1
|
Kaur P, Dahiya R, Nandave M, Sharma K, Goyal RK. Unveiling the crucial role of intercellular adhesion molecule-1 in secondary diabetic complications. Cell Biochem Funct 2024; 42:e4037. [PMID: 38736204 DOI: 10.1002/cbf.4037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/06/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Diabetes mellitus is associated with secondary complications such as diabetic retinopathy (DR), nephropathy (DN), and cardiomyopathy (DCM), all of which significantly impact patient health. Intercellular adhesion molecule-1 (ICAM-1) has been implicated in inflammatory responses and endothelial dysfunction, both crucial in the pathogenesis of these complications. The goal of this review is to investigate at potential therapy methods that target ICAM-1 pathways and to better understand the multifaceted role of ICAM-1 in secondary diabetic problems. A meticulous analysis of scholarly literature published globally was conducted to examine ICAM-1involvement in inflammatory processes, endothelial dysfunction, and oxidative stress related to diabetes and its complications. Elevated ICAM-1 levels are strongly associated with augmented leukocyte adhesion, compromised microvascular function, and heightened oxidative stress in diabetes. These pathways contribute significantly to DR, DN, and DCM pathogenesis, highlighting ICAM-1 as a key player in their progression. Understanding ICAM-1 role in secondary diabetic complications offers insights into novel therapeutic strategies. Targeting ICAM-1 pathways may mitigate inflammation, improve endothelial function, and ultimately attenuate diabetic complications, thereby enhancing patient health outcomes. Continued research in this area is crucial for developing effective targeted therapies.
Collapse
Affiliation(s)
- Prabhnain Kaur
- Department of Pharmacology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Ritu Dahiya
- Department of Pharmacology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Mukesh Nandave
- Department of Pharmacology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Ramesh K Goyal
- Department of Pharmacology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
2
|
Tamene W, Wassie L, Marconi VC, Abebe M, Kebede A, Sack U, Howe R. Protein Expression of TLR2, TLR4, and TLR9 on Monocytes in TB, HIV, and TB/HIV. J Immunol Res 2024; 2024:9399524. [PMID: 38660059 PMCID: PMC11042910 DOI: 10.1155/2024/9399524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/08/2024] [Accepted: 04/06/2024] [Indexed: 04/26/2024] Open
Abstract
Toll-like receptors (TLRs) have a critical role in recognizing pathogenic patterns and initiating immune responses against TB and HIV. Previously, studies described the gene expression of TLRs in patients with TB and HIV. Here, we demonstrated TLRs protein expressions and their association with clinical status and plasma markers in TB, HIV, and TB/HIV coinfection. The phenotyping of TLR2, TLR4, and TLR9 on CD14+ monocytes and their subsets were determined by multicolor flow cytometry. Host plasma biomarkers and microbial indices were measured using Luminex Multiplex assay and standard of care tools, respectively. TLR2 expression significantly enhanced in TB, slightly increased in HIV but slightly reduced in TB/HIV coinfection compared to apparently health controls (HC). On the other hand, TLR4 expression was significantly increased in TB, HIV, and TB/HIV compared to HC. Expression of TLR4 was equally enhanced on classical and intermediate monocytes while higher TLR2 expression on intermediate than classical monocytes. TLR4 had a positive correlation pattern with plasma biomarkers while TLR2 had an inverse correlation pattern. TLR4 is associated with disease severity while TLR2 is with the immune-competent status of patients. Our findings demonstrated that the pattern of TLR expression is disease as well as monocyte subset specific and distinct factors drive these differences.
Collapse
Affiliation(s)
- Wegene Tamene
- HIV and TB Research Directorate, Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia
- Mycobacterial Disease Research Directorate, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Liya Wassie
- Mycobacterial Disease Research Directorate, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Vincent C. Marconi
- School of Medicine, Rollins School of Public Health and the Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Meseret Abebe
- Mycobacterial Disease Research Directorate, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Amha Kebede
- HIV and TB Research Directorate, Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Rawleigh Howe
- Mycobacterial Disease Research Directorate, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Leaman R, Wei CH, Allot A, Lu Z. Ten tips for a text-mining-ready article: How to improve automated discoverability and interpretability. PLoS Biol 2020; 18:e3000716. [PMID: 32479517 PMCID: PMC7289435 DOI: 10.1371/journal.pbio.3000716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/11/2020] [Indexed: 12/22/2022] Open
Abstract
Data-driven research in biomedical science requires structured, computable data. Increasingly, these data are created with support from automated text mining. Text-mining tools have rapidly matured: although not perfect, they now frequently provide outstanding results. We describe 10 straightforward writing tips—and a web tool, PubReCheck—guiding authors to help address the most common cases that remain difficult for text-mining tools. We anticipate these guides will help authors’ work be found more readily and used more widely, ultimately increasing the impact of their work and the overall benefit to both authors and readers. PubReCheck is available at http://www.ncbi.nlm.nih.gov/research/pubrecheck. Your published research is already being processed with automated tools, and text mining will become more common; this Community Page article describes how you can help these tools process your work more accurately, including a web tool, PubReCheck.
Collapse
Affiliation(s)
- Robert Leaman
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Chih-Hsuan Wei
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Alexis Allot
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
4
|
Yu X, Shang H, Jiang Y. ICAM-1 in HIV infection and underlying mechanisms. Cytokine 2019; 125:154830. [PMID: 31491723 DOI: 10.1016/j.cyto.2019.154830] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/29/2019] [Accepted: 08/24/2019] [Indexed: 02/07/2023]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a glycoprotein that participates in inflammatory and immune responses. Both cell surface and soluble ICAM-1 are significantly increased during human immunodeficiency virus (HIV) infection, and ICAM-1 has important functions in promoting inflammatory responses and enhancing HIV infectivity; however, a comprehensive summary these roles has yet to be elaborated. In this review we describe the general biological characteristics of ICAM-1, its association with HIV disease progression and promotion of HIV production, mechanisms inducing upregulation of ICAM-1, and possible intervention strategies, representing important insights in the context of HIV treatment.
Collapse
Affiliation(s)
- Xiaowen Yu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China.
| | - Yongjun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China.
| |
Collapse
|
5
|
Randeria SN, Thomson GJA, Nell TA, Roberts T, Pretorius E. Inflammatory cytokines in type 2 diabetes mellitus as facilitators of hypercoagulation and abnormal clot formation. Cardiovasc Diabetol 2019; 18:72. [PMID: 31164120 PMCID: PMC6549308 DOI: 10.1186/s12933-019-0870-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The global burden of type 2 diabetes mellitus (T2DM), together with the presence of cardiovascular risk in this population, is reaching pandemic levels. A prominent feature of T2DM is chronic and systemic inflammation, with the accompanying presence of circulating and dysregulated inflammatory biomarkers; which in turn is associated with abnormal clot formation. METHODS Here, we investigate the correlation between abnormal blood clotting, using thromboelastography (TEG), clot ultrastructure using scanning electron microscopy (SEM) and the presence of a dysregulated inflammatory cytokine profile, by examining various circulating biomarkers. RESULTS Our results show that many biomarkers, across TEG, cytokine and lipid groups, were greatly dysregulated in the T2DM sample. Furthermore, our T2DM sample's coagulation profiles were significantly more hypercoagulable when compared to our heathy sample, and ultrastructural analysis confirmed a matted and denser clot structure in the T2DM sample. CONCLUSIONS We suggest that dysregulated circulating molecules may in part be responsible for a hypercoagulable state and vascular dysfunction in the T2DM sample. We propose further that a personalized approach could be of great value when planning treatment and tracking the patient health status after embarking on a treatment regimes, and that looking to novel inflammatory and vascular biomarkers might be crucial.
Collapse
Affiliation(s)
- Shehan N Randeria
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Greig J A Thomson
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Theo A Nell
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Timothy Roberts
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
6
|
Gene expression analysis for pneumonia caused by Gram-positive bacterial infection. Exp Ther Med 2018; 15:3989-3996. [PMID: 29581747 DOI: 10.3892/etm.2018.5904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022] Open
Abstract
Gram-positive bacteria are an important pathogenic factor for bacterial pneumonia. The aim of the present study was to identify the differentially expressed genes (DEGs) and to explore their associated pathways or expression patterns. Expression profiling of gene arrays from two independent datasets, GSE6269 and GSE35716, were downloaded from the Gene Expression Omnibus. The DEGs between peripheral blood samples from healthy controls and patients with bacterial pneumonia were identified. The Functional Annotation Tool in the Database for Annotation, Visualization and Integrated Discovery was used to annotate and analyze the DEGs in Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Multiple proteins were used to generate a protein-protein interaction (PPI) network. A total of 624 (621 annotated) were identified in the GSE6269 dataset and 398 (295 annotated) DEGs were identified in the GSE35716 dataset between pneumonia and healthy samples. A total of 40 common DEGs were identified between the 2 datasets, including 4 downregulated and 32 upregulated DEGs. In the GO category cellular component, melanosome was highly enriched among 11 genes; in the category biological process, the three most enriched items were regulation of ruffle assembly, negative regulation of calcium ion transport and necroptotic process. In the KEGG terms, only the nuclear factor-κB signaling pathway (Homo sapiens 04064) was significantly enriched. In the PPI network, five genes (CCL4, TIMP metallopeptidase inhibitor 1, intercellular adhesion molecule 1, plasminogen activator, urokinase receptor and cathepsin B) were identified to have a high degree of interaction with other DEGs. In conclusion, these five genes may represent key genes associated with pneumonia caused by Gram-positive bacteria. All of these results provide primary information and basic knowledge to understand the mechanisms of the pathogenesis.
Collapse
|
7
|
Son Y, Kim BY, Park YC, Kim K. Diclofenac Inhibits 27-hydroxycholesterol-induced Differentiation of Monocytic Cells into Mature Dendritic Cells. Immune Netw 2017; 17:179-185. [PMID: 28680379 PMCID: PMC5484648 DOI: 10.4110/in.2017.17.3.179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 12/28/2022] Open
Abstract
We investigated whether diclofenac could influence the development of antigen-presenting cells in an oxygenated cholesterol-rich environment by determining its effects on the 27-hydroxycholesterol (27OHChol)-induced differentiation of monocytic cells into mature dendritic cells (mDCs). Treatment of human THP-1 monocytic cells with diclofenac antagonized the effects of 27OHChol by attenuating dendrite formation and cell attachment and promoting endocytic function. Diclofenac inhibited the transcription and surface expression of the mDC markers of CD80, CD83, and CD88, and reduced the 27OHChol-induced elevation of surface levels of MHC class I and II molecules to the basal levels in a dose-dependent manner. It also reduced the expression of CD197, a molecule involved in DC homing and migration. These results indicate that diclofenac inhibits the differentiation of monocytic cells into mDCs, thereby potentially modulating adaptive immune responses in a milieu rich in cholesterol oxidation products.
Collapse
Affiliation(s)
- Yonghae Son
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea.,Institute of Marine BioTechnology, Pusan National University, Busan 46241, Korea
| | - Bo-Young Kim
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Young Chul Park
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Koanhoi Kim
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea
| |
Collapse
|
8
|
El-Sisi AE, Sokar SS, Abu-Risha SE, Ibrahim HA. Combination of tadalafil and diltiazem attenuates renal ischemia reperfusion-induced acute renal failure in rats. Biomed Pharmacother 2016; 84:861-869. [DOI: 10.1016/j.biopha.2016.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 12/24/2022] Open
|
9
|
Dexamethasone Suppresses Oxysterol-Induced Differentiation of Monocytic Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2915382. [PMID: 27340507 PMCID: PMC4906206 DOI: 10.1155/2016/2915382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/14/2016] [Accepted: 05/15/2016] [Indexed: 11/21/2022]
Abstract
Oxysterol like 27-hydroxycholesterol (27OHChol) has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined whether dexamethasone (Dx) affects 27OHChol-induced differentiation using THP-1 cells. Treatment of monocytic cells with Dx resulted in almost complete inhibition of transcription and surface expression of CD80, CD83, and CD88 induced by 27OHChol. Elevated surface levels of MHC class I and II molecules induced by 27OHChol were reduced to basal levels by treatment with Dx. A decreased endocytosis ability caused by 27OHChol was recovered by Dx. We also examined effects of Dx on expression of CD molecules involved in atherosclerosis. Increased levels of surface protein and transcription of CD105, CD137, and CD166 by treatment with 27OHChol were significantly inhibited by cotreatment with Dx. These results indicate that Dx inhibits 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules whose levels are associated with atherosclerosis. In addition, we examined phosphorylation of AKT induced by 27OHChol and effect of Dx, where cotreatment with Dx inhibited the phosphorylation of AKT. The current study reports that Dx regulates oxysterol-mediated dendritic cell differentiation of monocytic cells.
Collapse
|
10
|
Jing L, Wang JG, Zhang JZ, Cao CX, Chang Y, Dong JD, Guo FY, Li PA. Upregulation of ICAM-1 in diabetic rats after transient forebrain ischemia and reperfusion injury. JOURNAL OF INFLAMMATION-LONDON 2014; 11:35. [PMID: 25389378 PMCID: PMC4226864 DOI: 10.1186/s12950-014-0035-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/21/2014] [Indexed: 01/13/2023]
Abstract
Background Hyperglycemia exacerbates brain damage caused by cerebral ischemia. Neuroinflammation may play a role in mediating such enhanced damage. The objectives of this study were to examine the mRNA and protein levels and cell type distribution of ICAM-1 after cerebral ischemia in normo-and diabetic hyperglycemic rats. Results Compared to normoglycemic ischemia animals, diabetes aggravated neuronal death, decreased Nissl body staining, and increased ICAM-1 mRNA and protein levels in the frontal cortex. The increased ICAM-1 was located not only in vascular endothelial cells but also in cortical neurons. Conclusions Our results suggest that exacerbated neuro-inflammation in the brain may mediate the detrimental effects of diabetes on the ischemic brain.
Collapse
Affiliation(s)
- Li Jing
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - Jian-Gang Wang
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - Jian-Zhong Zhang
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - Cai-Xia Cao
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - Yue Chang
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - Jian-Da Dong
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - Feng-Ying Guo
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, North Carolina USA
| |
Collapse
|
11
|
Manzetti S, Zhang J, van der Spoel D. Thiamin Function, Metabolism, Uptake, and Transport. Biochemistry 2014; 53:821-35. [DOI: 10.1021/bi401618y] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sergio Manzetti
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
for Cell and Molecular Biology, University of Uppsala, Box 596, 751
24 Uppsala, Sweden
- Fjordforsk A.S., Fresvik 6896, Norway
| | - Jin Zhang
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
for Cell and Molecular Biology, University of Uppsala, Box 596, 751
24 Uppsala, Sweden
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - David van der Spoel
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
for Cell and Molecular Biology, University of Uppsala, Box 596, 751
24 Uppsala, Sweden
| |
Collapse
|
12
|
|
13
|
Taylor K. Reporting the Implementation of the Three Rs in European Primate and Mouse Research Papers: Are We Making Progress? Altern Lab Anim 2010; 38:495-517. [DOI: 10.1177/026119291003800613] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is now more than 20 years since both Council of Europe Convention ETS123 and EU Directive 86/609?EEC were introduced, to promote the implementation of the Three Rs in animal experimentation and to provide guidance on animal housing and care. It might therefore be expected that reports of the implementation of the Three Rs in animal research papers would have increased during this period. In order to test this hypothesis, a literature survey of animal-based research was conducted. A randomly-selected sample from 16 high-profile medical journals, of original research papers arising from European institutions that featured experiments which involved either mice or primates, were identified for the years 1986 and 2006 (Total sample = 250 papers). Each paper was scored out of 10 for the incidence of reporting on the implementation of Three Rs-related factors corresponding to Replacement (justification of non-use of non-animal methods), Reduction (statistical analysis of the number of animals needed) and Refinement (housing aspects, i.e. increased cage size, social housing, enrichment of cage environment and food; and procedural aspects, i.e. the use of anaesthesia, analgesia, humane endpoints, and training for procedures with positive reinforcement). There was no significant increase in overall reporting score over time, for either mouse or primate research. By 2006, mouse research papers scored an average of 0 out of a possible 10, and primate research papers scored an average of 1.5. This review provides systematic evidence that animal research is still not properly reported, and supports the call within the scientific community for action to be taken by journals to update their policies.
Collapse
Affiliation(s)
- Katy Taylor
- British Union for the Abolition of Vivisection, London, UK
| |
Collapse
|
14
|
Katz F, Gibbons B, Chessells J. An Early B Cell Line with a Variant 11;19 Translocation. Leuk Lymphoma 2009; 4:397-404. [DOI: 10.3109/10428199109068092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Freeman GJ, Cardoso AA, Boussiotis VA, Anumanthan A, Groves RW, Kupper TS, Clark EA, Nadler LM. The BB1 Monoclonal Antibody Recognizes Both Cell Surface CD74 (MHC Class II-Associated Invariant Chain) as Well as B7-1 (CD80), Resolving the Question Regarding a Third CD28/CTLA-4 Counterreceptor. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.6.2708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The identification of all CD28/CTLA-4 counterreceptors is critical to our understanding of this pivotal pathway of T cell activation. Clouding our understanding has been the reported discrepancies in expression and function of the B7-1 (CD80) molecule based upon the use of the BB1 vs other anti-B7-1 mAbs. To resolve this issue, we have cloned a BB1-binding molecule from the BB1+B7-1− NALM-6 pre-B cell line. Here, we demonstrate that this BB1-binding molecule is identical to the cell surface form of CD74 (MHC class II-associated invariant chain). CD74-transfected cells bound the BB1 mAb but not other anti-CD80 mAbs, CD28-Ig, or CTLA4Ig. Absorption and blocking experiments confirmed the reactivity of BB1 mAb with CD74. A region of weak homology was identified between CD74 and the region of B7-1 encoding the BB1 epitope. Therefore, the BB1 mAb binds to a protein distinct from B7-1, and this epitope is also present on the B7-1 protein. Many of the puzzling observations in the literature concerning the expression of human B7-1 are resolved by an understanding that BB1 staining is the summation of CD74 plus B7-1 expression. This observation requires the field to reconsider studies using BB1 mAb in the analysis of CD80 expression and function.
Collapse
Affiliation(s)
| | | | | | | | - Richard W. Groves
- †Division of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Thomas S. Kupper
- †Division of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Edward A. Clark
- ‡Department of Microbiology, University of Washington, Seattle, WA 98195
| | - Lee M. Nadler
- *Department of Adult Oncology, Dana-Farber Cancer Institute and
| |
Collapse
|
16
|
Boussiotis VA, Freeman GJ, Gribben JG, Daley J, Gray G, Nadler LM. Activated human B lymphocytes express three CTLA-4 counterreceptors that costimulate T-cell activation. Proc Natl Acad Sci U S A 1993; 90:11059-63. [PMID: 7504293 PMCID: PMC47921 DOI: 10.1073/pnas.90.23.11059] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Signaling via the T-cell receptor complex is necessary but not sufficient to induce antigen-specific T lymphocytes to expand clonally. To proliferate, T cells must receive one or more costimulatory signals provided by antigen presenting cells (APCs). One such critical costimulatory signal is delivered by the CD28/CTLA-4 counterreceptor, B7, expressed on APCs. B7 costimulation induces CD28 signaling, resulting in interleukin 2 (IL-2) secretion, and T-cell proliferation. Conversely, T-cell receptor signaling in the absence of B7 costimulation results in induction of antigen-specific tolerance. Here, we show that activated human B lymphocytes express two additional CTLA-4 counterreceptors also capable of providing T-cell costimulation. At 24 hr postactivation, B cells express a CTLA-4 counterreceptor not recognized by anti-B7 or -BB-1 monoclonal antibodies (mAbs), which induces detectable IL-2 secretion and T-cell proliferation. At 48 and 72 hr postactivation, B cells express both B7 and a third CTLA-4 counterreceptor identified by the anti-BB-1 mAb. BB-1 appears to be a molecule distinct from B7 by its expression on B7- cells and its capacity to induce T cells to proliferate without significant accumulation of IL-2. As observed for B7, costimulatory signals mediated by these alternative CTLA-4/CD28 counterreceptors are likely to be essential for generation of an immune response and their absence may result in antigen-specific tolerance. We propose the following terminology for these CTLA-4 counterreceptors: (i) B7, B7-1; (ii) early CTLA-4 binding counterreceptor, B7-2; and (iii) BB-1, B7-3.
Collapse
Affiliation(s)
- V A Boussiotis
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA
| | | | | | | | | | | |
Collapse
|
17
|
Augustin M, Dietrich A, Niedner R, Kapp A, Schöpf E, Ledbetter JA, Brady W, Linsley PS, Simon JC. Phorbol-12-myristate-13-acetate-treated human keratinocytes express B7-like molecules that serve a costimulatory role in T-cell activation. J Invest Dermatol 1993; 100:275-81. [PMID: 7680055 DOI: 10.1111/1523-1747.ep12469748] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In previous studies, Phorbol-12-myristate-13-acetate (PMA)-treated human keratinocytes (PMA-HNK) were shown to induce T-cell proliferation via a major histocompatibility complex (MHC)- and antigen (Ag)-independent mechanism, that was mediated in part by PMA-induced intercellular adhesion molecule (ICAM)-1 on HNK. Recently, the interaction of the B7 Ag on antigen-presenting cells with its ligand CD28 on T cells has been shown to deliver activation signals distinct from the interaction of MHC/Ag with the T-cell receptor. These findings led us to assess whether B7-dependent signals play a role in T-cell proliferation induced by PMA-HNK. We first examined B7 expression on HNK by staining with three different monoclonal antibodies (MoAbs). When analyzed by fluorescence-activated cell sorter, untreated HNK stained only faintly. By contrast, PMA induced a dose-dependent upregulation of B7 staining. This staining identifies a molecule closely related to B7 because it was blocked by purified recombinant B7 immunoglobulin. Upregulation of B7 staining was first observed 16 h after PMA treatment and persisted for at least 48 h; it was protein kinase C dependent and required de novo protein synthesis. Anti-B7 MoAbs reduced specifically the capacity of PMA-HNK to trigger proliferation of allogeneic peripheral blood mononuclear cells and T cells. The combination of anti-B7 and anti-ICAM-1 MoAbs further reduced this response. We conclude that PMA upregulates on HNK the expression of a B7-like molecule that contributes in concert with ICAM-1 to the capacity of PMA-HNK to induce proliferation of allogeneic T cells.
Collapse
Affiliation(s)
- M Augustin
- Department of Dermatology, University of Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Selvakumar A, Mohanraj BK, Eddy RL, Shows TB, White PC, Dupont B. Genomic organization and chromosomal location of the human gene encoding the B-lymphocyte activation antigen B7. Immunogenetics 1992; 36:175-81. [PMID: 1377173 DOI: 10.1007/bf00661094] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The human B lymphocyte activation antigen B7 provides regulatory signals for T lymphocytes as a consequence of binding to its ligands CD28 and CTLA-4. The cDNA for B7 has previously been isolated and predicted to encode a type I membrane protein. The predicted polypeptide has a secretory signal peptide followed by two contiguous Ig-like domains, a hydrophobic transmembrane region and a short cytoplasmic tail. Here we report the exon-intron genomic organization of human B7 and the chromosomal location. The gene has six exons that span approximately 32 kilobases of DNA. Exon 1 is not translated and the second exon contains the initiation ATG codon and encodes a predicted signal peptide. This gene structure is characteristic for several eukaryotic genes with tissue-specific expression. The third and fourth exons correspond to two Ig-like domains whereas the fifth and sixth exons encode respectively the trans-membrane portion and the cytoplasmic tail. This close relationship between exons and functional domains is a characteristic feature of genes of the Ig superfamily. Cell surface expression of the B7 gene product has previously been mapped to human chromosome 12 by antibody reactivity with the B7-specific monoclonal antibody BB-1. We here demonstrate that the B7 gene is located to the q21-qter region of chromosome 3 by DNA blot analysis of human x rodent somatic cell hybrids.
Collapse
Affiliation(s)
- A Selvakumar
- Human Immunogenetics Laboratory, Sloan-Kettering Institute for Cancer Research, New York, NY 10021
| | | | | | | | | | | |
Collapse
|
19
|
Ballantyne CM, Kozak CA, O'Brien WE, Beaudet AL. Assignment of the gene for intercellular adhesion molecule-1 (Icam-1) to proximal mouse chromosome 9. Genomics 1991; 9:547-50. [PMID: 1674500 DOI: 10.1016/0888-7543(91)90423-c] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Intercellular adhesion molecule-1 (ICAM-1) is an integral membrane protein, a member of the immunoglobulin superfamily, and a ligand for LFA-1, a beta 2 leukocyte integrin. ICAM-1 has a tissue distribution similar to that of the major histocompatibility complex class II antigens and is likely to play a role in inflammatory responses. We have mapped this gene to proximal mouse chromosome 9 by using mouse-hamster somatic cell hybrids and an interspecies backcross. Since human ICAM-1 maps to chromosome 19, it joins the LDL receptor to establish a new conserved syntenic segment between human chromosome 19 and proximal mouse chromosome 9. Murine Icam-1 maps between Cbl-2 and the centromere in the same region as one of the susceptibility genes for insulin-dependent diabetes mellitus (Idd-2) that is postulated to play a role in immune function and inflammation leading to insulitis. The mapping of Icam-1 to the region known to contain the Idd-2 gene raises the question of whether the phenotypic differences attributed to the Idd-2 locus might be due to genetic variation in Icam-1.
Collapse
Affiliation(s)
- C M Ballantyne
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | |
Collapse
|
20
|
Brown WR, MacKinnon PJ, Villasanté A, Spurr N, Buckle VJ, Dobson MJ. Structure and polymorphism of human telomere-associated DNA. Cell 1990; 63:119-32. [PMID: 2208276 DOI: 10.1016/0092-8674(90)90293-n] [Citation(s) in RCA: 248] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have analyzed the DNA sequences associated with four different human telomeres. Two are members of distinct repeated sequence families which are located mainly but not exclusively at telomeres. Two are unique in the genome, one deriving from the long arm telomere of chromosome 7 and the other from the pseudoautosomal telomere. One telomere-associated repeated sequence has a polymorphic distribution among the chromosome ends, being present at a different combination of ends in different individuals. These data thus identify a new source of human genetic variation and indicate that the canonical features of the organization of telomere-associated DNA are widely conserved in evolution.
Collapse
Affiliation(s)
- W R Brown
- Biochemistry Department, Oxford University, England
| | | | | | | | | | | |
Collapse
|
21
|
Aman P, Rowe M, Kai C, Finke J, Rymo L, Klein E, Klein G. Effect of the EBNA-2 gene on the surface antigen phenotype of transfected EBV-negative B-lymphoma lines. Int J Cancer 1990; 45:77-82. [PMID: 2153641 DOI: 10.1002/ijc.2910450115] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two EBV-negative B-lymphoma cell lines with different phenotypes were transfected with the Epstein-Barr virus EBNA-2 gene. The effects on the expression of 8 B-cell surface markers were analyzed by immunofluorescence methods. In one of the EBNA-2 transfected cell lines, the expression of the CR2 receptor CD21 was induced and the expression of CD23 was enhanced. The results suggest that the EBNA-2 gene is involved in the regulation of CD21 and CD23 in EBV-carrying cells.
Collapse
Affiliation(s)
- P Aman
- Dept. of Tumor Biology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
22
|
Patarroyo M, Makgoba MW. Leucocyte adhesion to cells. Molecular basis, physiological relevance, and abnormalities. Scand J Immunol 1989; 30:129-64. [PMID: 2474849 DOI: 10.1111/j.1365-3083.1989.tb01197.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- M Patarroyo
- Department of Immunology, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
23
|
Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Marlin SD, Springer TA. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 1989; 56:849-53. [PMID: 2538244 DOI: 10.1016/0092-8674(89)90689-2] [Citation(s) in RCA: 599] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rhinoviruses, which cause common colds, possess over 100 serotypes, 90% of which (the major group) share a single receptor. Lymphocyte function associated molecule 1 (LFA-1) mediates leukocyte adhesion to a wide variety of cell types by binding to intercellular adhesion molecule 1 (ICAM-1). We demonstrate identity between the receptor for the major group of rhinoviruses and ICAM-1. A major group rhinovirus binds specifically to purified ICAM-1 and to ICAM-1 expressed on transfected COS cells, and binding is blocked by three ICAM-1 monoclonal antibodies (MAb) that block ICAM-1-LFA-1 interaction, but not by an ICAM-1 MAb that does not block ICAM-1-LFA-1 interaction. This suggests that the ICAM-1 contact site(s) for LFA-1 and rhinoviruses is proximal or identical. In addition, ICAM-1 MAb block the cytopathic effect in HeLa cells mediated by representative major but not minor group rhinoviruses. ICAM-1 is induced by soluble mediators of inflammation, suggesting that the host immune response to rhinovirus may facilitate spread to uninfected cells.
Collapse
Affiliation(s)
- D E Staunton
- Center for Blood Research, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | |
Collapse
|
24
|
Clark EA, Ledbetter JA. Structure, function, and genetics of human B cell-associated surface molecules. Adv Cancer Res 1989; 52:81-149. [PMID: 2662716 DOI: 10.1016/s0065-230x(08)60211-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- E A Clark
- Department of Microbiology, University of Washington, Seattle 98195
| | | |
Collapse
|
25
|
Dustin ML, Staunton DE, Springer TA. Supergene families meet in the immune system. IMMUNOLOGY TODAY 1988; 9:213-5. [PMID: 3076418 DOI: 10.1016/0167-5699(88)91216-9] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Patarroyo M, Clark EA, Prieto J, Kantor C, Gahmberg CG. Identification of a novel adhesion molecule in human leukocytes by monoclonal antibody LB-2. FEBS Lett 1987; 210:127-31. [PMID: 3792557 DOI: 10.1016/0014-5793(87)81321-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Monoclonal antibody LB-2 to a surface antigen on human B cells, lymphoblast, monocytes and vascular endothelial cells largely inhibited adhesion among Epstein Barr virus-immortalized normal B cells (EBV-B) and concanavalin A-stimulated blood mononuclear cells (Con A-BMC) before and after phorbol ester treatment. The antibody inhibited to a lesser extent phorbol ester-induced aggregation of monocytes, U937 cells and fresh BMC and had virtually no inhibitory effect on the adhesion among enriched T cells and granulocytes. A surface glycoprotein band of 84 kDa was obtained from EBV-B cells by immunoprecipitation and gel electrophoresis. Immunological and biochemical studies clearly distinguished this molecule from gp90 and associated glycoproteins which also mediate leukocyte adhesion.
Collapse
|
27
|
|
28
|
Clark EA, Ledbetter JA, Holly RC, Dinndorf PA, Shu G. Polypeptides on human B lymphocytes associated with cell activation. Hum Immunol 1986; 16:100-13. [PMID: 2940206 DOI: 10.1016/0198-8859(86)90039-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two monoclonal antibodies (MoAbs), designated BB-1 and LB-2, react with distinct polypeptides expressed on activated human B cells. The BB-1 MoAb reacted with a 37,000-dalton polypeptide (Bp37) restricted to pre-B and B-cell blasts and B-cell malignancies. The LB-2 MoAb reacted with a 76,000-dalton polypeptide (p76) found on resting B cells but at higher levels on activated B cells and T cells. Buoyant tonsillar lymphoid cells with a germinal center phenotype express higher levels of Bp37 and p76 than do dense B cells of the mantle zone. Furthermore, the expression of Bp37 and p76 on tonsillar B-cell subsets was distinct from other B-cell antigens such as Bp39, Bp95, Bp135, the C3d receptor and surface IgM. Based on biochemical, cross-blocking, and tissue distribution analyses, these antigens appear to be distinct from previously described B cell and B-cell-blast markers.
Collapse
|