: PMC11571103 DOI: 10.7759/cureus.71844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Atrial natriuretic peptide (ANP) is a circulating hormone released from the atria in response to wall stretch and volume overload in the setting of heart failure. When atrial fibrillation (AF) becomes long-standing persistent, ANP secretion in response to volume overload is impaired due to degenerative changes of the atria. Here, we report a case of heart failure with preserved ejection fraction and impaired ANP secretion due to long-standing AF. N-terminal pro-brain natriuretic peptide (NT-proBNP) level was elevated (269 pg/mL), whereas the increase in ANP level was marginal (46.1 pg/mL), suggesting impaired ANP secretion due to long-standing AF. Valsartan (80 mg/day) was replaced with sacubitril/valsartan (100 mg/day) without changing other medications. Administration of sacubitril/valsartan was effective in improving the patient's symptoms, such as dyspnea and edema, and reducing NT-proBNP level by increasing endogenous ANP level from 46.1 pg/mL to 117 pg/mL in the first four weeks. This case highlights the possibility of impaired ANP secretion in response to volume overload as a predictor of the diuretic effect of sacubitril/valsartan in heart failure. This may lead to individualized treatment for each patient with heart failure based on natriuretic peptide profiles.
Collapse
Affiliation(s)
- Satoshi Kurisu
- Department of Cardiology, National Hospital Organization (NHO) Hiroshimanishi Medical Center, Otake, JPN
| | - Hitoshi Fujiwara
- Department of Cardiology, National Hospital Organization (NHO) Hiroshimanishi Medical Center, Otake, JPN
| |
Collapse
|
4
|
Liu Y, Lu CY, Zheng Y, Zhang YM, Qian LL, Li KL, Tse G, Wang RX, Liu T. Role of angiotensin receptor-neprilysin inhibitor in diabetic complications. World J Diabetes 2024; 15:867-875. [PMID: 38766431 PMCID: PMC11099356 DOI: 10.4239/wjd.v15.i5.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/31/2023] [Accepted: 03/25/2024] [Indexed: 05/10/2024] Open
Abstract
Diabetes mellitus is a prevalent disorder with multi-system manifestations, causing a significant burden in terms of disability and deaths globally. Angio-tensin receptor-neprilysin inhibitor (ARNI) belongs to a class of medications for treating heart failure, with the benefits of reducing hospitalization rates and mortality. This review mainly focuses on the clinical and basic investigations related to ARNI and diabetic complications, discussing possible physiological and molecular mechanisms, with insights for future applications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Cun-Yu Lu
- Department of Cardiology, Xuzhou No. 1 Peoples Hospital, Xuzhou 221005, Jiangsu Province, China
| | - Yi Zheng
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yu-Min Zhang
- Department of Cardiology, Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi 214062, Jiangsu Province, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
| | - Ku-Lin Li
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
| | - Gary Tse
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
- School of Nursing and Health Studies, Metropolitan University, Hong Kong 999077, China
- Kent and Medway Medical School, Kent CT2 7NT, Canterbury, United Kingdom
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
| | - Tong Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
5
|
Colombo PC, Castagna F, Onat D, Wong KY, Harxhi A, Hayashi Y, Friedman RA, Pinsino A, Ladanyi A, Mebazaa A, Jelic S, Arrigo M, Lejemtel TH, Papapanou P, Sabbah HN, Schmidt AM, Yuzefpolskaya M, Demmer RT. Experimentally Induced Peripheral Venous Congestion Exacerbates Inflammation, Oxidative Stress, and Neurohormonal and Endothelial Cell Activation in Patients With Systolic Heart Failure. J Card Fail 2024; 30:580-591. [PMID: 37625581 PMCID: PMC10884348 DOI: 10.1016/j.cardfail.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Venous congestion (VC) is a hallmark of symptomatic heart failure (HF) requiring hospitalization; however, its role in the pathogenesis of HF progression remains unclear. We investigated whether peripheral VC exacerbates inflammation, oxidative stress and neurohormonal and endothelial cell (EC) activation in patients with HF with reduced ejection fraction (HFrEF). METHODS AND RESULTS Two matched groups of patients with HFrEF and with no peripheral VC vs without recent HF hospitalization were studied. We modeled peripheral VC by inflating a cuff around the dominant arm, targeting ∼ 30 mmHg increase in venous pressure (venous stress test [VST]). Blood and ECs were sampled before and after 90 minutes of VST. We studied 44 patients (age 53 ± 12 years, 32% female). Circulating endothelin-1, tumor necrosis factor-α, interleukin-6, isoprostane, angiotensin II (ang-2), angiopoietin-2, vascular cell adhesion molecule-1, and CD146 significantly increased after the VST. Enhanced endothelin-1 and angiopoietin-2 responses to the VST were present in patients with vs without recent hospitalization and were prospectively associated with incident HF-related events; 6698 messenger ribonucleic acid (mRNA probe sets were differentially expressed in ECs after VST. CONCLUSIONS Experimental VC exacerbates inflammation, oxidative stress, neurohormonal and EC activation and promotes unfavorable transcriptome remodeling in ECs of patients with HFrEF. A distinct biological sensitivity to VC appears to be associated with high risk for HF progression.
Collapse
Affiliation(s)
- Paolo C Colombo
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York, USA.
| | - Francesco Castagna
- Department of Medicine, Division of Cardiology, Montefiore Medical Center, New York, New York, USA
| | - Duygu Onat
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ka Yuk Wong
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ante Harxhi
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Yacki Hayashi
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Richard A Friedman
- Herbert Irving Comprehensive Cancer Center Columbia University, New York, New York, USA
| | - Alberto Pinsino
- Department of Anesthesia, Division of Critical Care, Montefiore Medical Center, New York, New York, USA
| | - Annamaria Ladanyi
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Alexander Mebazaa
- Department of Anesthesiology and Critical Care Medicine, AP-HP Saint Louis and Lariboisière University Hospitals, Paris, France
| | - Sanja Jelic
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Thierry H Lejemtel
- Section of Cardiology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Panos Papapanou
- Department of Periodontology Columbia University Irving Medical Center, New York, New York, USA
| | - Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ann Marie Schmidt
- Department of Medicine, Division of Endocrinology, New York University, New York, New York, USA
| | - Melana Yuzefpolskaya
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ryan T Demmer
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA; and Department of Epidemiology, Mailman School of Public Health Columbia University, New York, New York, USA
| |
Collapse
|
6
|
Катамадзе НН, Пигарова ЕА, Дзеранова ЛК, Мокрышева НГ. [Features of water-electrolyte balance in persons of the older age group]. PROBLEMY ENDOKRINOLOGII 2024; 69:28-36. [PMID: 38311992 PMCID: PMC10848185 DOI: 10.14341/probl13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 02/06/2024]
Abstract
Age-related changes have a great influence on the regulation of water and electrolyte homeostasis in the body, which is regulated by a complex interaction of environmental factors, drinking behavior, the secretion of a number of hormones and hormone-like substances, as well as the innervation and functional state of the kidneys. It is well known that the changes that are part of physiological aging underlie fluid and electrolyte imbalances, exacerbated by the presence of age-related diseases, medications, or a number of external factors such as malnutrition, fluid intake, and the presence of dementia. This review considers literature data on the effect of normal aging on the development of pathology of the water-sodium balance, including dehydration of senile patients, hyponatremia, hypernatremia, changes in the secretion of antidiuretic hormone and the activity of elements of the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Н. Н. Катамадзе
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. А. Пигарова
- Национальный медицинский исследовательский центр эндокринологии
| | - Л. К. Дзеранова
- Национальный медицинский исследовательский центр эндокринологии
| | - Н. Г. Мокрышева
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
7
|
Xie B, Tang W, Wen S, Chen F, Yang C, Wang M, Yang Y, Liang W. GDF-15 Inhibits ADP-Induced Human Platelet Aggregation through the GFRAL/RET Signaling Complex. Biomolecules 2023; 14:38. [PMID: 38254638 PMCID: PMC10813690 DOI: 10.3390/biom14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Growth differentiation factor-15 (GDF-15) is proposed to be strongly associated with several cardiovascular diseases, such as heart failure and atherosclerosis. Moreover, some recent studies have reported an association between GDF-15 and platelet activation. In this study, we isolated peripheral blood platelets from healthy volunteers and evaluated the effect of GDF-15 on adenosine diphosphate (ADP)-induced platelet activation using the platelet aggregation assay. Subsequently, we detected the expression of GDF-15-related receptors on platelets, including the epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), human epidermal growth factor receptor 3 (HER3), transforming growth factor-beta receptor I (TGF-βRI), transforming growth factor-beta receptor II (TGF-βRII), glial-cell-line-derived neurotrophic factor family receptor α-like (GFRAL), and those rearranged during transfection (RET). Then, we screened for GDF-15 receptors using the GDF-15-related receptor microarray comprising these recombinant proteins. We also performed the immunoprecipitation assay to investigate the interaction between GDF-15 and the receptors on platelets. For the further exploration of signaling pathways, we investigated the effects of GDF-15 on the extracellular signal-regulated kinase (ERK), protein kinase B (AKT), and Janus kinase 2 (JAK2) pathways. We also investigated the effects of GDF-15 on the ERK and AKT pathways and platelet aggregation in the presence or absence of RET agonists or inhibition. Our study revealed that GDF-15 can dose-independently inhibit ADP-induced human platelet aggregation and that the binding partner of GDF-15 on platelets is GFRAL. We also found that GDF-15 inhibits ADP-induced AKT and ERK activation in platelets. Meanwhile, our results revealed that the inhibitory effects of GDF-15 can be mediated by the GFRAL/RET complex. These findings reveal the novel inhibitory mechanism of ADP-induced platelet activation by GDF-15.
Collapse
Affiliation(s)
- Baikang Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenjing Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuang Wen
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Fen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Yang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Min Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yong Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Liang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
8
|
Franzoni L, Oliveira RCD, Busin D, Turella DJP, Costa RR, Saffi MAL, Silveira ADD, Stein R. Non-Invasive Assessment of Cardiodynamics by Impedance Cardiography during the Six-Minute Walk Test in Patients with Heart Failure. Arq Bras Cardiol 2023; 120:e20230087. [PMID: 38232243 DOI: 10.36660/abc.20230087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/21/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Central Illustration: Non-Invasive Assessment of Cardiodynamics by Impedance Cardiography during the Six-Minute Walk Test in Patients with Heart Failure. The six-minute walk test (6MWT) is commonly used to evaluate heart failure (HF) patients. However, several clinical factors can influence the distance walked in the test. Signal-morphology impedance cardiography (SM-ICG) is a useful tool to noninvasively assess hemodynamics. OBJECTIVE This study aimed to compare cardiac output (CO), heart rate (HR), and stroke volume (SV) acceleration and deceleration responses to 6MWT in individuals with HF and reduced ejection fraction (HFrEF) and healthy controls. METHODS This is a cross-sectional observational study. CO, HR, SV and cardiac index (CI) were evaluated before, during, and after the 6MWT assessed by SM-ICG. The level of significance adopted in the statistical analysis was 5%. RESULTS Twenty-seven participants were included (13 HFrEF and 14 healthy controls). CO and HR acceleration significantly differed between groups (p<0.01; p=0.039, respectively). We found significant differences in SV, CO and CI between groups (p<0.01). Linear regression showed an impaired SV contribution to CO change in HFrEF group (22.9% versus 57.4%). CONCLUSION The main finding of the study was that individuals with HFrEF showed lower CO and HR acceleration values during the submaximal exercise test compared to healthy controls. This may indicate an imbalance in the autonomic response to exercise in this condition.
Collapse
Affiliation(s)
- Leandro Franzoni
- Programa de Pós-Graduação em Ciências da Saúde: Cardiologia e Ciências Cardiovasculares ( UFRGS ), Porto Alegre , RS - Brasil
| | - Rafael Cechet de Oliveira
- Programa de Pós-Graduação em Ciências da Saúde: Cardiologia e Ciências Cardiovasculares ( UFRGS ), Porto Alegre , RS - Brasil
| | - Diego Busin
- Universidade de Caxias do Sul , Caxias do Sul , RS - Brasil
| | | | - Rochelle Rocha Costa
- Universidade de Brasília - Programa de Pós-Graduação em Educação Física , Porto Alegre , RS - Brasil
| | | | | | - Ricardo Stein
- Programa de Pós-Graduação em Ciências da Saúde: Cardiologia e Ciências Cardiovasculares ( UFRGS ), Porto Alegre , RS - Brasil
| |
Collapse
|
9
|
Sun Z, Wang W, Liu J, Zou S, Yin D, Lyu C, Yu J, Wei Y. Bioactive Peptides from Ruditapes philippinarum Attenuate Hypertension and Cardiorenal Damage in Deoxycorticosterone Acetate-Salt Hypertensive Rats. Molecules 2023; 28:7610. [PMID: 38005332 PMCID: PMC10675683 DOI: 10.3390/molecules28227610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Hypertension is a common disease that affects human health and can lead to damage to the heart, kidneys, and other important organs. In this study, we investigated the regulatory effects of bioactive peptides derived from Ruditapes philippinarum (RPP) on hypertension and organ protection in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. We found that RPPs exhibited significant blood pressure-lowering properties. Furthermore, the results showed that RPPs positively influenced vascular remodeling and effectively maintained a balanced water-sodium equilibrium. Meanwhile, RPPs demonstrated anti-inflammatory potential by reducing the serum levels of inflammatory cytokines (TNF-α, IL-2, and IL-6). Moreover, we observed the strong antioxidant activity of RPPs, which played a critical role in reducing oxidative stress and alleviating hypertension-induced damage to the aorta, heart, and kidneys. Additionally, our study explored the regulatory effects of RPPs on the gut microbiota, suggesting a possible correlation between their antihypertensive effects and the modulation of gut microbiota. Our previous studies have demonstrated that RPPs can significantly reduce blood pressure in SHR rats. This suggests that RPPs can significantly improve both essential hypertension and DOAC-salt-induced secondary hypertension and can ameliorate cardiorenal damage caused by hypertension. These findings further support the possibility of RPPs as an active ingredient in functional anti-hypertensive foods.
Collapse
Affiliation(s)
- Zonghui Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| | - Weixia Wang
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Jinli Liu
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Shengcan Zou
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Dongli Yin
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Chenghan Lyu
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| |
Collapse
|
10
|
Manolis AA, Manolis TA, Manolis AS. Neurohumoral Activation in Heart Failure. Int J Mol Sci 2023; 24:15472. [PMID: 37895150 PMCID: PMC10607846 DOI: 10.3390/ijms242015472] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
In patients with heart failure (HF), the neuroendocrine systems of the sympathetic nervous system (SNS), the renin-angiotensin-aldosterone system (RAAS) and the arginine vasopressin (AVP) system, are activated to various degrees producing often-observed tachycardia and concomitant increased systemic vascular resistance. Furthermore, sustained neurohormonal activation plays a key role in the progression of HF and may be responsible for the pathogenetic mechanisms leading to the perpetuation of the pathophysiology and worsening of the HF signs and symptoms. There are biomarkers of activation of these neurohormonal pathways, such as the natriuretic peptides, catecholamine levels and neprilysin and various newer ones, which may be employed to better understand the mechanisms of HF drugs and also aid in defining the subgroups of patients who might benefit from specific therapies, irrespective of the degree of left ventricular dysfunction. These therapies are directed against these neurohumoral systems (neurohumoral antagonists) and classically comprise beta blockers, angiotensin-converting enzyme (ACE) inhibitors/angiotensin receptor blockers and vaptans. Recently, the RAAS blockade has been refined by the introduction of the angiotensin receptor-neprilysin inhibitor (ARNI) sacubitril/valsartan, which combines the RAAS inhibition and neprilysin blocking, enhancing the actions of natriuretic peptides. All these issues relating to the neurohumoral activation in HF are herein reviewed, and the underlying mechanisms are pictorially illustrated.
Collapse
Affiliation(s)
- Antonis A. Manolis
- First Department of Cardiology, Evagelismos Hospital, 106 76 Athens, Greece;
| | - Theodora A. Manolis
- Department of Psychiatry, Aiginiteio University Hospital, 115 28 Athens, Greece;
| | - Antonis S. Manolis
- First Department of Cardiology, Ippokrateio University Hospital, 115 27 Athens, Greece
| |
Collapse
|
11
|
Bekele AT. Natriuretic Peptide Receptors (NPRs) as a Potential Target for the Treatment of Heart Failure. Curr Heart Fail Rep 2023; 20:429-440. [PMID: 37710133 DOI: 10.1007/s11897-023-00628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE OF REVIEW Heart failure is defined as a complex clinical syndrome that results from any structural or functional impairment of ventricular filling or ejection of blood. The natriuretic peptide is known to exert its biological action on the kidney, heart, blood vessels, renin-angiotensin system, autonomous nervous system, and central nervous system. The natriuretic peptide-natriuretic receptor system plays an important role in the regulation of blood pressure and body fluid volume through its pleiotropic effects. RECENT FINDINGS The clinical and animal studies suggest that natriuretic peptide-natriuretic receptors are important targets for the treatment of heart failure and other cardiovascular diseases. Even though attempts targeting natriuretic peptide receptors are underway for heart failure treatment, they seem insufficient despite the receptor systems' potential. This review summarizes natriuretic peptide-natriuretic receptor system's physiological actions and potential target for the treatment of heart failure. Natriuretic peptides play multiple roles in different parts of the body, almost all of the activities related to this receptor system appear to have the potential to be harnessed to treat heart failure or symptoms associated with heart failure.
Collapse
Affiliation(s)
- Adamu T Bekele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia.
| |
Collapse
|
12
|
Marassi M, Fadini GP. The cardio-renal-metabolic connection: a review of the evidence. Cardiovasc Diabetol 2023; 22:195. [PMID: 37525273 PMCID: PMC10391899 DOI: 10.1186/s12933-023-01937-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Type 2 diabetes (T2D), cardiovascular disease (CVD) and chronic kidney disease (CKD), are recognized among the most disruptive public health issues of the current century. A large body of evidence from epidemiological and clinical research supports the existence of a strong interconnection between these conditions, such that the unifying term cardio-metabolic-renal (CMR) disease has been defined. This coexistence has remarkable epidemiological, pathophysiologic, and prognostic implications. The mechanisms of hyperglycemia-induced damage to the cardio-renal system are well validated, as are those that tie cardiac and renal disease together. Yet, it remains controversial how and to what extent CVD and CKD can promote metabolic dysregulation. The aim of this review is to recapitulate the epidemiology of the CMR connections; to discuss the well-established, as well as the putative and emerging mechanisms implicated in the interplay among these three entities; and to provide a pathophysiological background for an integrated therapeutic intervention aiming at interrupting this vicious crosstalks.
Collapse
Affiliation(s)
- Marella Marassi
- Department of Medicine, Division of Metabolic Diseases, University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - Gian Paolo Fadini
- Department of Medicine, Division of Metabolic Diseases, University of Padova, Via Giustiniani 2, 35128, Padua, Italy.
- Veneto Institute of Molecular Medicine, 35129, Padua, Italy.
| |
Collapse
|
13
|
Li Q, Fang Y, Peng DW, Li LA, Deng CY, Yang H, Kuang SJ, Li QQ, Zhang MZ, Zeng P, Zhang QH, Liu Y, Deng H, Wei W, Xue YM, Wu SL, Rao F. Sacubitril/valsartan reduces susceptibility to atrial fibrillation by improving atrial remodeling in spontaneously hypertensive rats. Eur J Pharmacol 2023; 952:175754. [PMID: 37182595 DOI: 10.1016/j.ejphar.2023.175754] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
AIM Sacubitril/valsartan (Sac/Val, LCZ696), the world's first angiotensin receptor-neprilysin inhibitor (ARNi), has been widely used in the treatment of heart failure. However, the use of Sac/Val in the treatment of atrial fibrillation (AF), especially AF with hypertension, has been less reported. We investigated the effect of Sac/Val on atrial remodeling and hypertension-related AF. METHODS The AF induction rate and electrophysiological characteristics of spontaneously hypertensive rats (SHRs) treated with Sac/Val or Val were detected by rapid atrial pacing and electrical mapping/optical mapping. The whole-cell patch-clamp and western blot were used to observe electrical/structural remodeling of atrial myocytes/tissue of rats and atrium-derived HL-1 cells cultured under 40 mmHg in vitro. RESULTS Sac/Val was superior to Val in reducing blood pressure, myocardial hypertrophy and susceptibility of AF in SHRs. The shorten action potentials duration (APD), decreased L type calcium channel current (ICa,L) and Cav1.2, increased ultrarapid delayed rectified potassium current (Ikur) and Kv1.5 in atrial myocytes/tissue of SHRs could be better improved by Sac/Val, as well as the levels of atrial fibrosis. While the protein expression of angiotensin-converting enzyme-1 (ACE-1), angiotensin, angiotensin II type I AT1 receptor (AT1R) and neprilysin (NEP) were increased, which could be more effective ameliorated by Sac/Val than Val. Furthermore, Val + Sacubitrilat (LBQ657) (an active NEP inhibitor) was also superior to LBQ657 or Val in improving the electrical and structural remodeling of HL-1 cells through inhibiting NEP. CONCLUSION Sac/Val can improve atrial structural and electrical remodeling induced by hypertension and reduce the AF susceptibility by inhibiting RAS and NEP. The above effects of Sac/Val were superior to Val alone.
Collapse
Affiliation(s)
- Qian Li
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, PR China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, PR China
| | - Yuan Fang
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, PR China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, PR China
| | - De-Wei Peng
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, PR China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, PR China
| | - Lu-An Li
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, PR China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, PR China
| | - Chun-Yu Deng
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, PR China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, PR China
| | - Hui Yang
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, PR China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, PR China
| | - Su-Juan Kuang
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, PR China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, PR China
| | - Qiao-Qiao Li
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, PR China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, PR China
| | - Meng-Zhen Zhang
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, PR China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, PR China
| | - Peng Zeng
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, PR China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, PR China
| | - Qian-Huan Zhang
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, PR China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, PR China
| | - Yang Liu
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, PR China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, PR China
| | - Hai Deng
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, PR China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, PR China
| | - Wei Wei
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, PR China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, PR China
| | - Yu-Mei Xue
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, PR China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, PR China.
| | - Shu-Lin Wu
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, PR China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, PR China.
| | - Fang Rao
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, PR China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, PR China.
| |
Collapse
|
14
|
Palazzuoli A, Iacoviello M. Diabetes leading to heart failure and heart failure leading to diabetes: epidemiological and clinical evidence. Heart Fail Rev 2023; 28:585-596. [PMID: 35522391 PMCID: PMC10140137 DOI: 10.1007/s10741-022-10238-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a risk factor that plays a major role in the onset of heart failure (HF) both directly, by impairing cardiac function, and indirectly, through associated diseases such as hypertension, coronary disease, renal dysfunction, obesity, and other metabolic disorders. In a population of HF patients, the presence of T2DM ranged from 20 to 40%, according to the population studied, risk factor characteristics, geographic area, and age, and it is associated with a worse prognosis. Finally, patients with HF, when compared with those without HF, show an increased risk for the onset of T2DM due to several mechanisms that predispose the HF patient to insulin resistance. Despite the epidemiological data confirmed the relationship between T2DM and HF, the exact prevalence of HF in T2DM comes from interventional trials rather than from observational registries aimed to prospectively evaluate the risk of HF occurrence in T2DM population. This review is focused on the vicious cycle linking HF and T2DM, from epidemiological data to prognostic implications.
Collapse
Affiliation(s)
- Alberto Palazzuoli
- Cardiovascular Diseases Unit, Cardio-Thoracic and Vascular Department, S. Maria Alle Scotte Hospital, University of Siena, Siena, Italy
| | - Massimo Iacoviello
- Department of Medical and Surgical Sciences, University of Foggia, Via Luigi Pinto 1, 71121, Foggia, Italy.
| |
Collapse
|
15
|
Zhang H, Zhang Q, Tu J, You Q, Wang L. Dual function of protein phosphatase 5 (PPP5C): An emerging therapeutic target for drug discovery. Eur J Med Chem 2023; 254:115350. [PMID: 37054560 DOI: 10.1016/j.ejmech.2023.115350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Phosphorylation of proteins is reversibly controlled by the kinases and phosphatases in many posttranslational regulation patterns. Protein phosphatase 5 (PPP5C) is a serine/threonine protein phosphatase showing dual function by simultaneously exerting dephosphorylation and co-chaperone functions. Due to this special role, PPP5C was found to participate in many signal transductions related to various diseases. Abnormal expression of PPP5C results in cancers, obesity, and Alzheimer's disease, making it a potential drug target. However, the design of small molecules targeting PPP5C is struggling due to its special monomeric enzyme form and low basal activity by a self-inhibition mechanism. Through realizing the PPP5C's dual function as phosphatase and co-chaperone, more and more small molecules were found to regulate PPP5C with a different mechanism. This review aims to provide insights into PPP5C's dual function from structure to function, which could provide efficient design strategies for small molecules targeting PPP5C as therapeutic candidates.
Collapse
Affiliation(s)
- Hengheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaqi Tu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
16
|
Scicchitano P, Iacoviello M, Massari A, De Palo M, Potenza A, Landriscina R, Abruzzese S, Tangorra M, Guida P, Ciccone MM, Caldarola P, Massari F. Anaemia and Congestion in Heart Failure: Correlations and Prognostic Role. Biomedicines 2023; 11:biomedicines11030972. [PMID: 36979951 PMCID: PMC10046168 DOI: 10.3390/biomedicines11030972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of this study was to evaluate the relationship between anaemia and biomarkers of central/peripheral congestion in heart failure (HF) and the impact on mortality. We retrospectively evaluated 434 acute/chronic HF (AHF/CHF) patients. Anaemia was defined as haemoglobin levels <12 g/dL (women) or <13 g/dL (men). The brain natriuretic peptide (BNP) and hydration index (HI) were measured. The endpoint of the study was all-cause mortality. Anaemia occurred in 59% of patients with AHF and in 35% with CHF (p < 0.001) and showed a significant correlation with the NYHA functional class and renal function. BNP and HI were significantly higher in patients with anaemia than in those without anaemia. Independent predictors of anaemia included BNP, estimated creatinine clearance (eCrCL), and HI. The all-cause mortality rate was 21%, which was significantly higher in patients with anaemia than in those without anaemia (30% vs. 14%, p < 0.001; hazard ratio: 2.6). At multivariate Cox regression analysis, BNP, eCrCL, and HI were independent predictors for mortality (Hazard ratios: 1.0002, 0.97, and 1.05, respectively), while anaemia was not. Anaemia correlates with HF status, functional class, renal function, BNP, and HI. Anaemia was not an independent predictor for mortality, acting as a disease severity marker in congestive patients rather than as a predictor of death.
Collapse
Affiliation(s)
- Pietro Scicchitano
- Cardiology Section, Hospital "F. Perinei" Altamura, 70022 Altamura, Italy
| | - Massimo Iacoviello
- Cardiology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | | | - Micaela De Palo
- Cardiac Surgery Unit, Policlinic University Hospital, 70124 Bari, Italy
| | - Angela Potenza
- Cardiology Section, Hospital "F. Perinei" Altamura, 70022 Altamura, Italy
| | | | - Silvia Abruzzese
- Cardiology Section, Hospital "F. Perinei" Altamura, 70022 Altamura, Italy
| | - Maria Tangorra
- Cardiology Section, Hospital "F. Perinei" Altamura, 70022 Altamura, Italy
| | - Piero Guida
- Ospedale Generale Regionale "F. Miulli", 70021 Acquaviva delle Fonti, Italy
| | - Marco Matteo Ciccone
- Cardiology Unit, Policlinic University Hospital, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | | | - Francesco Massari
- Cardiology Section, Hospital "F. Perinei" Altamura, 70022 Altamura, Italy
| |
Collapse
|
17
|
Shen X, Chang P, Zhang X, Zhang J, Wang X, Quan Z, Wang P, Liu T, Niu Y, Zheng R, Chen B, Yu J. The landscape of N6-methyladenosine modification patterns and altered transcript profiles in the cardiac-specific deletion of natriuretic peptide receptor A. Mol Omics 2023; 19:105-125. [PMID: 36412146 DOI: 10.1039/d2mo00201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The atrial natriuretic peptide (ANP) and the brain natriuretic peptide (BNP) are critical biological makers and regulators of cardiac functions. Our previous results show that NPRA (natriuretic peptide receptor A)-deficient mice have distinct metabolic patterns and expression profiles compared with the control. Still, the molecular mechanism that could account for this observation remains to be elucidated. Here, methylation alterations were detected by mazF-digestion, and differentially expressed genes of transcriptomes were detected by a Genome Oligo Microarray using the myocardium from NPRA-deficient (NPRA-/-) mice and wild-type (NPRA+/+) mice as the control. Comprehensive analysis of m6A methylation data gave an altered landscape of m6A modification patterns and altered transcript profiles in cardiac-specific NPRA-deficient mice. The m6A "reader" igf2bp3 showed a clear trend of increase, suggesting a function in altered methylation and expression in cardiac-specific NPRA-deficient mice. Intriguingly, differentially m6A-methylated genes were enriched in the metabolic process and insulin resistance pathway, suggesting a regulatory role in cardiac metabolism of m6A modification regulated by NPRA. Notably, it was confirmed that the pyruvate dehydrogenase kinase 4 (Pdk4) gene upregulated the gene expression and the hypermethylation level simultaneously, which may be the key factor for the cardiac metabolic imbalance and insulin resistance caused by natriuretic peptide signal resistance. Taken together, cardiac metabolism might be regulated by natriuretic peptide signaling, with decreased m6A methylation and a decrease of Pdk4.
Collapse
Affiliation(s)
- Xi Shen
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| | - Pan Chang
- Department of Cardiology, the Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Xiaomeng Zhang
- Department of Cardiology, the Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Jing Zhang
- Department of Cardiology, the Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Xihui Wang
- Department of Cardiology, the Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Zhuo Quan
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| | - Pengli Wang
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| | - Tian Liu
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| | - Yan Niu
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| | - Rong Zheng
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| | - Baoying Chen
- Imaging Diagnosis and Treatment Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China.
| | - Jun Yu
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| |
Collapse
|
18
|
Li K, Kratzmann V, Dai M, Gatzke N, Rocic P, Bramlage P, Grisk O, Lubomirov LT, Hoffmeister M, Lauxmann MA, Ritter O, Buschmann E, Bader M, Persson AB, Buschmann I, Hillmeister P. Angiotensin receptor-neprilysin inhibitor improves coronary collateral perfusion. Front Cardiovasc Med 2023; 9:981333. [PMID: 36818914 PMCID: PMC9936066 DOI: 10.3389/fcvm.2022.981333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/09/2022] [Indexed: 02/05/2023] Open
Abstract
Background We investigated the pleiotropic effects of an angiotensin receptor-neprilysin inhibitor (ARNi) on collateral-dependent myocardial perfusion in a rat model of coronary arteriogenesis, and performed comprehensive analyses to uncover the underlying molecular mechanisms. Methods A rat model of coronary arteriogenesis was established by implanting an inflatable occluder on the left anterior descending coronary artery followed by a 7-day repetitive occlusion procedure (ROP). Coronary collateral perfusion was measured by using a myocardial particle infusion technique. The putative ARNi-induced pro-arteriogenic effects were further investigated and compared with an angiotensin-converting enzyme inhibitor (ACEi). Expression of the membrane receptors and key enzymes in the natriuretic peptide system (NPS), renin-angiotensin-aldosterone system (RAAS) and kallikrein-kinin system (KKS) were analyzed by quantitative polymerase chain reaction (qPCR) and immunoblot assay, respectively. Protein levels of pro-arteriogenic cytokines were measured by enzyme-linked immunosorbent assay, and mitochondrial DNA copy number was assessed by qPCR due to their roles in arteriogenesis. Furthermore, murine heart endothelial cells (MHEC5-T) were treated with a neprilysin inhibitor (NEPi) alone, or in combination with bradykinin receptor antagonists. MHEC5-T proliferation was analyzed by colorimetric assay. Results The in vivo study showed that ARNis markedly improved coronary collateral perfusion, regulated the gene expression of KKS, and increased the concentrations of relevant pro-arteriogenic cytokines. The in vitro study demonstrated that NEPis significantly promoted MHEC5-T proliferation, which was diminished by bradykinin receptor antagonists. Conclusion ARNis improve coronary collateral perfusion and exert pro-arteriogenic effects via the bradykinin receptor signaling pathway.
Collapse
Affiliation(s)
- Kangbo Li
- Department for Angiology, Center for Internal Medicine I, Deutsches Angiologie Zentrum Brandenburg - Berlin, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Victoria Kratzmann
- Department for Angiology, Center for Internal Medicine I, Deutsches Angiologie Zentrum Brandenburg - Berlin, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Mengjun Dai
- Department for Angiology, Center for Internal Medicine I, Deutsches Angiologie Zentrum Brandenburg - Berlin, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nora Gatzke
- Department for Angiology, Center for Internal Medicine I, Deutsches Angiologie Zentrum Brandenburg - Berlin, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Petra Rocic
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Huntsville, TX, United States
| | - Peter Bramlage
- Institute for Pharmacology and Preventive Medicine, Cloppenburg, Germany
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Lubomir T. Lubomirov
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Meike Hoffmeister
- Institute of Biochemistry, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Faculty of Health Sciences Brandenburg, Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Brandenburg an der Havel, Germany
| | - Martin A. Lauxmann
- Institute of Biochemistry, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Oliver Ritter
- Faculty of Health Sciences Brandenburg, Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Brandenburg an der Havel, Germany
- Department for Cardiology, Center for Internal Medicine I, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Eva Buschmann
- Department of Cardiology, University Clinic Graz, Graz, Austria
| | - Michael Bader
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Anja Bondke Persson
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivo Buschmann
- Department for Angiology, Center for Internal Medicine I, Deutsches Angiologie Zentrum Brandenburg - Berlin, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Faculty of Health Sciences Brandenburg, Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Brandenburg an der Havel, Germany
| | - Philipp Hillmeister
- Department for Angiology, Center for Internal Medicine I, Deutsches Angiologie Zentrum Brandenburg - Berlin, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Faculty of Health Sciences Brandenburg, Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Brandenburg an der Havel, Germany
| |
Collapse
|
19
|
Correale M, Magnesa M, Mazzeo P, Fortunato M, Tricarico L, Leopizzi A, Mallardi A, Mennella R, Croella F, Iacoviello M, Di Biase M, Brunetti ND. Left Atrial Functional Remodeling in Patients with Chronic Heart Failure Treated with Sacubitril/Valsartan. J Clin Med 2023; 12:jcm12031086. [PMID: 36769734 PMCID: PMC9917469 DOI: 10.3390/jcm12031086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
(1) Background: Previous studies showed left ventricular (LV) and left atrial (LA) improvement and reverse remodeling after therapy with Sacubitril/Valsartan (S/V) in patients affected by heart failure with reduced ejection fraction (HFrEF). Therefore, we sought to investigate predictors of LA structural and functional reverse remodeling (LARR) in this setting of patients after therapy with S/V, focusing on left atrial strain parameters, such as peak atrial longitudinal strain (PALS). (2) Methods: Patients with HFrEF underwent clinical and echocardiographic evaluation at baseline and after six months of therapy with S/V. Measures of LA structure (LA volume index, LAVi) and function (LA emptying fraction (LAEF), PALS, LA conduit strain and peak atrial contraction strain (PACS) were also analyzed. Patients were divided in two groups, those with a LARR (relative reduction in LAVi > 15%, LARR+) and those without (LARR-). (3) Results: A total of 47 consecutive patients (66 ± 8 years, 85% male, mean LVEF 28 ± 6%) were enrolled in the study and followed up. A significant increase of LAEF (46 ± 13 vs. 37 ± 11%, p < 0.001) and a significant reduction of LAVi (42 ± 15 vs. 45 ± 15 mL/m2, p = 0.008) were found after 6 months of S/V therapy; 47% of the population showed LA reverse remodeling. LA strain parameters, PALS (19 ± 8 vs. 15 ± 7 %, p < 0.001) and LA conduit (-9.7 ± 5.2% vs. -7.6 ± 4.1%, p = 0.007) significantly improved after 6 months of S/V therapy. At multivariable stepwise regression analysis, changes in LV End Diastolic Volume (LVEDV) and PALS were significantly proportional to changes in LAVi values. (4) Conclusions: Six months of treatment with S/V in patients with HFrEF was associated with an improvement in LA functional reverse remodeling in a real-world scenario. LARR was not significantly correlated to baseline echocardiographic variables, but was proportional to changes in LV volumes and LA strain parameters. Finally, after S/V therapy, a strict connection between LA and LV reverse remodeling and between LA anatomical and functional reverse remodeling seems to be outlined.
Collapse
Affiliation(s)
- Michele Correale
- Cardiology Unit, Cardio-Thoracic Department, Policlinico Riuniti University Hospital, Viale Luigi Pinto 1, 71100 Foggia, Italy
| | - Michele Magnesa
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Pietro Mazzeo
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Martino Fortunato
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Lucia Tricarico
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Alessandra Leopizzi
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Adriana Mallardi
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Raffaele Mennella
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Francesca Croella
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Massimo Iacoviello
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Matteo Di Biase
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Natale Daniele Brunetti
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
- Correspondence: ; Tel.: +39-338-9112358; Fax: +39-0881-745424
| |
Collapse
|
20
|
Xanthopoulos A, Skoularigis J, Triposkiadis F. The Neurohormonal Overactivity Syndrome in Heart Failure. Life (Basel) 2023; 13:life13010250. [PMID: 36676199 PMCID: PMC9864042 DOI: 10.3390/life13010250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Heart failure (HF) is categorized arbitrarily based on the left ventricular ejection fraction (LVEF) in HF with reduced (HFrEF; LVEF < 40%), mildly reduced (HFmrEF; LVEF 40−49%), or preserved ejection fraction (HFpEF; LVEF ≥ 50%). In this opinion paper, based on (patho)physiological considerations, we contend that the neurohormonal overactivity syndrome (NOHS), which is present in all symptomatic HF patients irrespective of their LVEF, not only contributes to the development of signs and symptoms but it is also a major determinant of patients’ outcomes. In this regard, NHOS is the only currently available treatment target in HF and should be combatted in most patients with the combined use of diuretics and neurohormonal inhibitors (β-blockers, angiotensin receptor-neprilysin inhibitor/angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, mineralocorticoid antagonists, and sodium-glucose co-transporter 2 inhibitors). Unfortunately, despite the advances in therapeutics, HF mortality remains high. Probably machine learning approaches could better assess the multiple and higher-dimension interactions leading to the HF syndrome and define clusters of HF treatment efficacy.
Collapse
|
21
|
Park DY, An S, Attanasio S, Jolly N, Malhotra S, Doukky R, Samsky MD, Sen S, Ahmad T, Nanna MG, Vij A. Network Meta-Analysis Comparing Angiotensin Receptor-Neprilysin Inhibitors, Angiotensin Receptor Blockers, and Angiotensin-Converting Enzyme Inhibitors in Heart Failure With Reduced Ejection Fraction. Am J Cardiol 2023; 187:84-92. [PMID: 36459752 PMCID: PMC10958453 DOI: 10.1016/j.amjcard.2022.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022]
Abstract
The superiority of angiotensin receptor-neprilysin inhibitor (ARNI) over angiotensin-converting enzyme inhibitor (ACE-I) and angiotensin receptor blocker (ARB) has not been reassessed after the publication of recent trials that did not find clinical benefits. Therefore, we performed an updated network meta-analysis comparing the efficacy and safety of ARNI, ACE-I, ARB, and placebo in heart failure with reduced ejection fraction. We included randomized clinical trials that compared ARNI, ARB, ACE-I, and placebo in heart failure with reduced ejection fraction. We extracted prespecified efficacy end points and produced network estimates, p scores, and surface under the cumulative ranking curve scores using frequentist and Bayesian network meta-analysis approaches. A total of 28 randomized controlled trials including 47,407 patients were included. ARNI was associated with lower risk of all-cause mortality (relative risk [RR] 0.81, 95% confidence interval [CI] 0.68 to 0.96), cardiac death (RR 0.79, 95% CI 0.64 to 0.99), and major adverse cardiac events (MACEs; RR 0.83, 95% CI 0.72 to 0.97) but higher risk of hypotension (RR 1.46, 95% CI 1.02 to 2.10) than ARB. ARNI was associated with lower risk of MACE (RR 0.85, 95% CI 0.74 to 0.97), but higher risk of hypotension (RR 1.69, 95% CI 1.27 to 2.24) compared with ACE-I. P scores and surface under the cumulative ranking curve scores demonstrated superiority of ARNI over ARB and ACE-I in all-cause mortality, cardiac death, MACE, and hospitalization for heart failure. In conclusion, ARNI was associated with improved clinical outcomes, except for higher risk of hypotension, compared with ARB and ACE-I.
Collapse
Affiliation(s)
- Dae Yong Park
- Department of Medicine, John H. Stroger Jr Hospital of Cook County, Chicago, Illinois
| | - Seokyung An
- Department of Biomedical Science, Seoul National University Graduate School, Seoul, Korea
| | - Steve Attanasio
- Division of Cardiology, Rush University Medical Center, Chicago, Illinois
| | - Neeraj Jolly
- Division of Cardiology, Rush University Medical Center, Chicago, Illinois
| | - Saurabh Malhotra
- Division of Cardiology, Rush Medical College, Chicago, Illinois; Division of Cardiology, Cook County Health, Chicago, Illinois
| | - Rami Doukky
- Division of Cardiology, Rush Medical College, Chicago, Illinois; Division of Cardiology, Cook County Health, Chicago, Illinois
| | - Marc D Samsky
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Sounok Sen
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Tariq Ahmad
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Michael G Nanna
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Aviral Vij
- Division of Cardiology, Rush Medical College, Chicago, Illinois; Division of Cardiology, Cook County Health, Chicago, Illinois.
| |
Collapse
|
22
|
Ushakov A, Ivanchenko V, Gagarina A. Heart Failure And Type 2 Diabetes Mellitus: Neurohumoral, Histological And Molecular Interconnections. Curr Cardiol Rev 2023; 19:e170622206132. [PMID: 35718961 PMCID: PMC10201898 DOI: 10.2174/1573403x18666220617121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
Heart failure (HF) is a global healthcare burden and a leading cause of morbidity and mortality worldwide. Type 2 diabetes mellitus (T2DM) appears to be one of the major risk factors that significantly worsen HF prognosis and increase the risk of fatal cardiovascular outcomes. Despite a great knowledge of pathophysiological mechanisms involved in HF development and progression, hospitalization rates in patients with HF and concomitant T2DM remain elevated. In this review, we discuss the complex interplay between systemic neurohumoral regulation and local cardiac mechanisms participating in myocardial remodeling and HF development in T2DM with special attention to cardiomyocyte energy metabolism, mitochondrial function and calcium metabolism, cardiomyocyte hypertrophy and death, extracellular matrix remodeling.
Collapse
Affiliation(s)
- A. Ushakov
- Department of Internal Medicine 1, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - V. Ivanchenko
- Department of Internal Medicine 1, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - A. Gagarina
- Department of Internal Medicine 1, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| |
Collapse
|
23
|
Sarzani R, Allevi M, Di Pentima C, Schiavi P, Spannella F, Giulietti F. Role of Cardiac Natriuretic Peptides in Heart Structure and Function. Int J Mol Sci 2022; 23:ijms232214415. [PMID: 36430893 PMCID: PMC9697447 DOI: 10.3390/ijms232214415] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiac natriuretic peptides (NPs), atrial NP (ANP) and B-type NP (BNP) are true hormones produced and released by cardiomyocytes, exerting several systemic effects. Together with C-type NP (CNP), mainly expressed by endothelial cells, they also exert several paracrine and autocrine activities on the heart itself, contributing to cardiovascular (CV) health. In addition to their natriuretic, vasorelaxant, metabolic and antiproliferative systemic properties, NPs prevent cardiac hypertrophy, fibrosis, arrhythmias and cardiomyopathies, counteracting the development and progression of heart failure (HF). Moreover, recent studies revealed that a protein structurally similar to NPs mainly produced by skeletal muscles and osteoblasts called musclin/osteocrin is able to interact with the NPs clearance receptor, attenuating cardiac dysfunction and myocardial fibrosis and promoting heart protection during pathological overload. This narrative review is focused on the direct activities of this molecule family on the heart, reporting both experimental and human studies that are clinically relevant for physicians.
Collapse
Affiliation(s)
- Riccardo Sarzani
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
- Correspondence: (R.S.); Tel.: +39-071-5964696
| | - Massimiliano Allevi
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Chiara Di Pentima
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
| | - Paola Schiavi
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Francesco Spannella
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Federico Giulietti
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
| |
Collapse
|
24
|
Tyurin IN, Protsenko DN, Kozlov IA. N-terminal Pro-B-Type Natriuretic Peptide is a Myocardial Biomarker in Pulmonary Sepsis and Septic Shock. MESSENGER OF ANESTHESIOLOGY AND RESUSCITATION 2022. [DOI: 10.21292/2078-5658-2022-19-5-28-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective: to study changes and prognostic significance of the blood NT-proBNP in the patients with pulmonary sepsis.Subjects and Methods. The study included 34 patients aged 54.5 ± 2.9 years with pulmonary sepsis or septic shock. Lethality in the intensive care unit (ICU) was 47.1%. NT-proBNP, procalcitonin (PCT) levels, blood lactate and hemodynamic parameters were registered on the 1st day (stage 1) and on the 4th-5th day of the ICU stay (stage 2). Hemodynamics was assessed through transpulmonary thermodilution. The differences were considered statistically significant at p < 0.05.Results: At stage 1, NT-proBNP level was 5,220 [1,380‒17,850] pg/ml, did not decrease (p = 0.726) at stage 2 and amounted to 1,760 [631‒847] pg/ml. At stage 1, NT-proBNP correlated with extravascular lung water index (rho = 0.445; p = 0.038) and systolic pulmonary artery pressure (rho = 0.414; p = 0.023). At stage 2, NT-proBNP correlated with PCT (rho = 0.569; p = 0.003), blood lactate (rho = 0.525; p = 0.001), and mean arterial pressure to norepinephrine dosage ratio (rho = -0.422; p = 0.035). At stage 1, NT-proBNP was no predictor of lethality in the ICU: OR 1.0000; 95% CI 1.0000-1.0001. At stage 2, NT-proBNP > 4,260 pg/ml (sensitivity 87.5%, specificity 94.4%) was a predictor of lethality: OR 1.0004, 95% CI 1.0000-1.0008, p = 0.046 (AUC 0.893, 95% CI 0.732-0.974). Any increase of NT-proBNP level (> 0 pg/ml) between stages 2 and 1 was a predictor of lethality (sensitivity 87.5%, specificity 94.4%): OR 119.0, 95% CI 9.7432‒1,453.4241, p = 0.0002 (AUC 0.903, 95% CI 0.751-0.977).Conclusion: Patients with pulmonary sepsis are characterized by a significant increase of blood NT-proBNP. At stage 1, the biomarker correlated with pulmonary hypertension and moderate pulmonary edema and was no predictor of lethality. At stage 2, NT-proBNP correlated with the indices of infection and sepsis severity (procalcitonin, blood lactate, and mean arterial blood pressure/norepinephrine dosage ratio). At this stage, NT-proBNP levels greater than 4,000 pg/mL and/or any degree of increase in blood levels of the biomarker were both sensitive and specific predictors of a lethal outcome. Specific features of etiopathogenesis of BNP hyperproduction in pulmonary sepsis make it difficult to interpret the elevation of NT-proBNP as an indicator of septic cardiomyopathy but does not reduce its value as a sensitive and specific predictor of lethality.
Collapse
Affiliation(s)
- I. N. Tyurin
- Kommunarka Moscow Multidisciplinary Clinical Center; Pirogov Russian National Research Medical University
| | - D. N. Protsenko
- Kommunarka Moscow Multidisciplinary Clinical Center; Pirogov Russian National Research Medical University
| | - I. A. Kozlov
- M. F. Vladimirsky Moscow Regional Research Clinical Institute
| |
Collapse
|
25
|
Iacoviello M, Pugliese R, Correale M, Brunetti ND. Optimization of Drug Therapy for Heart Failure With Reduced Ejection Fraction Based on Gender. Curr Heart Fail Rep 2022; 19:467-475. [PMID: 36197626 DOI: 10.1007/s11897-022-00583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 10/10/2022]
Abstract
PURPOSE OF REVIEW Over the last decades, several classes of drugs have been introduced for the treatment of patients with heart failure with reduced ejection fraction (HFrEF). Their use has been supported by randomized controlled trials that have demonstrated improved patient outcomes. However, these trials enrolled a small number of female patients and sometimes have reported gender-related differences regarding the efficacy of the treatments. The aim of this review is to revise the available data about the influence of gender on the optimal treatment and drug dose in patients with HFrEF. RECENT FINDINGS Several gender-related differences in terms of pharmacokinetic and pharmacodynamic characteristics of the drugs have been described. These characteristics could be responsible for a different response and tolerability in men and women also when current recommended treatment of HFrEF is considered. Some studies have shown that, in women, lower doses of beta-blockers and inhibitors of renin angiotensin aldosterone system could be equally effective than higher doses in men, whereas sacubitril/valsartan could exert its favorable effect at greater values of left ventricular ejection fraction. Although there is evidence about differences in the response to treatment of HFrEF in men and women, this has not been sufficient for differentiating current recommended therapy. Further studies should better clarify if the treatment of HFrEF should be based also on the patients' gender.
Collapse
Affiliation(s)
- Massimo Iacoviello
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 1, Foggia, Italy. .,Cardiology Unit, University Polyclinic Hospital of Foggia, Foggia, Italy.
| | - Rosanna Pugliese
- Cardiology Unit, University Polyclinic Hospital of Foggia, Foggia, Italy
| | - Michele Correale
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 1, Foggia, Italy
| | - Natale Daniele Brunetti
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 1, Foggia, Italy.,Cardiology Unit, University Polyclinic Hospital of Foggia, Foggia, Italy
| |
Collapse
|
26
|
Bozkurt B, Nair AP, Misra A, Scott CZ, Mahar JH, Fedson S. Neprilysin Inhibitors in Heart Failure: The Science, Mechanism of Action, Clinical Studies, and Unanswered Questions. JACC. BASIC TO TRANSLATIONAL SCIENCE 2022; 8:88-105. [PMID: 36777165 PMCID: PMC9911324 DOI: 10.1016/j.jacbts.2022.05.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
This article provides a contemporary review and a new perspective on the role of neprilysin inhibition in heart failure (HF) in the context of recent clinical trials and addresses potential mechanisms and unanswered questions in certain HF patient populations. Neprilysin is an endopeptidase that cleaves a variety of peptides such as natriuretic peptides, bradykinin, adrenomedullin, substance P, angiotensin I and II, and endothelin. It has a broad role in cardiovascular, renal, pulmonary, gastrointestinal, endocrine, and neurologic functions. The combined angiotensin receptor and neprilysin inhibitor (ARNi) has been developed with an intent to increase vasodilatory natriuretic peptides and prevent counterregulatory activation of the angiotensin system. ARNi therapy is very effective in reducing the risks of death and hospitalization for HF in patients with HF and New York Heart Association functional class II to III symptoms, but studies failed to show any benefits with ARNi when compared with angiotensin-converting enzyme inhibitors or angiotensin receptor blocker in patients with advanced HF with reduced ejection fraction or in patients following myocardial infarction with left ventricular dysfunction but without HF. These raise the questions about whether the enzymatic breakdown of natriuretic peptides may not be a very effective solution in advanced HF patients when there is downstream blunting of the response to natriuretic peptides or among post-myocardial infarction patients in the absence of HF when there may not be a need for increased natriuretic peptide availability. Furthermore, there is a need for additional studies to determine the long-term effects of ARNi on albuminuria, obesity, glycemic control and lipid profile, blood pressure, and cognitive function in patients with HF.
Collapse
Key Words
- ACE, angiotensin-converting enzyme
- ANP, atrial natriuretic peptide
- ARB, angiotensin receptor blocker
- ARN, angiotensin receptor–neprilysin
- ARNi
- Aβ, amyloid beta
- BNP, brain natriuretic peptide
- BP, blood pressure
- CSF, cerebrospinal fluid
- EF, ejection fraction
- FDA, U.S. Food and Drug Administration
- GFR, glomerular filtration rate
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- LV, left ventricular
- LVEF, left ventricular ejection fraction
- MI, myocardial infarction
- NEP inhibitor
- NT-proBNP, N-terminal pro–brain natriuretic peptide
- NYHA, New York Heart Association
- PDE, phosphodiesterase
- RAAS, renin-angiotensin-aldosterone system
- UACR, urinary albumin/creatine ratio
- angiotensin receptor–neprilysin inhibitor
- cGMP, cyclic guanosine monophosphate
- eGFR, estimated glomerular filtration rate
- heart failure
- neprilysin
- neprilysin inhibitor
- sacubitril
- sacubitril/valsartan
Collapse
Affiliation(s)
- Biykem Bozkurt
- Winters Center for Heart Failure Research, Cardiovascular Research Institute, Baylor College of Medicine, DeBakey Veterans Affairs Medical Center, Houston Texas, USA
- Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston Texas, USA
- Address for correspondence: Dr Biykem Bozkurt, MEDVAMC, 2002 Holcombe Boulevard, Houston, Texas, 77030, USA.
| | - Ajith P. Nair
- Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Arunima Misra
- Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston Texas, USA
| | - Claire Z. Scott
- Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jamal H. Mahar
- Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Savitri Fedson
- Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston Texas, USA
| |
Collapse
|
27
|
Oruc A, Simsek G. A Pathophysiological Approach To Current Biomarkers. Biomark Med 2022. [DOI: 10.2174/9789815040463122010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Biomarkers are necessary for screening and diagnosing numerous diseases,
predicting the prognosis of patients, and following-up treatment and the course of the
patient. Everyday new biomarkers are being used in clinics for these purposes. This
section will discuss the physiological roles of the various current biomarkers in a
healthy person and the pathophysiological mechanisms underlying the release of these
biomarkers. This chapter aims to gain a new perspective for evaluating and interpreting
the most current biomarkers.
Collapse
Affiliation(s)
- Aykut Oruc
- Department of Physiology,Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpaşa,
Istanbul, Turkey
| | - Gonul Simsek
- Department of Physiology,Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpaşa,
Istanbul, Turkey
| |
Collapse
|
28
|
Wang R, Ye H, Ma L, Wei J, Wang Y, Zhang X, Wang L. Effect of Sacubitril/Valsartan on Reducing the Risk of Arrhythmia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Cardiovasc Med 2022; 9:890481. [PMID: 35859597 PMCID: PMC9289747 DOI: 10.3389/fcvm.2022.890481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Background and Objective Relevant data of PARADIGM-HF reveals sacubitril/valsartan (SV) therapy led to a greater reduction in the risks of arrhythmia, and sudden cardiac death than angiotensin converting enzyme inhibitor (ACEI)/angiotensin receptor inhibitor (ARB) therapy in HFrEF, however, inconsistent results were reported in subsequent studies. Here, we conduct a meta-analysis of related randomized controlled trials (RCTs) to evaluate the protective effect of SV on reducing the risk of arrhythmias. Methods and Results RCTs focused on the difference in therapeutic outcomes between SV and ACEI/ARB were searched from PUBMED, EMBASE, ClinicalTrials.gov, and Cochrane Library. The results were extracted from each individual study, expressed as binary risk, 95% confidence interval (CI) and relative risk (RR). Sixteen RCTs including 22, 563 patients met the study criteria. Compared with ACEI/ARB therapy, SV therapy did significantly reduce in the risks of severe arrhythmias among patients with heart failure with reduced ejection fraction (HFrEF) (RR 0.83, 95% CI 0.73–0.95, p = 0.006), ventricular tachycardia (VT) among patients with HFrEF (RR 0.69, 95% CI 0.51–0.92, p = 0.01), cardiac arrest among patients with heart failure (HF) (RR 0.52, 95% CI 0.37–0.73, p = 0.0002), cardiac arrest among patients with HFrEF (RR 0.49, 95% CI 0.32–0.76, p = 0.001), cardiac arrest or ventricular fibrillation (VF) among patients with HF (RR 0.63, 95% CI 0.48–0.83, p = 0.001), and cardiac arrest or VF among patients with HFrEF (RR 0.65, 95% CI 0.47–0.89, p = 0.008), but reduced the risks of arrhythmias (RR 0.87, 95% CI 0.74–1.01, p = 0.07), atrial arrhythmias (RR 0.98, 95% CI 0.83–1.16, p = 0.85), and atrial fibrillation (RR 0.98, 95% CI 0.82–1.17, p = 0.82) among all patients with no significant between-group difference. The merged result was robust after sensitivity analysis, and there was no publication bias. Conclusion Our meta-analysis provides evidence that, compared with ACEI/ARB, SV can additionally reduce the risks of most arrhythmias, just the significant differences are revealed in reducing the risks of VT, severe arrhythmias, and cardiac arrest in patients with HFrEF. Besides, the positive effect of SV on VF according to statistical result of combining VF with cardiac arrest in patients with HFrEF is credibility.
Collapse
Affiliation(s)
- Ruxin Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haowen Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Ma
- Department of Functional Examination, Gansu Provincial Maternal and Child Health Hospital, Lanzhou, China
| | - Jinjing Wei
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ying Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaofang Zhang
- Clinical Experimental Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Xiaofang Zhang,
| | - Lihong Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Lihong Wang,
| |
Collapse
|
29
|
Nikolic M, Srejovic I, Jovic JJ, Sretenovic J, Jeremic J, Cekerevac I, Simovic S, Djokovic D, Muric N, Stojic V, Bolevich S, Bolevich S, Jakovljevic V. Sacubitril/valsartan in Heart Failure and Beyond-From Molecular Mechanisms to Clinical Relevance. Rev Cardiovasc Med 2022; 23:238. [PMID: 39076908 PMCID: PMC11266818 DOI: 10.31083/j.rcm2307238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 07/31/2024] Open
Abstract
As the ultimate pathophysiological event, heart failure (HF) may arise from various cardiovascular (CV) conditions, including sustained pressure/volume overload of the left ventricle, myocardial infarction or ischemia, and cardiomyopathies. Sacubitril/valsartan (S/V; formerly termed as LCZ696), a first-in-class angiotensin receptor/neprilysin inhibitor, brought a significant shift in the management of HF with reduced ejection fraction by modulating both renin-angiotensin-aldosterone system (angiotensin II type I receptor blockage by valsartan) and natriuretic peptide system (neprilysin inhibition by sacubitril) pathways. Besides, the efficacy of S/V has been also investigated in the setting of other CV pathologies which are during their pathophysiological course and progression deeply interrelated with HF. However, its mechanism of action is not entirely clarified, suggesting other off-target benefits contributing to its cardioprotection. In this review article our goal was to highlight up-to-date clinical and experimental evidence on S/V cardioprotective effects, as well as most discussed molecular mechanisms achieved by this dual-acting compound. Although S/V was extensively investigated in HF patients, additional large studies are needed to elucidate its effects in the setting of other CV conditions. Furthermore, with its antiinflamatory potential, this agent should be investigated in animal models of inflammatory heart diseases, such as myocarditis, while it may possibly improve cardiac dysfunction as well as inflammatory response in this pathophysiological setting. Also, discovering other signalling pathways affected by S/V should be of particular interest for basic researches, while it can provide additional understanding of its cardioprotective mechanisms.
Collapse
Affiliation(s)
- Maja Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jovana Joksimovic Jovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jasmina Sretenovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jovana Jeremic
- Department of Pharmacology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Cekerevac
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Clinic of Pulmology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Stefan Simovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Clinic of Cardiology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Danijela Djokovic
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Clinic of Psychiatry, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Nemanja Muric
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Clinic of Psychiatry, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Vladislava Stojic
- Department of Medical Statistics and Informatics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Stefani Bolevich
- Department of Pathophysiology, 1st Moscow State Medical University IM Sechenov, 119991 Moscow, Russia
| | - Sergey Bolevich
- Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, 119991 Moscow, Russia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, 119991 Moscow, Russia
| |
Collapse
|
30
|
Effects of Sacubitril/Valsartan on the Renal Resistance Index. J Clin Med 2022; 11:jcm11133683. [PMID: 35806967 PMCID: PMC9267475 DOI: 10.3390/jcm11133683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Sacubitril/valsartan plays a key role in improving left ventricular remodeling and prognosis in patients with heart failure with a reduced ejection fraction (HFrEF). Moreover, some data support its role in preserving renal function. In order to better clarify the effects of sacubitril/valsartan in cardiorenal syndrome, this study evaluated its effects on the renal resistance index (RRI). Methods: A group of patients with HFrEF was enrolled. The RRI was assessed with renal echo-color Doppler at enrollment and again after at least six months of sacubitril/valsartan treatment. In a subgroup of patients, the RRI was also evaluated at least six months before enrollment. The variations in echocardiographic parameters reflecting the left and right ventricular function, as well as creatinine and the estimated glomerular filtration rate, were also evaluated. Results: After treatment with sacubitril/valsartan, significant improvements in the left ventricular ejection fraction, and a decrease in the left atrial and ventricular volumes were observed. The RRI also showed a significant decrease. No relationship was found between the improvements in the parameters reflecting cardiac function and changes in the RRI. Conclusions: Treatment with sacubitril/valsartan is associated with improvements in both left ventricular function and renal perfusion, through decreasing the renal resistance. These data help to clarify the effects of the drug on cardiorenal syndrome progression.
Collapse
|
31
|
Alcidi G, Goffredo G, Correale M, Brunetti ND, Iacoviello M. Brain Natriuretic Peptide Biomarkers in Current Clinical and Therapeutic Scenarios of Heart Failure. J Clin Med 2022; 11:jcm11113192. [PMID: 35683578 PMCID: PMC9181765 DOI: 10.3390/jcm11113192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 01/25/2023] Open
Abstract
Brain natriuretic peptide (BNP) and its inactive N-terminal fragment, NT-proBNP, are serum biomarkers with key roles in the management of heart failure (HF). An increase in the serum levels of these peptides is closely associated with the pathophysiological mechanisms underlying HF such as the presence of structural and functional cardiac abnormalities, myocardial stretch associated with a high filling pressure and neuro-hormonal activation. As BNP and NT-proBNP measurements are possible, several studies have investigated their clinical utility in the diagnosis, prognostic stratification, monitoring and guiding therapy of patients with HF. BNP and NT-proBNP have also been used as criteria for enrollment in randomized trials evaluating the efficacy of new therapeutic strategies for HF. Nevertheless, the use of natriuretic peptides is still limited in clinical practice due to the controversial aspect of their use in different clinical settings. The purpose of this review is to discuss the main issues associated with using BNP and NT-proBNP serum levels in the management of patients with HF under current clinical and therapeutic scenarios.
Collapse
Affiliation(s)
- Gianmarco Alcidi
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 1, 71122 Foggia, Italy; (G.A.); (M.C.); (N.D.B.)
- Cardiology Unit, Polyclinic University Hospital Riuniti of Foggia, Viale Luigi Pinto 1, 71122 Foggia, Italy
| | - Giovanni Goffredo
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 1, 71122 Foggia, Italy; (G.A.); (M.C.); (N.D.B.)
- Cardiology Unit, Polyclinic University Hospital Riuniti of Foggia, Viale Luigi Pinto 1, 71122 Foggia, Italy
- Correspondence: (G.G.); (M.I.)
| | - Michele Correale
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 1, 71122 Foggia, Italy; (G.A.); (M.C.); (N.D.B.)
- Cardiology Unit, Polyclinic University Hospital Riuniti of Foggia, Viale Luigi Pinto 1, 71122 Foggia, Italy
| | - Natale Daniele Brunetti
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 1, 71122 Foggia, Italy; (G.A.); (M.C.); (N.D.B.)
- Cardiology Unit, Polyclinic University Hospital Riuniti of Foggia, Viale Luigi Pinto 1, 71122 Foggia, Italy
| | - Massimo Iacoviello
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 1, 71122 Foggia, Italy; (G.A.); (M.C.); (N.D.B.)
- Cardiology Unit, Polyclinic University Hospital Riuniti of Foggia, Viale Luigi Pinto 1, 71122 Foggia, Italy
- Correspondence: (G.G.); (M.I.)
| |
Collapse
|
32
|
Amini P, Amrovani M, Nassaj ZS, Ajorlou P, Pezeshgi A, Ghahrodizadehabyaneh B. Hypertension: Potential Player in Cardiovascular Disease Incidence in Preeclampsia. Cardiovasc Toxicol 2022; 22:391-403. [PMID: 35347585 DOI: 10.1007/s12012-022-09734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
Preeclampsia (PE) is one of the complications, that threatens pregnant mothers during pregnancy. According to studies, it accounts for 3-7% of all pregnancies, and also is effective in preterm delivery. PE is the third leading cause of death in pregnant women. High blood pressure in PE can increase the risk of developing cardiovascular disease (CVD) in cited individuals, and is one of the leading causes of death in PE individuals. Atrial natriuretic peptide (ANP), Renin-Angiotensin system and nitric oxide (NO) are some of involved factors in regulating blood pressure. Therefore, by identifying the signaling pathways, that are used by these molecules to regulate and modulate blood pressure, appropriate treatment strategies can be provided to reduce blood pressure through target therapy in PE individuals; consequently, it can reduce CVD risk and mortality.
Collapse
Affiliation(s)
- Parya Amini
- Atherosclerosis Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Mehran Amrovani
- High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Zohre Saleh Nassaj
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Parisa Ajorlou
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Aiyoub Pezeshgi
- Internal Medicine Department, Zanjan University of Medical Sciences, Zanjan, Iran.
| | | |
Collapse
|
33
|
Ke B, Tan X, Ren L, Fan Y, Zhang Y, Li F, Sun Q, Liu T, Jia L, Wang Y, Du J. Aldosterone dysregulation predicts the risk of mortality and rehospitalization in heart failure with a preserved ejection fraction. SCIENCE CHINA. LIFE SCIENCES 2022; 65:631-642. [PMID: 34258711 DOI: 10.1007/s11427-021-1945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/14/2021] [Indexed: 10/20/2022]
Abstract
Serum aldosterone is associated with cardiac remodeling, which contributes to morbidity and mortality in heart failure (HF); however, the prognostic value of aldosterone in HF with a preserved ejection fraction (HFpEF) is unclear. We used liquid chromatography-tandem mass spectrometry to quantify serum aldosterone in 873 patients with HFpEF in a Registry Study of Biomarkers for HF. The retrospective study was conducted at Beijing Anzhen Hospital from May 2017 to October 2019. The primary endpoint was a composite of all-cause mortality and rehospitalization for HF. Aldosterone concentrations in patients with and without events were 124.22 pmol L-1 (interquartile range (IQR): 48.62-256.20) and 96.33 pmol L-1 (IQR: 37.33-215.76), respectively (P=0.023). Aldosterone independently predicted all-cause mortality (adjusted hazard ratio (aHR), 1.55; 95% confidence interval (95%CI), 1.06-2.27; P=0.024) and the primary endpoint (aHR, 1.43; 95%CI, 1.11-1.85; P=0.006). Patients with high aldosterone concentrations were at higher risk of concentric remodeling (adjusted odds ratio (aOR), 1.45; 95% CI, 1.03-2.04; P=0.034). Patients with high aldosterone and B-type natriuretic peptide concentrations were at a higher risk of the primary endpoint (hazard ratio (HR), 1.85; 95%CI, 1.29-2.66; P=0.001). We conclude that elevated aldosterone is associated with a risk of rehospitalization with HF and all-cause mortality in patients with HFpEF.
Collapse
Affiliation(s)
- Bingbing Ke
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Xin Tan
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Lu Ren
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yangkai Fan
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yixin Zhang
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Fengjuan Li
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Qiqi Sun
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Tong Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Lixin Jia
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China.,Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yuan Wang
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China. .,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China.
| | - Jie Du
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China. .,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China.
| |
Collapse
|
34
|
Sustained Elevated Circulating Activin A Impairs Global Longitudinal Strain in Pregnant Rats: A Potential Mechanism for Preeclampsia-Related Cardiac Dysfunction. Cells 2022; 11:cells11040742. [PMID: 35203391 PMCID: PMC8870359 DOI: 10.3390/cells11040742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Mediators of cardiac injury in preeclampsia are not well understood. Preeclamptic women have decreased cardiac global longitudinal strain (GLS), a sensitive measure of systolic function that indicates fibrosis and tissue injury. GLS is worse in preeclampsia compared to gestational hypertension, despite comparable blood pressure, suggesting that placental factors may be involved. We previously showed that Activin A, a pro-fibrotic factor produced in excess by the placenta in preeclampsia, predicts impaired GLS postpartum. Here, we hypothesized that chronic excess levels of Activin A during pregnancy induces cardiac dysfunction. Rats were assigned to sham or activin A infusion (1.25–6 µg/day) on a gestational day (GD) 14 (n = 6–10/group). All animals underwent blood pressure measurement and comprehensive echocardiography followed by euthanasia and the collection of tissue samples on GD 19. Increased circulating activin A (sham: 0.59 ± 0.05 ng/mL, 6 µg/day: 2.8 ± 0.41 ng/mL, p < 0.01) was associated with impaired GLS (Sham: −22.1 ± 0.8%, 6 µg/day: −14.7 ± 1.14%, p < 0.01). Activin A infusion (6 µg/day) increased beta-myosin heavy chain expression in heart tissue, indicating cardiac injury. In summary, our findings indicate that increasing levels of activin A during pregnancy induces cardiac dysfunction and supports the concept that activin A may serve as a possible mediator of PE-induced cardiac dysfunction.
Collapse
|
35
|
Lisco G, Giagulli VA, Iovino M, Zupo R, Guastamacchia E, De Pergola G, Iacoviello M, Triggiani V. Endocrine system dysfunction and chronic heart failure: a clinical perspective. Endocrine 2022; 75:360-376. [PMID: 34713389 PMCID: PMC8553109 DOI: 10.1007/s12020-021-02912-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/13/2021] [Indexed: 11/01/2022]
Abstract
Chronic heart failure (CHF) leads to an excess of urgent ambulatory visits, recurrent hospital admissions, morbidity, and mortality regardless of medical and non-medical management of the disease. This excess of risk may be attributable, at least in part, to comorbid conditions influencing the development and progression of CHF. In this perspective, the authors examined and described the most common endocrine disorders observed in patients with CHF, particularly in individuals with reduced ejection fraction, aiming to qualify the risks, quantify the epidemiological burden and discuss about the potential role of endocrine treatment. Thyroid dysfunction is commonly observed in patients with CHF, and sometimes it could be the consequence of certain medications (e.g., amiodarone). Male and female hypogonadism may also coexist in this clinical context, contributing to deteriorating the prognosis of these patients. Furthermore, growth hormone deficiency may affect the development of adult myocardium and predispose to CHF. Limited recommendation suggests to screen endocrine disorders in CHF patients, but it could be interesting to evaluate possible endocrine dysfunction in this setting, especially when a high suspicion coexists. Data referring to long-term safety and effectiveness of endocrine treatments in patients with CHF are limited, and their impact on several "hard" endpoints (such as hospital admission, all-cause, and cardiovascular mortality) are still poorly understood.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Michele Iovino
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Roberta Zupo
- National Institute of Gastroenterology, Saverio de Bellis, Research Hospital, Castellana Grotte, Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giovanni De Pergola
- National Institute of Gastroenterology, Saverio de Bellis, Research Hospital, Castellana Grotte, Bari, Italy
- Clinical Nutrition Unit, Medical Oncology, Department of Internal Medicine and Clinical Oncology, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Massimo Iacoviello
- Department of Medical and Surgical Sciences, Cardiology Department, University of Foggia, Foggia, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
36
|
Zhu YC, Liang B, Gu N. Cellular and Molecular Mechanism of Traditional Chinese Medicine on Ventricular Remodeling. Front Cardiovasc Med 2021; 8:753095. [PMID: 34926607 PMCID: PMC8671630 DOI: 10.3389/fcvm.2021.753095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Ventricular remodeling is related to the renin-angiotensin-aldosterone system, immune system, and various cytokines involved in inflammation, apoptosis, and cell signal regulation. Accumulated studies have shown that traditional Chinese medicine can significantly inhibit the process of ventricular remodeling, which may be related to the mechanism mentioned above. Here, we conducted a system overview to critically review the cellular and molecular mechanism of traditional Chinese medicine on ventricular remodeling. We mainly searched PubMed for basic research about the anti-ventricular remodeling of traditional Chinese medicine in 5 recent years, and then objectively summarized these researches. We included more than 25 kinds of Chinese herbal medicines including Qi-Li-Qian-Xin, Qi-Shen-Yi-Qi Pill, Xin-Ji-Er-Kang Formula, and Yi-Qi-Wen-Yang Decoction, and found that they can inhibit ventricular remodeling effectively through multi-components and multi-action targets, which are promoting the clinical application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Yong-Chun Zhu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
37
|
Pascual-Figal D, Bayés-Genis A, Beltrán-Troncoso P, Caravaca-Pérez P, Conde-Martel A, Crespo-Leiro MG, Delgado JF, Díez J, Formiga F, Manito N. Sacubitril-Valsartan, Clinical Benefits and Related Mechanisms of Action in Heart Failure With Reduced Ejection Fraction. A Review. Front Cardiovasc Med 2021; 8:754499. [PMID: 34859070 PMCID: PMC8631913 DOI: 10.3389/fcvm.2021.754499] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is a clinical syndrome characterized by the presence of dyspnea or limited exertion due to impaired cardiac ventricular filling and/or blood ejection. Because of its high prevalence, it is a major health and economic burden worldwide. Several mechanisms are involved in the pathophysiology of HF. First, the renin-angiotensin-aldosterone system (RAAS) is over-activated, causing vasoconstriction, hypertension, elevated aldosterone levels and sympathetic tone, and eventually cardiac remodeling. Second, an endogenous compensatory mechanism, the natriuretic peptide (NP) system is also activated, albeit insufficiently to counteract the RAAS effects. Since NPs are degraded by the enzyme neprilysin, it was hypothesized that its inhibition could be an important therapeutic target in HF. Sacubitril/valsartan is the first of the class of dual neprilysin and angiotensin receptor inhibitors (ARNI). In patients with HFrEF, treatment with sacubitril/valsartan has demonstrated to significantly reduce mortality and the rates of hospitalization and rehospitalization for HF when compared to enalapril. This communication reviews in detail the demonstrated benefits of sacubitril/valsartan in the treatment of patients with HFrEF, including reduction of mortality and disease progression as well as improvement in cardiac remodeling and quality of life. The hemodynamic and organic effects arising from its dual mechanism of action, including the impact of neprilysin inhibition at the renal level, especially relevant in patients with type 2 diabetes mellitus, are also reviewed. Finally, the evidence on the demonstrated safety and tolerability profile of sacubitril/valsartan in the different subpopulations studied has been compiled. The review of this evidence, together with the recommendations of the latest clinical guidelines, position sacubitril/valsartan as a fundamental pillar in the treatment of patients with HFrEF.
Collapse
Affiliation(s)
- Domingo Pascual-Figal
- Cardiology Department, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Antoni Bayés-Genis
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Department of Medicine, Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares, Autonomous University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares, Carlos III Institute of Health, Madrid, Spain
| | | | - Pedro Caravaca-Pérez
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares, Carlos III Institute of Health, Madrid, Spain
- Cardiology Service, Hospital Universitario 12 de Octubre, Madrid, Spain
- Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Maria G. Crespo-Leiro
- Advanced Heart Failure and Heart Transplant Unit, Cardiology Department, Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- Institute of Biomedical Research (INIBIC), A Coruña, Spain
| | - Juan F. Delgado
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares, Carlos III Institute of Health, Madrid, Spain
- Cardiology Service, Hospital Universitario 12 de Octubre, Madrid, Spain
- Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Javier Díez
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares, Carlos III Institute of Health, Madrid, Spain
- Cardiovascular Diseases Programme, Centre of Applied Medical Research, University of Navarra, Pamplona, Spain
- Departments of Nephrology, Cardiology, and Cardiac Surgery, University of Navarra Clinic, Pamplona, Spain
- Navarra Institute for Health Research, Pamplona, Spain
| | - Francesc Formiga
- Internal Medicine Department, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Nicolás Manito
- Heart Failure and Heart Transplantation Unit, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
38
|
Ceriello A, Catrinoiu D, Chandramouli C, Cosentino F, Dombrowsky AC, Itzhak B, Lalic NM, Prattichizzo F, Schnell O, Seferović PM, Valensi P, Standl E. Heart failure in type 2 diabetes: current perspectives on screening, diagnosis and management. Cardiovasc Diabetol 2021; 20:218. [PMID: 34740359 PMCID: PMC8571004 DOI: 10.1186/s12933-021-01408-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes is one of the most relevant risk factors for heart failure, the prevalence of which is increasing worldwide. The aim of the review is to highlight the current perspectives of the pathophysiology of heart failure as it pertains to type 2 diabetes. This review summarizes the proposed mechanistic bases, explaining the myocardial damage induced by diabetes-related stressors and other risk factors, i.e., cardiomyopathy in type 2 diabetes. We highlight the complex pathology of individuals with type 2 diabetes, including the relationship with chronic kidney disease, metabolic alterations, and heart failure. We also discuss the current criteria used for heart failure diagnosis and the gold standard screening tools for individuals with type 2 diabetes. Currently approved pharmacological therapies with primary use in type 2 diabetes and heart failure, and the treatment-guiding role of NT-proBNP are also presented. Finally, the influence of the presence of type 2 diabetes as well as heart failure on COVID-19 severity is briefly discussed.
Collapse
Affiliation(s)
- Antonio Ceriello
- IRCCS MultiMedica, Via Gaudenzio Fantoli, 16/15, 20138 Milan, Italy
| | - Doina Catrinoiu
- Faculty of Medicine, Clinical Center of Diabetes, Nutrition and Metabolic Diseases, Ovidius University of Constanta, Constanta, Romania
| | - Chanchal Chandramouli
- Duke-NUS Medical School, Singapore, Singapore
- National Heart Research Institute, National Heart Centre, Singapore, Singapore
| | - Francesco Cosentino
- Unit of Cardiology, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | | | - Baruch Itzhak
- Clalit Health Services and Technion Faculty of Medicine, Haifa, Israel
| | - Nebojsa Malić Lalic
- School of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University of Belgrade, Belgrade, Serbia
| | | | - Oliver Schnell
- Forschergruppe Diabetes e. V. at Helmholtz Centre Munich GmbH, Munich, Germany
| | - Petar M. Seferović
- School of Medicine, University of Belgrade, Belgrade University Medical Center, Belgrade, Serbia
| | - Paul Valensi
- Unit of Endocrinology, Diabetology, Nutrition, Jean Verdier Hospital, AP-HP, CRNH-IdF, CINFO, Paris 13 University, Bondy, France
| | - Eberhard Standl
- Forschergruppe Diabetes e. V. at Helmholtz Centre Munich GmbH, Munich, Germany
| | - the D&CVD EASD Study Group
- IRCCS MultiMedica, Via Gaudenzio Fantoli, 16/15, 20138 Milan, Italy
- Faculty of Medicine, Clinical Center of Diabetes, Nutrition and Metabolic Diseases, Ovidius University of Constanta, Constanta, Romania
- Duke-NUS Medical School, Singapore, Singapore
- National Heart Research Institute, National Heart Centre, Singapore, Singapore
- Unit of Cardiology, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
- Sciarc GmbH, Baierbrunn, Germany
- Clalit Health Services and Technion Faculty of Medicine, Haifa, Israel
- School of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University of Belgrade, Belgrade, Serbia
- Forschergruppe Diabetes e. V. at Helmholtz Centre Munich GmbH, Munich, Germany
- School of Medicine, University of Belgrade, Belgrade University Medical Center, Belgrade, Serbia
- Unit of Endocrinology, Diabetology, Nutrition, Jean Verdier Hospital, AP-HP, CRNH-IdF, CINFO, Paris 13 University, Bondy, France
| |
Collapse
|
39
|
Mann DL, Givertz MM, Vader JM, Starling RC, Shah P, McNulty SE, Anstrom KJ, Margulies KB, Kiernan MS, Mahr C, Gupta D, Redfield MM, Lala A, Lewis GD, DeVore AD, Desvigne-Nickens P, Hernandez AF, Braunwald E. Effect of Treatment With Sacubitril/Valsartan in Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA Cardiol 2021; 7:17-25. [PMID: 34730769 DOI: 10.1001/jamacardio.2021.4567] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance The use of sacubitril/valsartan is not endorsed by practice guidelines for use in patients with New York Heart Association class IV heart failure with a reduced ejection fraction because of limited clinical experience in this population. Objective To compare treatment with sacubitril/valsartan treatment with valsartan in patients with advanced heart failure and a reduced ejection fraction and recent New York Heart Association class IV symptoms. Design, Setting, and Participants A double-blind randomized clinical trial was conducted; a total of 335 patients with advanced heart failure were included. The trial began on March 2, 2017, and was stopped early on March 23, 2020, owing to COVID-19 risk. Intervention Patients were randomized to receive sacubitril/valsartan (target dose, 200 mg twice daily) or valsartan (target dose, 160 mg twice daily) in addition to recommended therapy. Main Outcomes and Measures The area under the curve (AUC) for the ratio of N-terminal pro-brain natriuretic peptide (NT-proBNP) compared with baseline measured through 24 weeks of therapy. Results Of the 335 patients included in the analysis, 245 were men (73%); mean (SD) age was 59.4 (13.5) years. Seventy-two eligible patients (18%) were not able to tolerate sacubitril/valsartan, 100 mg/d, during the short run-in period, and 49 patients (29%) discontinued sacubitril/valsartan during the 24 weeks of the trial. The median NT-proBNP AUC for the valsartan treatment arm (n = 168) was 1.19 (IQR, 0.91-1.64), whereas the AUC for the sacubitril/valsartan treatment arm (n = 167) was 1.08 (IQR, 0.75-1.60). The estimated ratio of change in the NT-proBNP AUC was 0.95 (95% CI 0.84-1.08; P = .45). Compared with valsartan, treatment with sacubitril/valsartan did not improve the clinical composite of number of days alive, out of hospital, and free from heart failure events. Aside from a statistically significant increase in non-life-threatening hyperkalemia in the sacubitril/valsartan arm (28 [17%] vs 15 [9%]; P = .04), there were no observed safety concerns. Conclusions and Relevance The findings of this trial showed that, in patients with chronic advanced heart failure with a reduced ejection fraction, there was no statistically significant difference between sacubitril/valsartan and valsartan with respect to reducing NT-proBNP levels. Trial Registration ClinicalTrials.gov Identifier: NCT02816736.
Collapse
Affiliation(s)
- Douglas L Mann
- Department of Medicine, Washington University in St Louis, St Louis, Missouri
| | - Michael M Givertz
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Justin M Vader
- Department of Medicine, Washington University in St Louis, St Louis, Missouri
| | - Randall C Starling
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Palak Shah
- Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Steven E McNulty
- Duke Clinical Research Institute, Duke University, Durham, North Carolina
| | - Kevin J Anstrom
- Duke Clinical Research Institute, Duke University, Durham, North Carolina
| | - Kenneth B Margulies
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | | | - Claudius Mahr
- Department of Medicine, University of Washington, Seattle
| | - Divya Gupta
- Department of Medicine, Emory University, Atlanta, Georgia
| | | | - Anuradha Lala
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gregory D Lewis
- Department of Medicine, Massachusetts General Hospital, Boston
| | - Adam D DeVore
- Duke Clinical Research Institute, Duke University, Durham, North Carolina.,Department of Medicine, Duke University, Durham, North Carolina
| | - Patrice Desvigne-Nickens
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Baltimore, Maryland
| | - Adrian F Hernandez
- Duke Clinical Research Institute, Duke University, Durham, North Carolina.,Department of Medicine, Duke University, Durham, North Carolina
| | - Eugene Braunwald
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
40
|
Iacoviello M, Palazzuoli A, Gronda E. Recent advances in pharmacological treatment of heart failure. Eur J Clin Invest 2021; 51:e13624. [PMID: 34043809 PMCID: PMC8596398 DOI: 10.1111/eci.13624] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Over the last years, several trials offered new evidence on heart failure (HF) treatment. DESIGN AND RESULTS For HF with reduced left ventricular ejection fraction, type 2 sodium-glucose cotransporter inhibitors, aside from sacubitril-valsartan, demonstrated extraordinary efficacy in ameliorating patients' prognosis. Some new molecules (eg vericiguat, omecamtiv mecarbil and ferric carboxymaltose) correct iron deficiency and have shown to be capable of furthering reducing the burden of HF hospitalisation. Finally, there is new evidence on the possible therapeutic approaches of HF patients with mid-range or preserved left ventricular ejection fraction. CONCLUSIONS This review aimed to revise the main novelties in the field of HF therapy and focus on how the daily clinical approach to patient treatment is changing.
Collapse
Affiliation(s)
- Massimo Iacoviello
- Cardiology Unit, Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | - Alberto Palazzuoli
- Cardiovascular Diseases Unit, Department of Internal Medicine, S. Maria alle Scotte Hospital, University of Siena, Siena, Italy
| | - Edoardo Gronda
- Dialisi e Trapianto Renale dell'adulto Dipartimento Di Medicina e Specialità Mediche, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico di Milano UOC di Nefrologia, Milan, Italy
| |
Collapse
|
41
|
Svarovskaya AV, Arzhanik MB, Ogurkova ON, Kuzheleva EA, Baev AE, Garganeeva AA. Predictive value of laboratory markers in the development of cardiac events in patients with stable coronary artery disease after elective endovascular revascularization. KARDIOLOGIYA 2021; 61:33-39. [PMID: 34713783 DOI: 10.18087/cardio.2021.9.n1528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022]
Abstract
Aim To reveal a relationship between preprocedural laboratory data and adverse cardiac outcomes (CO) in patients with stable ischemic heart disease (IHD) following elective endovascular revascularization (ER).Material and methods This study included 225 patients with IHD admitted for treatment to the Research Institute of Cardiology of the Tomsk National Research Medical Center. The study included patients with documented IHD and hemodynamically significant coronary stenoses requiring elective ER. Patients were divided into groups based on the presence of complications: group 1, 98 patients with adverse CO and group 2, 127 patients without adverse CO. Besides evaluation of complaints, history, and objective status, general clinical and biochemical tests were performed for all patients. Concentration of glycated hemoglobin (НbА1с) was measured by immunoturbidimetry (DiaSys Diagnostic Systems). Serum concentrations of insulin, interleukin-6 (IL-6), endothelin 1 (ET-1), and homocysteine were measured by enzyme immunoassay. Blood lipid profile was determined by enzymatic colorimetry (DiaSys). Content of non-high-density lipoprotein (non-HDL) cholesterol (CS) was calculated as: CS - HDL CS. Insulin resistance (IR) was assessed by the HOMА-IR index. IR was diagnosed at the index of 2.77. Statistical analyses were performed with Statistica 10.0 and Medcalc 19.2.6 software.Results A one-way regression analysis identified predictors for adverse CO following ER. The most significant predictors were fibrinogen (odds ratio (OR), 1.430; 95 % confidence interval (CI), 1.027-1.990), HbA1c (OR 1.825; 95 % CI, 1.283-2.598), homocysteine (OR, 1.555; 95 % CI, 1.348-1.794), ET-1 (OR, 94.408; 95 % CI, 16.762-531.720), triglycerides (TG)/glucose ratio (OR 1.815; 95 % CI, 1.155-2.853). Based on selected factors, logistic regression models were constructed. However, not all models had a high prognostic power. Only concentrations of ET-1 and homocysteine showed a high prognostic capability in respect of the adverse outcome (88.3 and 85.7 %, respectively).Conclusion For patients with IHD, the prognostic capability of ET-1 and homocysteine with respect of the risk for adverse CO following ER was the highest compared to other markers. The results of the study are completely consistent with data of literature and can be successfully used in clinical practice for optimizing the medical care of patients after elective ER.
Collapse
Affiliation(s)
- A V Svarovskaya
- Cardiology Research Institute, Tomsk National Research Medical Centre, Tomsk
| | | | - O N Ogurkova
- Cardiology Research Institute, Tomsk National Research Medical Centre, Tomsk
| | - E A Kuzheleva
- Cardiology Research Institute, Tomsk National Research Medical Centre, Tomsk
| | - A E Baev
- Cardiology Research Institute, Tomsk National Research Medical Centre, Tomsk
| | - A A Garganeeva
- Cardiology Research Institute, Tomsk National Research Medical Centre, Tomsk
| |
Collapse
|
42
|
Iacoviello M, Vitale E, Corbo MD, Correale M, Brunetti ND. Disease-modifier Drugs in Patients with Advanced Heart Failure: How to Optimize Their Use? Heart Fail Clin 2021; 17:561-573. [PMID: 34511205 DOI: 10.1016/j.hfc.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Therapy based on disease-modifier drugs is among the required criteria to diagnose advanced heart failure (AdvHF). Nevertheless, several conditions, such as hospitalization, hypotension, renal dysfunction, electrolyte abnormalities, medical inertia, and patients' adherence, can make the maintenance of optimal medical therapy in patients with AdvHF challenging. Moreover, in recent years, new classes of drugs able have been shown to be able to further modify the natural history of heart failure with reduced ejection fraction, but they are still not widely adopted. This article discusses the optimal use of disease-modifier drugs in patients with AdvHF as well as the possible usefulness of the new therapeutic opportunities.
Collapse
Affiliation(s)
- Massimo Iacoviello
- Cardiology Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 1, Foggia, Italy.
| | - Enrica Vitale
- Cardiology Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 1, Foggia, Italy
| | - Maria Delia Corbo
- Cardiology Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 1, Foggia, Italy
| | - Michele Correale
- Cardiology Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 1, Foggia, Italy
| | - Natale Daniele Brunetti
- Cardiology Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 1, Foggia, Italy
| |
Collapse
|
43
|
Zhang JM, Yu RQ, Wu FZ, Qiao L, Wu XR, Fu YJ, Liang YF, Pang Y, Xie CY. BMP-2 alleviates heart failure with type 2 diabetes mellitus and doxorubicin-induced AC16 cell injury by inhibiting NLRP3 inflammasome-mediated pyroptosis. Exp Ther Med 2021; 22:897. [PMID: 34257710 DOI: 10.3892/etm.2021.10329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure (CHF) and diabetes mellitus are associated with morbidity and mortality. CHF and diabetes generally simultaneously occur, resulting in adverse outcomes. Diabetes complicates cardiomyopathy and exacerbates heart failure conditions. An increase in natriuretic peptides, including atrial natriuretic peptide (ANP), and another endsogenously generated peptide, brain natriuretic peptide (BNP), serves an essential role in CHF. The aim of this study was to explore the molecular regulation between bone morphogenetic protein-2 (BMP-2) and ANP or BNP in diabetes-associated cardiomyopathy. In total, 25 serum samples were collected from patients with CHF with or without type 2 diabetes mellitus to compare with 25 controls. Cardiomyopathy and hyperglycemia were induced in rats by doxorubicin and streptozotocin, respectively. AC16 cells were used to study molecular mechanisms. BMP, ANP and BNP concentration in patients and rats were measured by ELISA. Flow cytometry was performed to analyze cell pyroptosis and ROS production. Reverse transcription-quantitative PCR and western blotting were used to examine mRNA and protein expression of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), pro-caspase-1, caspase-1 (p20) and gasdermin D. BMP-2 was negatively correlated with ANP and BNP in CHF patients with type 2 diabetes mellitus. Similar results were obtained in rats and AC16 cells. BMP-2 decreased the NLRP3 inflammasome activation and cell pyroptosis. The present study found evidence that the cardioprotective effects of BMP-2 act through ANP and BNP both in vivo and in vitro. BMP-2 inhibits inflammasome formation. The results suggested that BMP-2 may serve as a novel therapeutic target for the treatment of diabetic heart conditions.
Collapse
Affiliation(s)
- Jia-Mei Zhang
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Rui-Qun Yu
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Feng-Zhu Wu
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Liang Qiao
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Xiao-Rong Wu
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Ying-Jie Fu
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Yue-Feng Liang
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Yu Pang
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Chun-Yi Xie
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| |
Collapse
|
44
|
Egom EEA. Natriuretic Peptide Clearance Receptor (NPR-C) Pathway as a Novel Therapeutic Target in Obesity-Related Heart Failure With Preserved Ejection Fraction (HFpEF). Front Physiol 2021; 12:674254. [PMID: 34093235 PMCID: PMC8176210 DOI: 10.3389/fphys.2021.674254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is a major public health problem with cases projected to double over the next two decades. There are currently no US Food and Drug Administration–approved therapies for the health-related outcomes of HFpEF. However, considering the high prevalence of this heterogeneous syndrome, a directed therapy for HFpEF is one the greatest unmet needs in cardiovascular medicine. Additionally, there is currently a lack of mechanistic understanding about the pathobiology of HFpEF. The phenotyping of HFpEF patients into pathobiological homogenous groups may not only be the first step in understanding the molecular mechanism but may also enable the development of novel targeted therapies. As obesity is one of the most common comorbidities found in HFpEF patients and is associated with many cardiovascular effects, it is a viable candidate for phenotyping. Large outcome trials and registries reveal that being obese is one of the strongest independent risk factors for developing HFpEF and that this excess risk may not be explained by traditional cardiovascular risk factors. Recently, there has been increased interest in the intertissue communication between adipose tissue and the heart. Evidence suggests that the natriuretic peptide clearance receptor (NPR-C) pathway may play a role in the development and pathobiology of obesity-related HFpEF. Therefore, therapeutic manipulations of the NPR-C pathway may represent a new pharmacological strategy in the context of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Emmanuel Eroume A Egom
- Institut du Savoir Montfort, Hôpital Montfort, University of Ottawa, Ottawa, ON, Canada.,Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| |
Collapse
|
45
|
Li Z, Zhao H, Wang J. Metabolism and Chronic Inflammation: The Links Between Chronic Heart Failure and Comorbidities. Front Cardiovasc Med 2021; 8:650278. [PMID: 34026868 PMCID: PMC8131678 DOI: 10.3389/fcvm.2021.650278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) patients often suffer from multiple comorbidities, such as diabetes, atrial fibrillation, depression, chronic obstructive pulmonary disease, and chronic kidney disease. The coexistance of comorbidities usually leads to multi morbidity and poor prognosis. Treatments for HF patients with multi morbidity are still an unmet clinical need, and finding an effective therapy strategy is of great value. HF can lead to comorbidity, and in return, comorbidity may promote the progression of HF, creating a vicious cycle. This reciprocal correlation indicates there may be some common causes and biological mechanisms. Metabolism remodeling and chronic inflammation play a vital role in the pathophysiological processes of HF and comorbidities, indicating metabolism and inflammation may be the links between HF and comorbidities. In this review, we comprehensively discuss the major underlying mechanisms and therapeutic implications for comorbidities of HF. We first summarize the potential role of metabolism and inflammation in HF. Then, we give an overview of the linkage between common comorbidities and HF, from the perspective of epidemiological evidence to the underlying metabolism and inflammation mechanisms. Moreover, with the help of bioinformatics, we summarize the shared risk factors, signal pathways, and therapeutic targets between HF and comorbidities. Metabolic syndrome, aging, deleterious lifestyles (sedentary behavior, poor dietary patterns, smoking, etc.), and other risk factors common to HF and comorbidities are all associated with common mechanisms. Impaired mitochondrial biogenesis, autophagy, insulin resistance, and oxidative stress, are among the major mechanisms of both HF and comorbidities. Gene enrichment analysis showed the PI3K/AKT pathway may probably play a central role in multi morbidity. Additionally, drug targets common to HF and several common comorbidities were found by network analysis. Such analysis has already been instrumental in drug repurposing to treat HF and comorbidity. And the result suggests sodium-glucose transporter-2 (SGLT-2) inhibitors, IL-1β inhibitors, and metformin may be promising drugs for repurposing to treat multi morbidity. We propose that targeting the metabolic and inflammatory pathways that are common to HF and comorbidities may provide a promising therapeutic strategy.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hongmei Zhao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Schnaubelt S, Pilz A, Koller L, Kazem N, Hofer F, Fleck T, Laufer G, Steinlechner B, Niessner A, Sulzgruber P. The impact of volume substitution on post-operative atrial fibrillation. Eur J Clin Invest 2021; 51:e13456. [PMID: 33215691 PMCID: PMC8244026 DOI: 10.1111/eci.13456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Post-operative atrial fibrillation (POAF) represents a common complication after cardiac valve or coronary artery bypass surgery. While strain of atrial tissue is known to induce atrial fibrillating impulses, less attention has been paid to potentially strain-promoting values during the peri- and post-operative period. This study aimed to determine the association of peri- and post-operative volume substitution with markers of cardiac strain and subsequently the impact on POAF development and promotion. RESULTS A total of 123 (45.4%) individuals were found to develop POAF. Fluid balance within the first 24 hours after surgery was significantly higher in patients developing POAF as compared to non-POAF individuals (+1129.6 mL [POAF] vs +544.9 mL [non-POAF], P = .044). Post-operative fluid balance showed a direct and significant correlation with post-operative N-terminal pro-brain natriuretic peptide (NT-ProBNP) values (r = .287; P = .002). Of note, the amount of substituted volume significantly proved to be a strong and independent predictor for POAF with an adjusted odds ratio per one litre of 1.44 (95% CI: 1.09-1.31; P = .009). In addition, we observed that low pre-operative haemoglobin levels at admission were associated with a higher need of intraoperative transfusions and volume-demand. CONCLUSION Substitution of larger transfusion volumes presents a strong and independent predictor for the development of POAF. Via the observed distinct association with NT-proBNP values, it can reasonably be assumed that post-operative atrial fibrillating impulses are triggered via increased global cardiac strain. Optimized pre-operative management of pre-existing anaemia should be considered prior surgical intervention in terms of a personalized patient care.
Collapse
Affiliation(s)
| | - Arnold Pilz
- Department of Respiratory Medicine, Otto Wagner Hospital, Vienna, Austria
| | - Lorenz Koller
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Niema Kazem
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Felix Hofer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Tatjana Fleck
- Division of Cardiac Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Günther Laufer
- Division of Cardiac Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Steinlechner
- Department of Anesthesia, Intensive Care and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Alexander Niessner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Patrick Sulzgruber
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Kuwahara K. The natriuretic peptide system in heart failure: Diagnostic and therapeutic implications. Pharmacol Ther 2021; 227:107863. [PMID: 33894277 DOI: 10.1016/j.pharmthera.2021.107863] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Natriuretic peptides, which are activated in heart failure, play an important cardioprotective role. The most notable of the cardioprotective natriuretic peptides are atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), which are abundantly expressed and secreted in the atrium and ventricles, respectively, and C-type natriuretic peptide (CNP), which is expressed mainly in the vasculature, central nervous system, and bone. ANP and BNP exhibit antagonistic effects against angiotensin II via diuretic/natriuretic actions, vasodilatory actions, and inhibition of aldosterone secretion, whereas CNP is involved in the regulation of vascular tone and blood pressure, among other roles. ANP and BNP are of particular interest with respect to heart failure, as their levels, most notably BNP and N-terminal proBNP-a cleavage product produced when proBNP is processed to mature BNP-are increased in patients with heart failure. Furthermore, the identification of natriuretic peptides as sensitive markers of cardiac load has driven significant research into their physiological roles in cardiovascular homeostasis and disease, as well as their potential use as both biomarkers and therapeutics. In this review, I discuss the physiological functions of the natriuretic peptide family, with a particular focus on the basic research that has led to our current understanding of its roles in maintaining cardiovascular homeostasis, and the pathophysiological implications for the onset and progression of heart failure. The clinical significance and potential of natriuretic peptides as diagnostic and/or therapeutic agents are also discussed.
Collapse
Affiliation(s)
- Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| |
Collapse
|
48
|
Vasquez N, Carter S, Grodin JL. Angiotensin Receptor-Neprilysin Inhibitors and the Natriuretic Peptide Axis. Curr Heart Fail Rep 2021; 17:67-76. [PMID: 32394149 DOI: 10.1007/s11897-020-00458-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE OF THE REVIEW The purpose of this review is to describe the effects of angiotensin receptor neprilysin inhibitor (ARNI) therapy on the natriuretic peptide axis (NPA), with a particular focus on B-type natriuretic peptide (BNP), atrial natriuretic peptide (ANP), and C-type natriuretic peptide (CNP) to better understand the biology behind the improved outcomes in patients with heart failure with reduced ejection fraction (HFrEF). RECENT FINDINGS BNP, ANP, and CNP are the three main natriuretic peptides (NP); they share a common structure and ultimately mediate their actions by activating cyclic guanosine monophosphate (cGMP). ARNI therapy results in a decrease of N-terminal pro-BNP (NT-proBNP) and increase of BNP levels respectively. It is been questioned whether these changes may result from unique laboratory assays characteristics rather than actual biological implications. It appears to be that the prognostic accuracy of BNP for cardiovascular outcomes remains independent and comparable to that of NT-proBNP while on ARNI therapy. ANP levels also increase with ARNI therapy, but no consistent change has been described for CNP levels. There is evidence that the changes in BNP and NT-proBNP correlate with improvement in echocardiographic parameters of volume and function. The dual effect of neprilysin inhibition and angiotensin receptor blockade has substantial implications on the natriuretic peptide axis (NPA). The changes seen in BNP and NT-proBNP specifically have shown to correlate with improvement in echocardiographic parameters. Further results exploring the biologic effects of ARNI therapy on other NPs are still pending and likely will provide further insights in the mechanisms behind the improvement in cardiac function and clinical outcomes.
Collapse
Affiliation(s)
- Nestor Vasquez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Spencer Carter
- Department of Internal Medicine Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Justin L Grodin
- Department of Internal Medicine Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
49
|
Pirlamarla P, Rame E, Hoopes C, Rajapreyar I. Pulmonary vasodilator use in continuous-flow left ventricular assist device management. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:522. [PMID: 33850919 PMCID: PMC8039680 DOI: 10.21037/atm-20-4710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pulmonary hypertension (PH) due to left heart disease is the most common etiology for PH. PH in patients with heart failure with reduced fraction (HFrEF) is associated with reduced functional capacity and increased mortality. PH-HFrEF can be isolated post-capillary or combined pre- and post-capillary PH. Chronic elevation of left-sided filling pressures may lead to reverse remodeling of the pulmonary vasculature with development of precapillary component of PH. Untreated PH in patients with HFrEF results in predominant right heart failure (RHF) with irreversible end-organ dysfunction. Management of PH-HFrEF includes diuretics, vasodilators like angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers or angiotensin-receptor blocker-neprilysin inhibitors, hydralazine and nitrates. There is no role for pulmonary vasodilator use in patients with PH-HFrEF due to increased mortality in clinical trials. In patients with end-stage HFrEF and fixed PH unresponsive to vasodilator challenge, implantation of continuous-flow left ventricular assist device (cfLVAD) results in marked improvement in pulmonary artery pressures within 6 months due to left ventricular (LV) mechanical unloading. The role of pulmonary vasodilators in management of precapillary component of PH after cfLVAD is not well-defined. The purpose of this review is to discuss the pharmacologic management of PH after cfLVAD implantation.
Collapse
Affiliation(s)
- Preethi Pirlamarla
- Advanced Heart Failure and Transplant Cardiology, Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Eduardo Rame
- Advanced Heart Failure and Transplant Cardiology, Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Charles Hoopes
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Indranee Rajapreyar
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama-Birmingham School of Medicine, Birmingham, AL, USA
| |
Collapse
|
50
|
Liu S, Wang Y, Lu S, Hu J, Zeng X, Liu W, Wang Y, Wang Z. Sacubitril/valsartan treatment relieved the progression of established pulmonary hypertension in rat model and its mechanism. Life Sci 2020; 266:118877. [PMID: 33310048 DOI: 10.1016/j.lfs.2020.118877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 11/28/2022]
Abstract
AIMS Pulmonary hypertension (PH) is a fatal disease identified by progressive elevated pulmonary arterial pressure, which neurohormonal activation is a notable contributor to its development. Sacubitril/valsartan is a complex of sacubitril [via enhancing the natriuretic peptide (NP) system] and valsartan [via blocking the renin-angiotensin-aldosterone system (RAAS)]. Regulation of the two neurohormonal system had been shown to attenuate PH. This study was to explore the role of sacubitril/valsartan in both monocrotaline (MCT)-induced and hypoxia-induced rat models and the underlying mechanism. MAIN METHODS The rats were treated with MCT or hypoxic environment for 14 days, after that sacubitril/valsartan were given for another 14 days. Hemodynamic measurements and histological assessments were performed. The expression of NPs was measured using RT-PCR and ELISA, while the protein level of natriuretic peptide receptors (NPRs) and AT1 receptor were detected by western blot, the concentrations of cGMP, IL-1β, IL-6, TNF-α and TGF-β1 were tested by ELISA. KEY FINDINGS We found that sacubitril/valsartan significantly improved the hemodynamic and histological data of two PH models. Sacubitril/valsartan suppressed the protein expression of AT1 receptor (P < 0.05). The intervention increased the expression of ANP and CNP (P< 0.05) and therefore upregulated the protein expression of NPRs (P < 0.05), raised the concentration of cGMP (P < 0.05). In addition, the treatment reduced the concentration of IL-1β, IL-6 and TNF-α (P < 0.05) but have no effects on TGF-β1. SIGNIFICANCE Sacubitril/valsartan alleviated PH in MCT-induced and hypoxia-induced rat models by inhibiting the activated RAAS, promoting ANP/NPR-A/cGMP and CNP/NPR-B/cGMP pathway, restoring the NPR-C signaling and the anti-inflammatory effects.
Collapse
Affiliation(s)
- ShuangYe Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Ya Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Shuai Lu
- Department of Cardiac Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Jing Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - XiaoHui Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - WenHu Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| | - ZhaoHui Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| |
Collapse
|