1
|
Ko S, Hong S. Characterization of IgD and IgT with their expressional analysis following subtype II megalocytivirus vaccination and infection in rock bream (Oplegnathus fasciatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105248. [PMID: 39216776 DOI: 10.1016/j.dci.2024.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
In this study, heavy chain genes of IgD and IgT were sequenced and characterized their gene expression in rock bream (Oplegnathus fasciatus). Rock bream (RB)-IgD cDNA is 3319 bp in length and encodes a leader region, variable domains, a μ1 domain, and seven constant domains (CH1-CH7). A membrane-bound (mIgT) and secretory form (sIgT) of RB-IgT cDNAs are 1902 bp and 1689 bp in length, respectively, and encode a leader region, variable domains, four constant domains (CH1-CH4) and C-terminus. Their predicted 3D-structure and phylogenetic relation were similar to those of other teleost. In healthy fish, RB-IgD and mIgT gene expressions were higher in major lymphoid organs and blood, while RB-sIgT gene was more highly expressed in midgut. IgT expressing cells were detected in melano-macrophage centers (MMC) of head kidney in immunohistochemistry analysis. Under immune stimulation in vitro, RB-IgD and IgT gene expressions were upregulated in head kidney and spleen cells by bovine serum albumin or a rock bream iridovirus (RBIV) vaccine. In vivo, their expressions were significantly upregulated in head kidney, blood, and gill upon vaccination. Especially, RB-mIgT gene expression in head kidney and blood was upregulated at day 3 after vaccination while upregulated at earlier time point of day 1 by challenge with RBIV. This may suggest that memory cells might be produced during the primary response by vaccination and rapidly proliferated by secondary immune response by viral infection. RB-sIgT gene expression was highly upregulated in peripheral blood in vaccinated fish after viral infection, indicating that IgT plays an important role in systemic immune response as well as mucosal immune system. Our findings provide information on the role of RB-IgT in adaptive immunity during vaccination and viral infection in the vaccinated fish.
Collapse
Affiliation(s)
- Sungjae Ko
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, South Korea
| | - Suhee Hong
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, South Korea.
| |
Collapse
|
2
|
Pan YR, Wu CS, Zhong YQ, Zhang YA, Zhang XJ. An Atlas of Grass Carp IgM+ B Cells in Homeostasis and Bacterial Infection Helps to Reveal the Unique Heterogeneity of B Cells in Early Vertebrates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:964-980. [PMID: 37578390 DOI: 10.4049/jimmunol.2300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
Teleost B cells are primitive lymphocytes with both innate and adaptive immune functions. However, the heterogeneity and differentiation trajectory of teleost B cells remain largely unknown. In this study, the landscape of grass carp IgM+ (gcIgM+) B cells was revealed by single-cell RNA sequencing. The results showed that gcIgM+ B cells mainly comprise six populations: (im)mature B cells, innate B cells, proliferating B cells, plasma cells, CD22+ cells, and CD34+ cells, among which innate B cells and proliferating B cells were uncommon B cell subsets with, to our knowledge, new characteristics. Remarkably, three functional IgMs were discovered in grass carp, and a significant percentage of gcIgM+ B cells, especially plasma cells, expressed multiple Igμ genes (Igμ1, Igμ2, and/or Igμ3). More importantly, through single-cell sorting combined with Sanger sequencing, we found that distinct VHDJH recombination patterns of Igμ genes were present in single IgM+ B cells, indicating that individual teleost B cells might produce multiple Abs by coexpressing rearranged IgM subclass genes. Moreover, the percentage of IgM1highIgM2highIgM3high plasma cells increased significantly after bacterial infection, suggesting that individual plasma cells might tend to produce multiple IgMs to resist the infection in teleost fish. In summary, to our knowledge, this study not only helps to uncover the unique heterogeneity of B cells in early vertebrates but also provided significant new evidence supporting the recently proposed "one cell-multiple Abs" paradigm, challenging the classical rule of "one cell-one Ab."
Collapse
Affiliation(s)
- Yi-Ru Pan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chang-Song Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Qin Zhong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xu-Jie Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| |
Collapse
|
3
|
Cui Z, Zhao H, Chen X. Molecular and functional characterization of two IgM subclasses in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108581. [PMID: 36754157 DOI: 10.1016/j.fsi.2023.108581] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
As the predominant immunoglobulin (Ig) isotype, IgM plays a crucial role in the acquired immunity of vertebrates. There is only one Igμ gene in mammals, except cattle, while the number of Igμ gene varies among teleost fish. In the current study, we found two functional Igμ genes (Igμ1 and Igμ2) and a pseudo Cμ gene (ψIgμ) in large yellow croaker (Larimichthys crocea). Both Igμ1 and Igμ2 genes possessed two transcript variants, which encoded the heavy chains of secreted (sIgM1 and sIgM2) and membrane-bound IgM1 and IgM2 (mIgM1 and mIgM2), respectively. Both the heavy chains of sIgM1 and sIgM2 consisted of a variable Ig domain, four constant Ig domains (CH1, CH2, CH3 and CH4) and a secretory tail, while those of mIgM1 and mIgM2 consisted of a variable Ig domain, three constant Ig domains (CH1, CH2 and CH3), a transmembrane domain and a short cytoplasmic tail. Cysteine residues that are necessary for the formation of intrachain and interchain disulfide bonds and tryptophan residues that are important for the folding of the Ig superfamily domain were well conserved in large yellow croaker IgM1 and IgM2. Interestingly, large yellow croaker IgM2 had an extra cysteine (C94) in the CH1 domain compared with IgM1, which may cause the structural difference between IgM1 and IgM2. A liquid chromatography-tandem mass spectrometry analysis revealed that both IgM1 and IgM2 were present at the protein level in large yellow croaker serum. Both the Igμ1 and Igμ2 genes were mainly expressed in systemic immune tissues, such as head kidney and spleen, but the expression level of Igμ2 was much lower than that of Igμ1. After Pseudomonas plecoglossicida infection, the expression levels of Igμ1 and Igμ2 in both the spleen and head kidney were significantly upregulated, with a higher upregulation of Igμ2 than that of Igμ1. These results suggested that Igμ1 and Igμ2 may play a differential role in the immune response of large yellow croaker against bacterial infection.
Collapse
Affiliation(s)
- Zhengwei Cui
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Han Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China.
| |
Collapse
|
4
|
Bunnoy A, Na-Nakorn U, Srisapoome P. Mystifying Molecular Structure, Expression and Repertoire Diversity of IgM Heavy Chain Genes (Ighμ) in Clarias Catfish and Hybrids: Two Novel Transcripts in Vertebrates. Front Immunol 2022; 13:884434. [PMID: 35784299 PMCID: PMC9247300 DOI: 10.3389/fimmu.2022.884434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Two novel immunoglobulin heavy chain (Ighμ) transcripts encoding membrane-bound forms of IgM (mIgM) were discovered in bighead catfish, Clarias macrocephalus. The first transcript contains four constant and two transmembrane domains [Cμ1-Cμ2-Cμ3-Cμ4-TM1-TM2] that have never been reported in teleosts, and the second transcript is an unusual mIgM that has never been identified in any vertebrate [Cμ1-(Cδ2-Cδ3-Cδ4-Cδ5)-Cμ2-Cμ3-TM1-TM2]. Fluorescence in situ hybridization (FISH) in bighead catfish, North African catfish (C. gariepinus) and hybrid catfish revealed a single copy of Ighμ in individual parent catfish, while two gene copies were found in diploid hybrid catfish. Intensive sequence analysis demonstrated multiple distinct structural variabilities in the VH domain in Clarias, and hybrid catfish were defined and used to generate diversity with various mechanisms. Expression analysis of Ighμ in Aeromonas hydrophila infection of the head kidney, peripheral blood leukocytes and spleen revealed significantly higher levels in North African catfish and hybrid catfish than in bighead catfish.
Collapse
Affiliation(s)
- Anurak Bunnoy
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Uthairat Na-Nakorn
- Laboratory of Aquatic Animal Genetics, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- *Correspondence: Prapansak Srisapoome,
| |
Collapse
|
5
|
Wang L, Zhang F, Chen Y, Wang S, Chen Z, Zhou Q, Chen S. Molecular cloning, expression analysis of the IgT gene and detection of IgT + B cells in the half-smooth tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2022; 123:113-126. [PMID: 35218973 DOI: 10.1016/j.fsi.2022.02.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
IgT is a specific Ig isotype in teleosts, which plays extremely important roles in the mucosal immunity of fish. In the present study, the membrane-bound and secretory IgT of the half-smooth tongue sole (Cynoglossus semilaevis) were identified for the first time. The V-D-J-C structure of two forms of csIgT are translated by the same Cτ gene, and the secretory tail and transmembrane domain were encoded through alternative splicing at the 3' end of the Cτ4. The CH regions of csIgT had high similarity with that of other flatfish (P. olivaceus and S. maximus). In healthy C. semilaevis, sIgT and mIgT were mainly expressed in mucus related tissues such as skin, intestine and gill. The transcript levels of sIgT and mIgT mRNA showed a significant induction in the immune-related tissues upon Vibrio Harveyi infection. A polyclonal rabbit anti-csIgT was successfully prepared using the csIgT heavy chain recombinant protein. Using this antibody, we detected the native IgT with the molecular mass at 220 kDa in skin total protein under non-reducing SDS-PAGE condition. Immunofluorescence analysis indicated that IgT+ B lymphocytes were intensively located in the skin, gill, intestine, and head kidney of C. semilaevis. These results suggest that IgT may participate in the immune response of C. semilaevis, which will facilitate the investigations of the immunoglobulins of marine fish.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Fumiao Zhang
- Shandong Normal University, Jinan, 250014, China
| | - Yadong Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shuangyan Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhangfan Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qian Zhou
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Songlin Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
6
|
Li A, Thwaite R, Kellie S, Barnes AC. Serum IgM heavy chain sub-isotypes and light chain variants revealed in giant grouper (Epinephelus lanceolatus) via protein A affinity purification, mass spectrometry and genome sequencing. FISH & SHELLFISH IMMUNOLOGY 2021; 113:42-50. [PMID: 33794338 DOI: 10.1016/j.fsi.2021.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Two IgM heavy (H) chain sub-isotypes (80 and 40 kDa) and two light (L) chain variants (25 and 30 kDa) were detected in the serum of giant grouper (Epinephelus lanceolatus), purified by ammonium sulphate precipitation followed by protein A affinity chromatography. This method yielded 5.6 mg/mL high purity IgM from grouper serum, with efficiency estimated at 39.5% recovery from crude serum. The H and L chains were identified by SDS-PAGE and mass spectrometry (MS). Nanopore long-read sequencing was used to generate a genomic contig (MW768935), containing Cμ, Cδ loci, VH regions, and a H chain Joining segment. cDNA sequencing of Cμ transcripts (MW768933 and MW768934) were used to polish the genomic contig and determine the exons and introns of the corresponding locus. MS peptide mapping revealed that the 80 kDa H chain consisted of CH1-4 domains while peptides from the 40 kDa H chain only mapped to CH1-2 domains. Our genomic contig showed the Cμ locus has a Cμ1-Cμ2-Cμ3-Cμ4 arrangement on the same strand as the other Ig loci identified in this genomic sequence. Our study corrects the NCBI annotations of the opposing Cμ loci (LOC117268697 and LOC117268550) in chromosome 16 (NC_047006). Further, we identified both κ and λ L chain isotypes in serum IgM. The molecular weight differences observed may result from different combinations of CL and VL genes. Putative IgM sub-isotypes have also been reported in Epinephelus itajara and Epinephelus coioides. The presence of IgM sub-isotypes may be a conserved trait among Epinephelus species.
Collapse
Affiliation(s)
- Angus Li
- The University of Queensland, School of Biological Sciences, Australia
| | - Rosemary Thwaite
- The University of Queensland, School of Biological Sciences, Australia
| | - Stuart Kellie
- School of Chemistry and Molecular Biosciences, Brisbane, QLD4072, Australia
| | - Andrew C Barnes
- The University of Queensland, School of Biological Sciences, Australia.
| |
Collapse
|
7
|
Bilal S, Etayo A, Hordvik I. Immunoglobulins in teleosts. Immunogenetics 2021; 73:65-77. [PMID: 33439286 DOI: 10.1007/s00251-020-01195-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
Immunoglobulins are glycoproteins which are produced as membrane-bound receptors on B-cells or in a secreted form, known as antibodies. In teleosts, three immunoglobulin isotypes, IgM, IgT, and IgD, are present, each comprising two identical heavy and two identical light polypeptide chains. The basic mechanisms for generation of immunoglobulin diversity are similar in teleosts and higher vertebrates. The B-cell pre-immune repertoire is diversified by VDJ recombination, junctional flexibility, addition of nucleotides, and combinatorial association of light and heavy chains, while the post-immune repertoire undergoes somatic hypermutation during clonal expansion. Typically, the teleost immunoglobulin heavy chain gene complex has a modified translocon arrangement where the Dτ-Jτ-Cτ cluster of IgT is generally located between the variable heavy chain (VH) region and the Dμ/δ-Jμ/δ-Cμ-Cδ gene segments, or within the set of VH gene segments. However, multiple genome duplication and deletion events and loss of some individual genes through evolution has complicated the IgH gene organization. The IgH gene arrangement allows the expression of either IgT or IgM/IgD. Alternative splicing is responsible for the regulation of IgM/IgD expression and the secreted versus transmembrane forms of IgT, IgD, and IgM. The overall structure of IgM and IgT is usually conserved across species, whereas IgD has a large variety of structures. IgM is the main effector molecule in both systemic and mucosal immunity and shows a broad range of concentrations in different teleost species. Although IgM is usually present in higher concentrations under normal conditions, IgT is considered the main mucosal Ig.
Collapse
Affiliation(s)
- Sumaira Bilal
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Angela Etayo
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ivar Hordvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
8
|
Smith NC, Rise ML, Christian SL. A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. Front Immunol 2019; 10:2292. [PMID: 31649660 PMCID: PMC6795676 DOI: 10.3389/fimmu.2019.02292] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
The immune system is composed of two subsystems-the innate immune system and the adaptive immune system. The innate immune system is the first to respond to pathogens and does not retain memory of previous responses. Innate immune responses are evolutionarily older than adaptive responses and elements of innate immunity can be found in all multicellular organisms. If a pathogen persists, the adaptive immune system will engage the pathogen with specificity and memory. Several components of the adaptive system including immunoglobulins (Igs), T cell receptors (TCR), and major histocompatibility complex (MHC), are assumed to have arisen in the first jawed vertebrates-the Gnathostomata. This review will discuss and compare components of both the innate and adaptive immune systems in Gnathostomes, particularly in Chondrichthyes (cartilaginous fish) and in Osteichthyes [bony fish: the Actinopterygii (ray-finned fish) and the Sarcopterygii (lobe-finned fish)]. While many elements of both the innate and adaptive immune systems are conserved within these species and with higher level vertebrates, some elements have marked differences. Components of the innate immune system covered here include physical barriers, such as the skin and gastrointestinal tract, cellular components, such as pattern recognition receptors and immune cells including macrophages and neutrophils, and humoral components, such as the complement system. Components of the adaptive system covered include the fundamental cells and molecules of adaptive immunity: B lymphocytes (B cells), T lymphocytes (T cells), immunoglobulins (Igs), and major histocompatibility complex (MHC). Comparative studies in fish such as those discussed here are essential for developing a comprehensive understanding of the evolution of the immune system.
Collapse
Affiliation(s)
- Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
9
|
Mashoof S, Criscitiello MF. Fish Immunoglobulins. BIOLOGY 2016; 5:E45. [PMID: 27879632 PMCID: PMC5192425 DOI: 10.3390/biology5040045] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 01/19/2023]
Abstract
The B cell receptor and secreted antibody are at the nexus of humoral adaptive immunity. In this review, we summarize what is known of the immunoglobulin genes of jawed cartilaginous and bony fishes. We focus on what has been learned from genomic or cDNA sequence data, but where appropriate draw upon protein, immunization, affinity and structural studies. Work from major aquatic model organisms and less studied comparative species are both included to define what is the rule for an immunoglobulin isotype or taxonomic group and what exemplifies an exception.
Collapse
Affiliation(s)
- Sara Mashoof
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, College Station, TX 77807, USA.
| |
Collapse
|
10
|
Xia H, Liu W, Wu K, Wang W, Zhang X. sIgZ exhibited maternal transmission in embryonic development and played a prominent role in mucosal immune response of Megalabrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2016; 54:107-117. [PMID: 27044330 DOI: 10.1016/j.fsi.2016.03.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 03/27/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
IgZ is considered to be the last immunoglobulin discovered in vertebrate species. In this study, the structure of secreted form of blunt snout bream (Megalabrama amblycephala) IgZ (sIgZ) heavy chain gene is VH-Cζ1-Cζ2-Cζ3-Cζ4, in which Cζ4 provides the specificity to the IgZ isotype. The deduced amino acid sequence of sIgZ shows highest similarity with that of Ctenopharyngodon idella (79%). The ontogeny of sIgZ gene expression showed a V-shape change pattern: decreased initially from unfertilized egg stage to 16-cell embryos and increased significantly from blastula stage, which exhibited maternal transmission effects. Compared with the juvenile fish, sIgZ mRNA level was higher in head kidney, spleen, trunk kidney, liver, intestine and gill of adult fish. In both juvenile and adult fish, sIgZ mRNA was detected in intestine and gill. Aeromonas hydrophila challenge experiment showed that sIgZ transcription significantly increased in skin, gill and intestine, indicating a prominent mucosal immune response. The results of Western blot also verified the protein alterations of sIgZ in mucosal organs in M. amblycephal. Our studies indicate a prominent role of IgZ in mucosa-associated lymphoid tissue immunity and further support the specialized role of IgZ in teleost mucosal immune responses.
Collapse
Affiliation(s)
- Hu Xia
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area of Hunan Province, Hunan University of Arts and Science, Changde, Hunan, PR China
| | - Wanjing Liu
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Kang Wu
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Weimin Wang
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Xuezhen Zhang
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
11
|
A Review of Intra- and Extracellular Antigen Delivery Systems for Virus Vaccines of Finfish. J Immunol Res 2015; 2015:960859. [PMID: 26065009 PMCID: PMC4433699 DOI: 10.1155/2015/960859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 01/04/2023] Open
Abstract
Vaccine efficacy in aquaculture has for a long time depended on evaluating relative percent survival and antibody responses after vaccination. However, current advances in vaccine immunology show that the route in which antigens are delivered into cells is deterministic of the type of adaptive immune response evoked by vaccination. Antigens delivered by the intracellular route induce MHC-I restricted CD8+ responses while antigens presented through the extracellular route activate MHC-II restricted CD4+ responses implying that the route of antigen delivery is a conduit to induction of B- or T-cell immune responses. In finfish, different antigen delivery systems have been explored that include live, DNA, inactivated whole virus, fusion protein, virus-like particles, and subunit vaccines although mechanisms linking these delivery systems to protective immunity have not been studied in detail. Hence, in this review we provide a synopsis of different strategies used to administer viral antigens via the intra- or extracellular compartments. Further, we highlight the differences in immune responses induced by antigens processed by the endogenous route compared to exogenously processed antigens. Overall, we anticipate that the synopsis put together in this review will shed insights into limitations and successes of the current vaccination strategies used in finfish vaccinology.
Collapse
|
12
|
Hordvik I. Immunoglobulin isotypes in Atlantic salmon, Salmo salar. Biomolecules 2015; 5:166-77. [PMID: 25734583 PMCID: PMC4384117 DOI: 10.3390/biom5010166] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/10/2015] [Accepted: 02/22/2015] [Indexed: 12/18/2022] Open
Abstract
There are three major immunoglobulin (Ig) isotypes in salmonid fish: IgM, IgD and IgT, defined by the heavy chains μ, δ and τ, respectively. As a result of whole genome duplication in the ancestor of the salmonid fish family, Atlantic salmon (Salmo salar) possess two highly similar Ig heavy chain gene complexes (A and B), comprising two μ genes, two δ genes, three intact τ genes and five τ pseudogenes. The μA and μB genes correspond to two distinct sub-populations of serum IgM. The IgM-B sub-variant has a characteristic extra cysteine near the C-terminal part of the heavy chain and exhibits a higher degree of polymer disulfide cross-linking compared to IgM-A. The IgM-B:IgM-A ratio in serum is typically 60:40, but skewed ratios are also observed. The IgT isotype appears to be specialized to mucosal immune responses in salmonid fish. The concentration of IgT in serum is 100 to 1000 times lower than IgM. Secreted forms of IgD have been detected in rainbow trout, but not yet in Atlantic salmon.
Collapse
Affiliation(s)
- Ivar Hordvik
- Department of Biology (BIO), High Technology Center, University of Bergen, Bergen N-5020, Norway.
| |
Collapse
|
13
|
Xia H, Wu K, Liu W, Gul Y, Wang W, Zhang X. Molecular cloning and expression analysis of immunoglobulin M heavy chain gene of blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2014; 40:129-135. [PMID: 24979225 DOI: 10.1016/j.fsi.2014.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/20/2014] [Accepted: 06/22/2014] [Indexed: 06/03/2023]
Abstract
Immunoglobulins (Igs), which bind antigens with high specificity, are essential molecules in adaptive immune system of jawed vertebrates. In this study, cDNA encoding the secreted form of the immunoglobulin heavy chain of IgM (sIgM) was cloned from the mesonephros of blunt snout bream (Megalabrama amblycephala) using RT-PCR and rapid amplification of cDNA ends (RACE). The full-length cDNA of sIgM heavy chain gene has 1961 nucleotides encoding a putative protein of 569 amino acids, constant region shares high amino acid identity with that of Ctenopharyngodon idella (80%), Carassius auratus langsdorfii (65%) and Danio rerio (59%). Multiple protein sequence alignment revealed that blunt snout bream sIgM was clustered with the homologues of cyprinid fish and constructed one clade. Using quantitative real-time PCR (qRT-PCR) analysis, the level of sIgM mRNA was determined, with a V-shape change pattern: decreased initially from unfertilized egg stage to 4 cells stage and increased from 16 cells stage to prelarva. This sharp drop indicates that sIgM mRNA is maternally transferred, and was continuously degraded until 16 cells stage. The drastic rising in sIgM level from blastula stage to prelarva might be attributed to embryonic stem cell differentiation procedure. Compared with juvenile fish, the expression of sIgM was significantly higher in pronephros, liver, spleen, gill and muscle of adult fish. After the injection of Aeromonas hydrophila, the expression pattern of sIgM was found first down-regulated at 4 h, then up-regulated and reached the peak at 7 d and 21 d in mesonephros, spleen, liver and gill, respectively.
Collapse
Affiliation(s)
- Hu Xia
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Kang Wu
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Wanjing Liu
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Yasmeen Gul
- Department of Zoology and Fisheries, University of Agriculture Faisalabad, 38040, Pakistan
| | - Weimin Wang
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Xuezhen Zhang
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China.
| |
Collapse
|
14
|
BILLER-TAKAHASHI JAQUELINED, URBINATI ELISABETHC. Fish Immunology. The modification and manipulation of the innate immune system: Brazilian studies. AN ACAD BRAS CIENC 2014; 86:1484-506. [DOI: 10.1590/0001-3765201420130159] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/09/2013] [Indexed: 01/22/2023] Open
Abstract
The understanding of fish immune system structure and function is essential for the development of new technologies and products to improve productivity. This is the first review on immune system of fish with Brazilian studies. Aquaculture in Brazil has shown massive growth in recent years due to methods of culture intensification. However, these procedures led to disease outbreaks, as well as the chemotherapy and the misuse of antibiotics. A viable alternative to avoid the use of chemicals and prevent economic losses is the administration of immunostimulants and prebiotcs, which act by increasing the innate immune system. In Brazil there is a lack of studies on fish immune system, except by some groups that have studied the effects of the immunostimulants administration in various species.
Collapse
|
15
|
Munang'andu HM, Mutoloki S, Evensen Ø. Acquired immunity and vaccination against infectious pancreatic necrosis virus of salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:184-196. [PMID: 23962742 DOI: 10.1016/j.dci.2013.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/10/2013] [Accepted: 08/12/2013] [Indexed: 06/02/2023]
Abstract
Acquired immunity plays an important role in the protection of salmonids vaccinated against infectious pancreatic necrosis virus (IPNV) infections. In recent years, vaccine research has taken a functional approach to find the correlates of protective immunity against IPNV infections. Accumulating evidence suggests that the humoral response, specifically IgM is a correlate of vaccine protection against IPNV infections. The role of IgT on the other hand, especially at the sites of virus entry into the host is yet to be established. The kinetics of CD4+ and CD8+ T-cell gene expression have also been shown to correlate with protection in salmonids, suggesting that other arms of the adaptive immune response e.g. cytotoxic T cell responses and Th1 may also be important. Overall, the mechanisms of vaccine protection observed in salmonids are comparable to those seen in other vertebrates suggesting that the immunological basis of vaccine protection has been conserved across vertebrate taxa.
Collapse
Affiliation(s)
- Hetron Mweemba Munang'andu
- Norwegian School of Veterinary Sciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, P.O. Box 8146 Dep, N-0033 Oslo, Norway
| | - Stephen Mutoloki
- Norwegian School of Veterinary Sciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, P.O. Box 8146 Dep, N-0033 Oslo, Norway
| | - Øystein Evensen
- Norwegian School of Veterinary Sciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, P.O. Box 8146 Dep, N-0033 Oslo, Norway.
| |
Collapse
|
16
|
Zhu L, Yan Z, Feng M, Peng D, Guo Y, Hu X, Ren L, Sun Y. Identification of sturgeon IgD bridges the evolutionary gap between elasmobranchs and teleosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:138-147. [PMID: 24001581 DOI: 10.1016/j.dci.2013.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 06/02/2023]
Abstract
IgD has been found in almost all jawed vertebrates, including cartilaginous and teleost fish. However, IgD is missing in acipenseriformes, a branch that is evolutionarily positioned between elasmobranchs and teleost fish. Here, by analyzing transcriptome data, we identified a transcriptionally active IgD-encoding gene in the Siberian sturgeon (Acipenser baerii). Phylogenetic analysis indicated that it is orthologous to mammalian IgD and closely related to the IgD of other fish. The lengths of sturgeon membrane-bound IgD transcripts ranged from 1.2kb to 6.2kb, encoding 3-19 CH domains. As in teleosts, the first CH domain of the sturgeon IgD transcript is also derived from μCH1 by RNA splicing. However, the variable region of the expressed sturgeon IgD shows limited V(D)J usage. In addition to IgD, three IgM variants were also identified in this species, whereas no IgT/Z-encoding genes were observed. This study bridges the gap in Ig evolution between elasmobranchs and teleosts and provides significant insight into the early evolution of immunoglobulins.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, PR China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Ye J, Kaattari IM, Ma C, Kaattari S. The teleost humoral immune response. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1719-28. [PMID: 24436975 DOI: 10.1016/j.fsi.2013.10.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Over the past 10 years our knowledge of cellular and molecular dynamics of teleost humoral immunity has increased enormously to now include: the existence of multiple isotypes, affinity-driven modulation of antibody structure and function, the unique trafficking patterns of each stage of B cell differentiation (including the plasma blast, short-lived and long-lived plasma cell, and the memory cell). Unfortunately the work which has generated the bulk of this information has generally employed defined antigens rather than vaccines. Thus, the focus of this review is to relate these aspects of immunity that are requisite for a mechanistic understanding of the generation of prophylactic immunity to the necessary analysis of responses to vaccines and vaccine candidates.
Collapse
|
18
|
Kamil A, Raae A, Fjelldal PG, Koppang EO, Fladmark KE, Hordvik I. Comparative analysis of IgM sub-variants in salmonid fish and identification of a residue in μ3 which is essential for MAb4C10 reactivity. FISH & SHELLFISH IMMUNOLOGY 2013; 34:667-672. [PMID: 23261504 DOI: 10.1016/j.fsi.2012.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/05/2012] [Accepted: 12/12/2012] [Indexed: 06/01/2023]
Abstract
In rainbow trout (Oncorhynchus mykiss) it has been shown that high affinity IgM antibodies have a higher degree of disulfide polymerization and a longer half life time. In the present study, distinct IgM sub-variants related to ancestral tetraploidy in salmonid fish were analyzed to reveal possible characteristic differences between these. A monoclonal antibody (MAb4C10) which distinguishes between IgM-A and IgM-B in Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) was further characterized. It was shown that substitution of a proline located in the loop between the B and C beta strands of the third constant domain (μ3) of salmon μA eliminated MAb4C10 reactivity. Accordingly, the reverse substitution in salmon μB restored MAb4C10 reactivity. Molecular cloning of μ cDNA from arctic char (Salvelinus alpinus) revealed two sub-variants (μA-1 and μA-2), i.e. a similar situation as in Atlantic salmon and brown trout. However, arctic char IgM eluted in one peak by anion exchange chromatography, in contrast to salmon and brown trout IgM that are eluted in two peaks. The only characteristic residue of salmon and brown trout μB is an additional cysteine in the C-terminal part of μ4. Most likely, this cysteine is involved in inter-chain disulfide bonding and influences the elution profiles of IgM-A and IgM-B on anion exchange chromatography. Neither of the μ sub-variants in arctic char have the additional cysteine, and char IgM, as well as salmon and brown trout IgM-A, showed a lower degree of inter-chain disulfide bonding than IgM-B when subjected to denaturation and gel electrophoresis under non-reducing conditions. Hybrids of char/salmon expressed μA-1, μA-2, μA and μB, indicating that there are two paralogous Ig heavy chain gene complexes in the haploid genome of char, like in Atlantic salmon. A comparison of salmonid μ sequences is presented, including representatives of Salmoninae (trout, salmon and char), Thymallinae (grayling) and Coregoninae (whitefish).
Collapse
Affiliation(s)
- Atif Kamil
- University of Bergen, Department of Biology, High Technology Centre, N-5020 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
19
|
Kamil A, Fjelldal PG, Hansen T, Raae A, Koppang EO, Hordvik I. VACCINATION of Atlantic salmon leads to long-lasting higher levels of serum immunoglobulin and possible skewed ratios of two distinct IgM isotypes. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.44a012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Hedfors IA, Bakke H, Skjødt K, Grimholt U. Antibodies recognizing both IgM isotypes in Atlantic salmon. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1199-1206. [PMID: 23009920 DOI: 10.1016/j.fsi.2012.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 06/01/2023]
Abstract
Identification and characterization of subpopulations of cells involved in immunological reactions against invading organisms are essential for understanding defense mechanisms against disease. In lower vertebrates like teleost fish, as opposed to mammals, immune cell subsets are still poorly defined, mostly due to the lack of appropriate working tools like antibodies and functional assays. Membrane bound molecules like immunoglobulins (Ig) serve as cell surface markers for specific cell subsets and the identification of cells relies upon the production of specific antibodies towards these molecules. The present study aimed at identifying tools to separate IgM positive (IgM(+)) B cells from IgM negative (IgM(-)) non-B cell populations using flow cytometry. Several monoclonal antibodies (mAbs), and one polyclonal antibody (pAb) to both rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) IgM, either commercially available or locally produced were tested for their recognition of Atlantic salmon IgM(+) cells. Leukocytes were isolated from peripheral blood (PB), spleen (S) and head kidney (HK) and stained with all mAbs and the pAb, to possibly verify the approximate number of IgM(+) cells in the respective tissues in salmon. To our surprise, this seemingly simple task did not reveal similar staining patterns for all antibodies as expected, but rather large differences in the number of positively stained cells were discovered. In short, positively stained cells by each antibody ranged from below 5% to above 80% with similar ratios between the antibodies in each tissue. The three most used mAbs, 4c10, N2 and 1.14; originally produced towards rainbow trout IgM, recognize only a fraction of salmon B cells as previously shown for the 4c10 mAb binding exclusively to the IgM-A isotype. In comparison, our three novel mAbs, IgF1-3, -18 and -19, bind to both IgM-A and -B isotypes as shown using intracellular staining of 293T cells transfected with both IgM-A and -B constructs. Based on binding percentages, one of three commercially available Abs, IgH FITC from Cedarlane, may also identify both isotypes. The three new IgF1-3, -18 and -19 mAbs and potentially IgH FITC from Cedarlane, provide us with great tools enabling complete depletion or enrichment of IgM(+) B cells and/or IgM(-) T cells in Atlantic salmon.
Collapse
|
21
|
A monoclonal antibody distinguishes between two IgM heavy chain isotypes in Atlantic salmon and brown trout: Protein characterization, 3D modeling and epitope mapping. Mol Immunol 2011; 48:1859-67. [DOI: 10.1016/j.molimm.2011.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/04/2011] [Accepted: 05/09/2011] [Indexed: 01/09/2023]
|
22
|
Hikima JI, Jung TS, Aoki T. Immunoglobulin genes and their transcriptional control in teleosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:924-936. [PMID: 21078341 DOI: 10.1016/j.dci.2010.10.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 09/27/2010] [Accepted: 10/28/2010] [Indexed: 05/30/2023]
Abstract
Immunoglobulin (Ig), which exists only in jawed vertebrates, is one of the most important molecules in adaptive immunity. In the last two decades, many teleost Ig genes have been identified by in silico data mining from the enormous gene and EST databases of many fish species. In this review, the organization of Ig gene segments, the expressed Ig isotypes and their transcriptional controls are discussed. The Ig heavy chain (IgH) locus in teleosts encodes the variable (V), the diversity (D), the joining (J) segments and three different isotypic constant (C) regions including Cμ, Cδ, and Cζ/τ genes, and is organized as a "translocon" type like the IgH loci of higher vertebrates. In contrast, the Ig light (L) chain locus is arranged in a "multicluster" or repeating set of VL, JL, and CL segments. The IgL chains have four isotypes; two κ L1/G and L3/F), σ (L2) and λ. The transcription of IgH genes in teleosts is regulated by a VH promoter and the Eμ3' enhancer, which both function in a B cell-specific manner. The location of the IgH locus, structure and transcriptional function of the Eμ3' enhancer are important to our understanding of the evolutional changes that have occurred in the IgH gene locus.
Collapse
Affiliation(s)
- Jun-ichi Hikima
- Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam, South Korea
| | | | | |
Collapse
|
23
|
Hu YL, Zhu LY, Xiang LX, Shao JZ. Discovery of an unusual alternative splicing pathway of the immunoglobulin heavy chain in a teleost fish, Danio rerio. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:253-7. [PMID: 21035505 DOI: 10.1016/j.dci.2010.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/21/2010] [Accepted: 10/21/2010] [Indexed: 05/13/2023]
Abstract
In present study, we identified a novel membrane immunoglobulin M isotype from zebrafish (Danio rerio), which was designated as mIgM-2, adding a new member to the Immunoglobulin family in teleost fish. The full length of cloned mIgM-2 cDNA was 611 bp, encoding 150 amino acids. The putative mIgM-2 protein sequence consists of one constant region and a trans-membrane region. Phylogenetic analysis showed that mIgM-2 grouped with the known zebrafish IgM sequences. The mIgM-2 mRNA was widely expressed in immune-related tissues including intestine, kidney and skin. In vivo stimulation with LPS significantly up-regulates the expression of mIgM-2. Our results will add new insight into the immunoglobulin class diversity of teleost fish, and to better understand the evolutionary history of adaptive immunity from fish to mammals as a whole.
Collapse
Affiliation(s)
- Yu-Lan Hu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | |
Collapse
|
24
|
Molecular cloning of IgT from Atlantic salmon, and analysis of the relative expression of τ, μ and δ in different tissues. Vet Immunol Immunopathol 2011; 139:17-26. [DOI: 10.1016/j.vetimm.2010.07.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/29/2010] [Accepted: 07/29/2010] [Indexed: 11/18/2022]
|
25
|
Ryo S, Wijdeven RHM, Tyagi A, Hermsen T, Kono T, Karunasagar I, Rombout JHWM, Sakai M, Verburg-van Kemenade BML, Savan R. Common carp have two subclasses of bonyfish specific antibody IgZ showing differential expression in response to infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1183-90. [PMID: 20600275 DOI: 10.1016/j.dci.2010.06.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/13/2010] [Accepted: 06/14/2010] [Indexed: 05/13/2023]
Abstract
Immunoglobulin heavy chains identified in bony fish are broadly classified into three classes namely IgM, IgD and IgZ. The most recently described isotype is IgZ, a teleosts-fish specific isotype that shows variations in gene structure across teleosts. In this study we have identified two IgZ subclasses in common carp. IgZ1 is a four constant heavy chain domains containing antibody isolated across teleosts and IgZ2 is a two constant domains containing heavy chain chimera with a μ1 and ζ4 domain. Sequence analyses suggest that these subtypes are expressed from two separate genomic loci. Expression analyses show that IgZ1 is more abundant in systemic organs and IgZ2 chimera is preferentially expressed at mucosal sites. The basal expression level of IgM in fish is much higher than of the other isotypes. We show that IgZ1 expression in systemic and mucosal organs is responsive to blood parasites, while mucosal parasite infection induces IgM and IgZ2 gene expression. This report is the first to show differential expression of the IgZ variants in response to pathogens and suggests that the IgZ subtypes in carps may have mutually exclusive humoral functions.
Collapse
Affiliation(s)
- Sogabe Ryo
- Faculty of Agriculture, University of Miyazaki, Gakuen kibanadai nishi 1-1, Miyazaki 889-2192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yasuike M, de Boer J, von Schalburg KR, Cooper GA, McKinnel L, Messmer A, So S, Davidson WS, Koop BF. Evolution of duplicated IgH loci in Atlantic salmon, Salmo salar. BMC Genomics 2010; 11:486. [PMID: 20813058 PMCID: PMC2996982 DOI: 10.1186/1471-2164-11-486] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 09/02/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Atlantic salmon (Salmo salar) immunoglobulin heavy chain (IgH) locus possesses two parallel IgH isoloci (IGH-A and IGH-B), that are related to the genomic duplication event in the family Salmonidae. These duplicated IgH loci in Atlantic salmon provide a unique opportunity to examine the mechanisms of genome diversity and genome evolution of the IgH loci in vertebrates. In this study, we defined the structure of these loci in Atlantic salmon, and sequenced 24 bacterial artificial chromosome (BAC) clones that were assembled into the IGH-A (1.1 Mb) and IGH-B (0.9 Mb) loci. In addition, over 7,000 cDNA clones from the IgH variable (VH) region have been sequenced and analyzed. RESULTS The present study shows that the genomic organization of the duplicated IgH loci in Atlantic salmon differs from that in other teleosts and other vertebrates. The loci possess multiple Cτ genes upstream of the Cμ region, with three of the Cτ genes being functional. Moreover, the duplicated loci possess over 300 VH segments which could be classified into 18 families. This is the largest number of VH families currently defined in any vertebrate. There were significant structural differences between the two loci, indicating that both IGH-A and -B loci have evolved independently in the short time after the recent genome duplication approximately 60 mya. CONCLUSIONS Our results indicate that the duplication of the IgH loci in Atlantic salmon significantly contributes to the increased diversity of the antibody repertoire, as compared with the single IgH locus in other vertebrates.
Collapse
Affiliation(s)
- Motoshige Yasuike
- Department of Biology, University of Victoria,Victoria, British Columbia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tian C, Chen X, Ao J. The up-regulation of large yellow croaker secretory IgM heavy chain at early phase of immune response. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:483-490. [PMID: 19343516 DOI: 10.1007/s10695-009-9318-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/13/2009] [Indexed: 05/27/2023]
Abstract
An immunoglobulin M (IgM) heavy-chain gene homologue was isolated from the spleen cDNA library of the large yellow croaker Pseudosciaena crocea (LycIgH). The complete cDNA of LycIgH is 1,987 nucleotides long, encoding a protein of 585 amino acids with a putative molecular weight of 64.5 kDa. The deduced LycIgH possesses a typical secretory IgM heavy chain organization with a variable region (V(H)) connected to four constant regions (C(H1-4)) by a diversity segment (D(H)) and a joining segment (J(H)). Tissue expression profile analysis showed that LycIgH was constitutively expressed in gills, intestine, liver, kidney, heart, spleen, muscle, and blood, while at a higher level in spleen, kidney and intestine. Upon stimulation with poly (I: C), the LycIgH transcripts were quickly increased in spleen and kidney at 12 h post induction (with 5.87- and 5.48-fold mRNA increases, respectively), followed by a recovery to normal level at 24 h. The LycIgH transcripts in spleen and kidney induced by inactivated bacterial vaccine reached their peak levels at 48 h (14.53-fold) and 12 h (3.70-fold), respectively. These results indicated the up-regulation of LycIgH expression in spleen and kidney by poly (I: C) or bacterial vaccine occurred at the early phase of induction and was differentially modulated in the two tissues by different stimulations.
Collapse
Affiliation(s)
- Chen Tian
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China.
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
28
|
Lie Ø, Slettan A, Lingaas F, Olsaker I, Hordvik I, Refstie T. Haploid gynogenesis: A powerful strategy for linkage analysis in fish. Anim Biotechnol 2009. [DOI: 10.1080/10495399409525802] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ø. Lie
- a Department of Morphology, Genetics and Aquatic Biology, Division of Genetics , Norwegian College of Veterinary Medicine , P.O. Box 8146, Dep., Oslo, N‐0033, Norway
| | - A. Slettan
- a Department of Morphology, Genetics and Aquatic Biology, Division of Genetics , Norwegian College of Veterinary Medicine , P.O. Box 8146, Dep., Oslo, N‐0033, Norway
| | - F. Lingaas
- a Department of Morphology, Genetics and Aquatic Biology, Division of Genetics , Norwegian College of Veterinary Medicine , P.O. Box 8146, Dep., Oslo, N‐0033, Norway
| | - I. Olsaker
- a Department of Morphology, Genetics and Aquatic Biology, Division of Genetics , Norwegian College of Veterinary Medicine , P.O. Box 8146, Dep., Oslo, N‐0033, Norway
| | - I. Hordvik
- a Department of Morphology, Genetics and Aquatic Biology, Division of Genetics , Norwegian College of Veterinary Medicine , P.O. Box 8146, Dep., Oslo, N‐0033, Norway
- b Center for Biotechnology , University of Bergen , Bergen, Norway
| | - T. Refstie
- a Department of Morphology, Genetics and Aquatic Biology, Division of Genetics , Norwegian College of Veterinary Medicine , P.O. Box 8146, Dep., Oslo, N‐0033, Norway
- c Institute of Aquaculture Research Ltd. , Sunndals⊘ra, Norway
| |
Collapse
|
29
|
Lundqvist M, Strömberg S, Bouchenot C, Pilström L, Boudinot P. Diverse splicing pathways of the membrane IgHM pre-mRNA in a Chondrostean, the Siberian sturgeon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:507-515. [PMID: 19027787 DOI: 10.1016/j.dci.2008.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 10/13/2008] [Accepted: 10/19/2008] [Indexed: 05/27/2023]
Abstract
Teleosts and tetrapods have evolved different splice patterns to generate their membrane-bound IgM. In the tetrapod lineage, the first transmembrane exon is spliced to an internal cryptic site located close to the end of the fourth constant exon. Because teleosts lack this site they use the regular 3'-splice site of the CH3 exon instead. We characterized the mum splicing patterns in a Chondrostean, the Siberian sturgeon. We observed a surprising diversity of splice patterns, the TM1 exon being spliced to a cryptic site at the end of CH4, to a cryptic site in CH3 or to the 3'-end of CH1. These different pathways lead to mIGHM transcripts encoding four, two or one complete C-domain(s), respectively. The short variant CH1-TM1 was found only in VH2 positive transcripts, while the two other variants were observed for IgHM transcripts expressing all VH families. These results shed light on the evolution of IgM splicing pathways.
Collapse
Affiliation(s)
- Mats Lundqvist
- Immunology Programme, Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, S-751 24 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
30
|
Tonheim TC, Bøgwald J, Dalmo RA. What happens to the DNA vaccine in fish? A review of current knowledge. FISH & SHELLFISH IMMUNOLOGY 2008; 25:1-18. [PMID: 18448358 DOI: 10.1016/j.fsi.2008.03.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 05/12/2023]
Abstract
The primary function of DNA vaccines, a bacterial plasmid DNA containing a construct for a given protective antigen, is to establish specific and long-lasting protective immunity against diseases where conventional vaccines fail to induce protection. It is acknowledged that less effort has been made to study the fate, in terms of cellular uptake, persistence and degradation, of DNA vaccines after in vivo administration. However, during the last year some papers have given new insights into the fate of DNA vaccines in fish. By comparing the newly acquired information in fish with similar knowledge from studies in mammals, similarities with regard to transport, blood clearance, cellular uptake and degradation of DNA vaccines have been found. But the amount of DNA vaccine redistributed from the administration site after intramuscular administration seems to differ between fish and mammals. This review presents up-to-date and in-depth knowledge concerning the fate of DNA vaccines with emphasis on tissue distribution, cellular uptake and uptake mechanism(s) before finally describing the intracellular hurdles that DNA vaccines need to overcome in order to produce their gene product.
Collapse
Affiliation(s)
- Tom Christian Tonheim
- Department of Marine Biotechnology, The Norwegian College of Fishery Science, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | |
Collapse
|
31
|
Pisano E, Coscia MR, Mazzei F, Ghigliotti L, Coutanceau JP, Ozouf-Costaz C, Oreste U. Cytogenetic mapping of immunoglobulin heavy chain genes in Antarctic fish. Genetica 2006; 130:9-17. [PMID: 16909334 DOI: 10.1007/s10709-006-0015-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 04/27/2006] [Indexed: 11/30/2022]
Abstract
The chromosomal location of the IgH locus has been analyzed in several bony fish of the Antarctic perciform group Notothenioidei. Two IgH probes were prepared from the species Trematomus bernacchii (family Nototheniidae, tribe Trematominae) and mapped onto the chromosomes of ten species belonging to the same genus (Trematomus) and in two outgroups, through one-color and two-color FISH. A single location of the IgH locus was found in the majority of the species examined, including the outgroups, whereas in four of them the IgH genes splited to two chromosomal loci. RT-PCR experiments revealed the presence of three allelic sequences in T. newnesi, a species in which the IgH genes were organized in two chromosomal loci. Possible pathways leading to IgH genes duplication during the diversification of trematomine fishes were inferred from the analysis of the FISH patterns in a phylogenetic context. The present work provides the first comprehensive picture of IgH genes organization at chromosomal level in a bony fish group.
Collapse
Affiliation(s)
- Eva Pisano
- Department of Biology, University of Genova, Viale Benedetto XV 5, Genova, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Suetake H, Saha NR, Araki K, Akatsu K, Kikuchi K, Suzuki Y. Lymphocyte surface marker genes in fugu. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2006; 1:102-8. [DOI: 10.1016/j.cbd.2005.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2005] [Revised: 07/24/2005] [Accepted: 08/01/2005] [Indexed: 01/29/2023]
|
33
|
Cheng CA, John JAC, Wu MS, Lee CY, Lin CH, Lin CH, Chang CY. Characterization of serum immunoglobulin M of grouper and cDNA cloning of its heavy chain. Vet Immunol Immunopathol 2006; 109:255-65. [PMID: 16199094 DOI: 10.1016/j.vetimm.2005.08.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 07/15/2005] [Accepted: 08/15/2005] [Indexed: 11/24/2022]
Abstract
Immunoglobulin M (IgM) from the whole serum of grouper fish, Epinephelus coioides was purified by affinity chromatography using protein A-Sepharose column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions revealed that the relative molecular masses (Mr) of the equimolar heavy and light chains of IgM were 78,000 and 27,000, respectively. The cDNAs encoding IgM heavy chain comprising its variable (VH) and constant (CH) regions have been cloned and sequenced from a grouper kidney cDNA library by antibody screening method. Five VH (130-142 amino acids) and four CH (450-454 amino acids) families were identified. The variable and constant regions were conserved with their putative domains. All the four constant region domains (CH1-CH2-CH3-CH4) contained each three conserved cysteine residues, which are considered to form the inter- and intra-chain disulfide bridges. There were three carbohydrate acceptor sites in the constant region. In general, the pattern of IgM gene organization seems to resemble that of other teleosts. Moreover, the CH genes in grouper IgM occur as multifamily as reported in Atlantic salmon and common carp.
Collapse
Affiliation(s)
- Chao-An Cheng
- Department of Food Science, National Kinmen Institute of Technology, Kinmen, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Solem ST, Stenvik J. Antibody repertoire development in teleosts--a review with emphasis on salmonids and Gadus morhua L. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:57-76. [PMID: 16084588 DOI: 10.1016/j.dci.2005.06.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The group of teleosts is highly diverse, comprising more than 23000 extant species. Studies of the teleost antibody repertoire have been conducted in many different species within different orders, though some species and families have been better characterised than others. The Atlantic cod (Gadus morhua L.) and several species within the Salmoninae (e.g. Salmo salar and Oncorynchus mykiss) are among the best-studied teleosts in terms of the antibody repertoire. The estimated size of the repertoire, the organisation of immunoglobulin (IG) gene segments, the expressed IG repertoire, the IgM serum concentration, and the serum antibody responses reveal some fundamental differences between these species. The serum IgM concentration of G. morhua is some ten times higher than that of S. salar, though G. morhua is characterised as a 'low' (or 'non') responder in terms of specific antibody production. In contrast, an antibody response is readily induced in S. salar, although the response is strongly regulated by antigen induced suppression. The IGHD gene of G. morhua has a unique structure, while the IGHM and IGHD genes of S. salar have a characteristic genomic organisation in two parallel loci. In addition, salmonids, express a broad repertoire of IGH and IGI V-region gene segments, while a single V gene family dominates the expressed heavy and light chain repertoire of G. morhua. Little is known about the developing antibody repertoire during ontogeny, in different stages of B-cell maturation, or in separate B-cell subsets. Information on the establishment of the preimmune repertoire, and the possible role of environmental antigens is also sparse.
Collapse
Affiliation(s)
- Stein Tore Solem
- Department of Marine Biotechnology, Norwegian College of Fishery Science, Breivika, N-9037 Tromsø, Norway.
| | | |
Collapse
|
35
|
Bengtén E, Clem LW, Miller NW, Warr GW, Wilson M. Channel catfish immunoglobulins: repertoire and expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:77-92. [PMID: 16153707 DOI: 10.1016/j.dci.2005.06.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The channel catfish, Ictalurus punctatus, is widely recognized as an important model for studying immune responses in ectothermic vertebrates. It is one of the few fish species for which defined viable in vitro culture systems have been established and is currently the only fish species from which a variety of functionally distinct clonal leukocyte lines are available. Moreover, there is a large basis of biochemical and molecular information on the structure and function of catfish immunoglobulins (Igs). Catfish, as other teleosts, have a tetrameric homolog of IgM as their predominant serum Ig plus a homolog of IgD. They also have genetic elements basically similar to those of mammals, which encode and regulate their expression. The catfish Ig heavy (H) chain locus is a translocon-type locus with three Igdelta genes linked to an Igmu gene or pseudogene. The catfish IgH locus is estimated to contain approximately 200 variable (V) region genes representing 13 families as well as at least three diversity (D) and 11 joining (JH) genes. The catfish has two light (L) chain isotypes, F and G, both encoded by loci organized in multiple cassettes of VL-JL-CL with the VL in the opposite transcriptional orientation. Hence, all requisite components for encoding antibodies are present in the catfish, albeit with certain variations. In the future, whether or not additional unique features of Ig function and expression will be found remains to be determined.
Collapse
Affiliation(s)
- Eva Bengtén
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | | | | | | | | |
Collapse
|
36
|
Grove S, Tryland M, Press CM, Reitan LJ. Serum immunoglobulin M in Atlantic halibut (Hippoglossus hippoglossus): characterisation of the molecule and its immunoreactivity. FISH & SHELLFISH IMMUNOLOGY 2006; 20:97-112. [PMID: 15963734 DOI: 10.1016/j.fsi.2005.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 04/01/2005] [Accepted: 05/03/2005] [Indexed: 05/03/2023]
Abstract
Three preparations of purified immunoglobulin (IgM) were isolated from serum of Atlantic halibut (Hippoglossus hippoglossus) by means of three different methods, and each of the three IgM preparations was used to produce a polyclonal rabbit anti-halibut IgM antiserum. One of the IgM preparations was employed in the characterisation of halibut serum immunoglobulin. Halibut IgM was shown to consist of two subunits, compatible with heavy (mu) and light (L) chains. A single mu chain at approximately 76 kDa, and six possible molecular weight (MW) variants of L chain were found (range approximately 25 to approximately 28.5 kDa). IgM was glycosylated on the heavy chain and N-linked carbohydrate constituted approximately 10.3% (w/w) of the total MW of IgM. The dominant form of non-reduced IgM had a MW of approximately 780 kDa, suggesting a tetrameric structure. Non-reduced IgM also showed a number of minor protein bands. Based on estimated MW, the relative carbohydrate content and the reactivity with all three anti-halibut IgM antisera, mono-, di- and trimeric redox forms of IgM were identified. The three antisera were characterised as to specificity and reactivity by means of enzyme linked immuno-sorbent assay (ELISA), crossed immuno-electrophoresis (CIE), and immunoblotting methods. The antisera showed a considerable diversity in their specificity to the suggested MW variants of halibut Ig light chain. A method for immunohistochemical detection of IgM in tissue was established. Protein A or protein G affinity for the IgM was not detectable.
Collapse
Affiliation(s)
- Søren Grove
- Section of Immunoprophylaxis, National Veterinary Institute, 0033 Oslo, Norway.
| | | | | | | |
Collapse
|
37
|
Savan R, Aman A, Sato K, Yamaguchi R, Sakai M. Discovery of a new class of immunoglobulin heavy chain from fugu. Eur J Immunol 2005; 35:3320-31. [PMID: 16224815 DOI: 10.1002/eji.200535248] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In teleosts, the genomic organization of the immunoglobulin (Ig) heavy (H)-chain locus was thought to follow a typical translocon-type multigene structure; however, recent studies have indicated a variation in the structure and this might be teleost specific. Isotypes of the Ig H-chain, namely IgM, IgD, IgZ and IgT, have been identified. In this study, we report the discovery of a new class of IgH from fugu. This isotype was first identified from the genomic sequence of the fugu IgH locus. This novel IgH gene is composed of two constant (C) domains, a hinge region, and two exons encoding membrane regions. Surprisingly, the new IgH gene is present between the variable (V)H and Cmu regions of the locus. The C domains of the new isotype do not show any significant similarity to mammalian or fish IgH genes. The cloned cDNA from the new isotype has typical Ig H-chain characteristics and is expressed as both secretory and membrane form. Transcript analyses suggest that the new IgH from fugu might only use the joining (J)H segments present in front of the new CH domains and that the usage of DH and JH segments is specific to the isotype expressed. The expression pattern of the gene has been confirmed by in situ hybridization and PCR studies.
Collapse
Affiliation(s)
- Ram Savan
- Laboratory of Marine Biotechnology, Faculty of Agriculture, Miyazaki, Japan
| | | | | | | | | |
Collapse
|
38
|
Savan R, Aman A, Nakao M, Watanuki H, Sakai M. Discovery of a novel immunoglobulin heavy chain gene chimera from common carp (Cyprinus carpio L.). Immunogenetics 2005; 57:458-63. [PMID: 16025325 DOI: 10.1007/s00251-005-0015-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 06/15/2005] [Indexed: 10/25/2022]
Abstract
In fish, two types of immunoglobulin heavy chain (IGH) genes, namely, IgM and IgD, have been cloned and characterized. Recently, a new IGH isotype specific to teleosts had been identified from zebra fish, rainbow trout, and fugu. In zebra fish, the domains of this new gene are present upstream of the mu region along the IGH locus. During this study, a novel IGH chimera (IgM-IgZ) has been discovered from common carp. The cloned cDNA encodes a typical leader peptide, a variable region, two constant regions, and a secretory tail. The first constant region is made up of the C(H1) domain of carp IgM, while the second constant region shares a high similarity to the C(H4) domain of the IgZ from zebrafish. Southern hybridization studies of the mu and zeta domains, conducted separately, revealed the presence of at least three copies of the respective genes, and mu and zeta domains might be present on the same loci, although far apart. Expression studies of the IGH genes suggest that there is an increase in chimeric immunoglobulin gene transcription when stimulated with lipopolysaccharide.
Collapse
Affiliation(s)
- Ram Savan
- Faculty of Agriculture, University of Miyazaki, Gakuen kibanadai-nishi 1-1, Miyazaki, 889-2192, Japan
| | | | | | | | | |
Collapse
|
39
|
Danilova N, Bussmann J, Jekosch K, Steiner LA. The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nat Immunol 2005; 6:295-302. [PMID: 15685175 DOI: 10.1038/ni1166] [Citation(s) in RCA: 298] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 01/06/2005] [Indexed: 12/28/2022]
Abstract
The only immunoglobulin heavy-chain classes known so far in teleosts have been mu and delta. We identify here a previously unknown class, immunoglobulin zeta, expressed in zebrafish and other teleosts. In the zebrafish heavy-chain locus, variable (V) gene segments lie upstream of two tandem diversity, joining and constant (DJC) clusters, resembling the mouse T cell receptor alpha (Tcra) and delta (Tcrd) locus. V genes rearrange to (DJC)(zeta) or to (DJC)(mu) without evidence of switch rearrangement. The zebrafish immunoglobulin zeta gene (ighz) and mouse Tcrd, which are proximal to the V gene array, are expressed earlier in development. In adults, ighz was expressed only in kidney and thymus, which are primary lymphoid organs in teleosts. This additional class adds complexity to the immunoglobulin repertoire and raises questions concerning the evolution of immunoglobulins and the regulation of the differential expression of ighz and ighm.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | | | | | | |
Collapse
|
40
|
Saha NR, Suetake H, Suzuki Y. Analysis and characterization of the expression of the secretory and membrane forms of IgM heavy chains in the pufferfish, Takifugu rubripes. Mol Immunol 2005; 42:113-24. [PMID: 15488950 DOI: 10.1016/j.molimm.2004.06.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2003] [Accepted: 06/11/2004] [Indexed: 11/22/2022]
Abstract
We investigated the structure and expression of immunoglobulin genes in the pufferfish, Takifugu rubripes, a highly prized and economically important fish species. The cDNA fragment that partially encodes the constant region of the IgM heavy chain was isolated in these animals by RACE using degenerate primers after which it was used as a probe for screening IgM heavy chains in a fugu splenic cDNA library. The structural feature of the constant region of fugu sIgM was found to consist of four constant domains (CH1 to CH4), while mIgM was shown to contain a deletion of the CH4 domain, and its transmembrane domain was directly spliced to the CH3 domain as found in other teleosts. This feature may be common to all teleosts. In addition, five VH genes isolated in this study fell into two families based on their variability. Analysis of genomic sequences from the fugu genomic database also showed that there are only two VH families in the genome. The IgM gene was preferentially expressed in presumptive lymphoid tissues. Moreover, in situ hybridization revealed that large numbers of IgM positive cells were widely distributed throughout the spleen, head kidney, kidney, and thymus, confirming that these tissues were major sites of antibody production in fish. The expressions of IgM in the mucosal organs such as the skin, gills, and intestine suggest that they, too, contribute to humoral immunity in aquatic animals. The expression of IgM mRNA in the early development stages of this fish suggests that its larval form possesses a protective defense mechanism against foreign invaders.
Collapse
Affiliation(s)
- Nil Ratan Saha
- Department of Aquatic Biosciences, Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Maisaka 2971-4, Shizuoka 431-0211, Japan
| | | | | |
Collapse
|
41
|
Miyadai T, Ootani M, Tahara D, Aoki M, Saitoh K. Monoclonal antibodies recognising serum immunoglobulins and surface immunoglobulin-positive cells of puffer fish, torafugu (Takifugu rubripes). FISH & SHELLFISH IMMUNOLOGY 2004; 17:211-222. [PMID: 15276601 DOI: 10.1016/j.fsi.2004.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2002] [Revised: 03/01/2004] [Accepted: 03/29/2004] [Indexed: 05/24/2023]
Abstract
Immunoglobulin of the torafugu, Takifugu rubripes, was purified by a combination of precipitation by low ionic strength dialysis and gel filtration. The Ig was used to immunise mice for the production of monoclonal antibody (MAb). Supernatants of hybridoma cultures were screened by enzyme-linked immunosorbent assay using purified-torafugu Ig-coated plates, and two stable hybridomas producing MAbs against torafugu Ig were obtained. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis under reducing conditions and Western blotting indicated that one MAb (16F3) was specific for the deglycosylated heavy chain of torafugu, and the other MAb (4H5) did not bind to the reduced Ig, suggesting that 4H5 recognised the higher-order structure of Ig. Under non-reduced conditions, both MAbs recognised mainly a 750 kDa band and also minor bands of 672, 410 and 205 kDa. MAb 16F3- and 4H5-primed magnetic beads (Dynabeads) adsorbed 84.9+/-3.3% and 63.6+/-4.4% of the torafugu Ig, respectively. The Ig adsorbed by MAb 16F3-primed Dynabeads was reactive to 4H5 on immunoblotting, and vice versa, indicating that the epitopes for both MAbs are held on the same Ig molecule. Both of these MAbs cross-reacted extensively with the Ig of other Takifugu species, but not with other genus. The MAbs were used to identify surface Ig-positive lymphocytes in the spleen, pronephros, peripheral blood and thymocytes of torafugu by flow cytometry. Flow cytometric analysis of the cells in the lymphocyte-enriched fraction revealed that 50.2+/-6.9% in the PBL, 11.8+/-1.7% in the mesonephros, 13.3+/-2.1% in the pronephros, 42.5+/-4.3% in the spleen and 3.2+/-0.6% in thymus were reactive to 4H5 or 16F3.
Collapse
Affiliation(s)
- Toshiaki Miyadai
- Research Center for Marine Bioresources, Department of Marine Biotechnology, Fukui Prefectural University, Obama, Fukui 917-0116, Japan.
| | | | | | | | | |
Collapse
|
42
|
Saha NR, Suetake H, Suzuki Y. Characterization and expression of the immunoglobulin light chain in the fugu: evidence of a solitaire type. Immunogenetics 2004; 56:47-55. [PMID: 15042329 DOI: 10.1007/s00251-004-0662-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 02/22/2004] [Indexed: 10/26/2022]
Abstract
In this study, we characterized the immunoglobulin light (IgL) chain gene and examined its expression in the fugu (Takifugu rubripes). The cDNA fragment that partially encodes the IgL chain was isolated by RACE and used as a probe for screening for IgL in a fugu splenic cDNA library. The IgL cDNA sequence that we found consisted of a variable (V(L)) and a constant (C(L)) segment. Its structural features were similar to the IgL isotype commonly found in teleosts. Genomic sequence analysis revealed that the IgL gene was organized as two V(L) gene segments (designed V(L1) and V(L2)) followed by single joining (J(L)) and C(L) segment. In addition, an unusual duplicate V(L1) gene segment was found downstream of the C(L) segment. The transcriptional orientation of the V(L) exons was found to be opposite to that of the J(L) and C(L) segments. Genomic blot hybridizations with V(L) and C(L) probes gave multibands, supporting the contention that the teleost IgL forms a multicluster. Both genomic and cDNA sequences analyses showed that all of the constant segments found in the fugu are identical, suggesting that no other isotypes could be found in this species. Comparison of the deduced amino acid sequence of the fugu C(L) domain with those of other species showed a high degree of identity (from 40 to 77%). IgL mRNAs were found to be expressed primarily in the lymphoid tissues. In situ hybridization revealed the presence of IgL-positive cells widely distributed throughout the spleen, head kidney, kidney, and thymus. These results support the contention that the lymphoid tissues are the major sites of antibody production in fish. Since IgL mRNA was also expressed in the skin and gill that are exposed to external antigens, it is likely that mucosal Ig plays an important role in immune protection.
Collapse
Affiliation(s)
- Nil Ratan Saha
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 2971-4 Maisaka, 431-0211 Shizuoka, Japan
| | | | | |
Collapse
|
43
|
Hirono I, Nam BH, Enomoto J, Uchino K, Aoki T. Cloning and characterisation of a cDNA encoding Japanese flounder Paralichthys olivaceus IgD. FISH & SHELLFISH IMMUNOLOGY 2003; 15:63-70. [PMID: 12787688 DOI: 10.1016/s1050-4648(02)00139-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A cDNA containing the gene for Japanese flounder IgD consisted of 3240 bp encoding 998 amino acid residues. The amino acid sequence of the constant region of Japanese flounder IgD shares 38-80% identity with the sequences of previously reported teleost IgDs. The structure of the constant region of Japanese flounder IgD, which contains the micro1, delta1, delta2, delta3, delta4, delta5, delta6, delta7, and TM regions, is similar to the structures of the constant regions of the IgDs of channel catfish and Atlantic salmon. Southern blot hybridisation showed that the Japanese flounder IgD gene exists as a single locus. The Japanese flounder IgD gene was mainly detected in peripheral blood leucocytes (PBLs) and small amounts were detected in the spleen, head and trunk kidney, although IgM mRNA was detected in similar amounts in PBLs, the head kidney, and spleen. The copy number of IgM mRNA in Japanese flounder PBL was 56-fold higher than that of IgD.
Collapse
Affiliation(s)
- Ikuo Hirono
- Laboratory of Genetics, Department of Aquatic Biosciences, Tokyo University of Fisheries, Konan 4-5-7, Minato, Tokyo 108-8477, Japan
| | | | | | | | | |
Collapse
|
44
|
Koppang EO, Hordvik I, Bjerkås I, Torvund J, Aune L, Thevarajan J, Endresen C. Production of rabbit antisera against recombinant MHC class II beta chain and identification of immunoreactive cells in Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2003; 14:115-132. [PMID: 12526876 DOI: 10.1006/fsim.2002.0424] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the present work, rabbit antisera recognising the Atlantic salmon (Salmo salar) MHC class II beta chain polypeptide were produced and used in immunoblotting, immunohistochemistry and immunogold electron microscopy. A construct encoding the beta1 and beta2 domains fused to the E. coli protein thioredoxin was used to express the recombinant MHC class II beta chain. Immunoblotting revealed a band of approximately 30kDa in total protein samples from head kidney, spleen, gills, thymus and blood leukocytes, while being absent in muscle. The distribution of MHC class II positive cells was immunohistochemically demonstrated in Atlantic salmon epithelial and haemopoietic tissues. Ultrastructural demonstration of immunoreactive organelles in mid-kidney cells was performed by immunogold electron microscopy. The results indicate expression in lymphocytes, macrophages, epithelial cells and endritic-like cells. This is the first study to address morphological MHC class II expression in a fish species.
Collapse
Affiliation(s)
- E O Koppang
- Department of Morphology, Genetics and Aquatic Biology, Norwegian School of Veterinary Science, Box 8146 Dep. 0033, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The zebrafish, with its transparent free-living embryo, is a useful organism for investigating early stages in lymphopoiesis. Previously, we showed that T cells differentiate in the thymus by day 4, but no sites for B cell differentiation were seen until 3 weeks. We report here that on day 4, we detect rearrangements of genes encoding B cell receptors in DNA extracted from whole fish. Also by day 4, rag1 transcripts are seen in the pancreas, an organ not previously associated with lymphopoiesis; by day 10, Igmu transcripts are detected here. Thus, in zebrafish, the pancreas assumes the role of both the liver in fetal mice and the spleen in neonatal mice.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
46
|
Hordvik I, Berven FS, Solem ST, Hatten F, Endresen C. Analysis of two IgM isotypes in Atlantic salmon and brown trout. Mol Immunol 2002; 39:313-21. [PMID: 12220889 DOI: 10.1016/s0161-5890(02)00114-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Atlantic salmon (Salmo salar) possesses two distinct subpopulations of polymeric IgM which are separable by anion exchange chromatography. Consistent with this finding there are two isotypic IgM heavy chain genes, CmuA and CmuB, in the genome of this species, presumably as a result of ancestral tetraploidy. In the present study it was shown that IgM of brown trout (Salmo trutta) is also separated into two subpopulations by anion exchange chromatography, while IgM of rainbow trout (Oncorhynchus mykiss) and Arctic char (Salvelinus alpinus) are eluted in one peak. Molecular cloning of IgM heavy chain cDNAs from brown trout revealed messages of two distinct constant region genes, named CmuA and CmuB. As deduced from the translated cDNA sequences (and in agreement with isoelectric focusing of the corresponding proteins) the mean pI values of the heavy chains in brown trout differ with only 0.14 units, in comparison to a 0.67 unit difference in salmon. Based on the present sequence analysis we suggest that an additional cysteine near the C-terminus of CmuB is critical in relation to the fractionation of IgM by anion exchange chromatography, for example by altering the overall structure of the IgM polymer and the exposure of charged residues. Most likely, the Cmu subvariant with the characteristic extra cysteine residue arose in the ancestor of Atlantic salmon and brown trout, i.e. after the three genera Salmo, Oncorhynchus and Salvelinus radiated.
Collapse
Affiliation(s)
- Ivar Hordvik
- Department of Fisheries and Marine Biology, University of Bergen, Bergen, Norway.
| | | | | | | | | |
Collapse
|
47
|
Hordvik I. Identification of a novel immunoglobulin delta transcript and comparative analysis of the genes encoding IgD in Atlantic salmon and Atlantic halibut. Mol Immunol 2002; 39:85-91. [PMID: 12213331 DOI: 10.1016/s0161-5890(02)00043-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Atlantic salmon possesses two parallel Ig heavy chain gene complexes, A and B, most probably as a result of ancestral tetraploidy. Consequently, there are two distinct IgD heavy chain (delta) subvariants in this species. The Igdelta(B) gene was characterised in a previous study. In the present work the Igdelta(A) gene was amplified by PCR and sequenced. Both Igdelta genes in salmon have a structure like delta1-(delta2-delta3-delta4)(2)-delta5-delta6-delta7-TM1-TM2 and show a high degree of sequence identity (approximately 95%). 3'RACE and RT-PCR analyses performed in the present study indicate that Igdelta transcripts of membrane type are dominating in Atlantic salmon and Atlantic halibut. However, a different transcript, originating from the Igdelta(B) gene in salmon, was identified by PCR. This RNA fragment is spliced between the regular donor/acceptor sites in delta6 and TM2. Cloning and characterisation of cDNA encoding the membrane form of halibut IgD revealed an overall Ig domain structure equivalent to that in salmon. Corresponding duplications of delta2-delta3-delta4 have now been found in three teleost fishes: salmon, halibut and catfish. The tandem duplicated fragments are highly similar within each species, while not being especially conserved between the species. Thus, the duplicated gene fragments have either arisen independently in each species or are subjected to homogenisation by some means.
Collapse
Affiliation(s)
- Ivar Hordvik
- Department of Fisheries and Marine Biology, High Technology Centre, University of Bergen, 5020 Bergen, Norway.
| |
Collapse
|
48
|
Martin SA, Caplice NC, Davey GC, Powell R. EST-based identification of genes expressed in the liver of adult Atlantic salmon (Salmo salar). Biochem Biophys Res Commun 2002; 293:578-85. [PMID: 12054641 DOI: 10.1016/s0006-291x(02)00263-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A list of genes expressed in the liver of Atlantic salmon was compiled using the expressed sequence tag (EST) strategy. 733 ESTs, derived from 170 abundant and 563 rare mRNA encoding liver cDNA clones, were determined. Bioinformatic analysis revealed that 390 (53%) of the salmon liver ESTs could be ascribed to the transcriptional products of 93 identified genes including 7 previously described in the Atlantic salmon. The identified Atlantic salmon genes were classified with respect to cellular role which showed that 33 (36%) of the identified genes encoded proteins associated with primary liver functions such as transport, acute phase response, and blood clotting. Furthermore, comparative analysis revealed that 12 of the 16 salmon genes that were shown to encode abundant mRNA transcripts in liver had homologues that have also been shown to be highly expressed in mammalian liver systems. Finally, two cDNA variants corresponding to the two cDNA forms of the apolipoprotein A-I gene previously identified in rainbow trout were also found in Atlantic salmon.
Collapse
Affiliation(s)
- Sarah A Martin
- Department of Microbiology, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
49
|
|
50
|
Solem ST, Hordvik I, Killie JA, Warr GW, Jørgensen TO. Diversity of the immunoglobulin heavy chain in the Atlantic salmon (Salmo salar L.) is contributed by genes from two parallel IgH isoloci. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:403-417. [PMID: 11356220 DOI: 10.1016/s0145-305x(01)00008-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Immunoglobulin heavy chain (IgH) variable (V) region cDNAs from the Atlantic salmon, Salmo salar L., have been isolated and analysed with respect to diversity and transcription of the two parallel IgH isoloci in this species. A total of nine V(H) families were defined according to the 80% identity criterion, of which seven were highly related (>80% identity) to the V(H) families defined in rainbow trout and arctic charr. The variability of the CDR1 and 2 was low, although mutational hot-spot consensus sequences were accumulated in these regions. The CDR3 showed largest variability, expressing at least eight different groups of D motifs diversified by fusion of the D motifs, possible N and P nucleotide insertions and exonuclease activity. Presumably functional transcripts expressing D motifs in all three reading frames were identified for two of the motifs. The cDNAs were mapped to either of the two parallel loci, and sequence analysis revealed that the repertoire of V(H) segments was contributed by transcription of genes from both of the IgH isoloci. Transcription of genes from both isoloci generated no obvious effects on variability in the CDR3 of the Atlantic salmon IgH chains, although one additional J(H)-segment with altered N-terminal was generated by the process of duplication and divergence. Thus, the issue of biological significance of the two IgH isoloci remains unclear.
Collapse
Affiliation(s)
- S T Solem
- Department of Marine Biotechnology, Norwegian College of Fishery Science, Breivika, N-9037, Tromsø, Norway.
| | | | | | | | | |
Collapse
|