1
|
Chin SS, Guillen E, Chorro L, Achar S, Ng K, Oberle S, Alfei F, Zehn D, Altan-Bonnet G, Delahaye F, Lauvau G. T cell receptor and IL-2 signaling strength control memory CD8 + T cell functional fitness via chromatin remodeling. Nat Commun 2022; 13:2240. [PMID: 35474218 PMCID: PMC9042912 DOI: 10.1038/s41467-022-29718-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/24/2022] [Indexed: 12/20/2022] Open
Abstract
Cognate antigen signal controls CD8+ T cell priming, expansion size and effector versus memory cell fates, but it is not known if and how it modulates the functional features of memory CD8+ T cells. Here we show that the strength of T cell receptor (TCR) signaling controls the requirement for interleukin-2 (IL-2) signals to form a pool of memory CD8+ T cells that competitively re-expand upon secondary antigen encounter. Combining strong TCR and intact IL-2 signaling during priming synergistically induces genome-wide chromatin accessibility in regions targeting a wide breadth of biological processes, consistent with greater T cell functional fitness. Chromatin accessibility in promoters of genes encoding for stem cell, cell cycle and calcium-related proteins correlates with faster intracellular calcium accumulation, initiation of cell cycle and more robust expansion. High-dimensional flow-cytometry analysis of these T cells also highlights higher diversity of T cell subsets and phenotypes with T cells primed with stronger TCR and IL-2 stimulation than those primed with weaker strengths of TCR and/or IL-2 signals. These results formally show that epitope selection in vaccine design impacts memory CD8+ T cell epigenetic programming and function.
Collapse
Affiliation(s)
- Shu Shien Chin
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY, 10461, USA
| | - Erik Guillen
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY, 10461, USA
| | - Laurent Chorro
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY, 10461, USA
| | - Sooraj Achar
- National Cancer Institute, Cancer & Inflammation Program, Center for Cancer Research, ImmunoDynamics Group, Bethesda, MD, 20892, USA
| | - Karina Ng
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY, 10461, USA
| | - Susanne Oberle
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Francesca Alfei
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
- Swiss Vaccine Research Institute, Epalinges, Switzerland and Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
- Swiss Vaccine Research Institute, Epalinges, Switzerland and Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Grégoire Altan-Bonnet
- National Cancer Institute, Cancer & Inflammation Program, Center for Cancer Research, ImmunoDynamics Group, Bethesda, MD, 20892, USA
| | - Fabien Delahaye
- Albert Einstein College of Medicine, Department of Genetics, Bronx, NY, 10461, USA.
- Institut Pasteur de Lille, UMR1283/8199, 59000, Lille, France.
| | - Grégoire Lauvau
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY, 10461, USA.
| |
Collapse
|
2
|
Pasquet L, Joffre O, Santolaria T, van Meerwijk JPM. Hematopoietic chimerism and transplantation tolerance: a role for regulatory T cells. Front Immunol 2011; 2:80. [PMID: 22566869 PMCID: PMC3342389 DOI: 10.3389/fimmu.2011.00080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 12/05/2011] [Indexed: 01/13/2023] Open
Abstract
The immunosuppressive regimens currently used in transplantation to prevent allograft destruction by the host's immune system have deleterious side effects and fail to control chronic rejection processes. Induction of donor-specific non-responsiveness (i.e., immunological tolerance) to transplants would solve these problems and would substantially ameliorate patients' quality of life. It has been proposed that bone marrow or hematopoietic stem-cell transplantation, and resulting (mixed) hematopoietic chimerism, lead to immunological tolerance to organs of the same donor. However, a careful analysis of the literature, performed here, clearly establishes that whereas hematopoietic chimerism substantially prolongs allograft survival, it does not systematically prevent chronic rejection. Moreover, the cytotoxic conditioning regimens used to achieve long-term persistence of chimerism are associated with severe side effects that appear incompatible with a routine use in the clinic. Several laboratories recently embarked on different studies to develop alternative strategies to overcome these issues. We discuss here recent advances obtained by combining regulatory T cell infusion with bone-marrow transplantation. In experimental settings, this attractive approach allows development of genuine immunological tolerance to donor tissues using clinically relevant conditioning regimens.
Collapse
Affiliation(s)
- Lise Pasquet
- INSERM U1043Toulouse, France
- CNRS U5282Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan, Université Paul Sabatier, Université de ToulouseToulouse, France
| | - Olivier Joffre
- INSERM U1043Toulouse, France
- CNRS U5282Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan, Université Paul Sabatier, Université de ToulouseToulouse, France
| | - Thibault Santolaria
- INSERM U1043Toulouse, France
- CNRS U5282Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan, Université Paul Sabatier, Université de ToulouseToulouse, France
| | - Joost P. M. van Meerwijk
- INSERM U1043Toulouse, France
- CNRS U5282Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan, Université Paul Sabatier, Université de ToulouseToulouse, France
| |
Collapse
|
3
|
Jones DS, Reichardt P, Ford ML, Edwards LJ, Evavold BD. TCR antagonism by peptide requires high TCR expression. THE JOURNAL OF IMMUNOLOGY 2008; 181:1760-6. [PMID: 18641313 DOI: 10.4049/jimmunol.181.3.1760] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Current models of T cell activation focus on the kinetics of TCR-ligand interactions as the central parameter governing T cell responsiveness. However, these kinetic parameters do not adequately predict all T cell behavior, particularly the response to antagonist ligands. Recent studies have demonstrated that TCR number is a critical parameter influencing the responses of CD4(+) T cells to weak agonist ligands, and receptor density represents an important means of regulating tissue responsiveness in other receptor ligand systems. To systematically address the impact of TCR expression on CD8(+) T cell responses, mAbs to the TCR alpha-chain and T cells expressing two TCR species were used as two different methods to manipulate the number of available TCRs on P14 and OT-I transgenic T cells. Both methods of TCR reduction demonstrated that the efficacy of antagonist peptides was significantly reduced on T cells bearing low numbers of available receptors. In addition, the ability of weak agonists to induce proliferation was critically dependent on the availability of high numbers of TCRs. Therefore, in this report we show that TCR density is a major determinant of CD8(+) T cell reactivity to weak agonist and antagonist ligands but not agonist ligands.
Collapse
Affiliation(s)
- Daniel S Jones
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
4
|
Wang J, Lozier J, Johnson G, Kirshner S, Verthelyi D, Pariser A, Shores E, Rosenberg A. Neutralizing antibodies to therapeutic enzymes: considerations for testing, prevention and treatment. Nat Biotechnol 2008; 26:901-8. [PMID: 18688246 PMCID: PMC3478093 DOI: 10.1038/nbt.1484] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lysosomal storage diseases are characterized by deficiencies in lysosomal enzymes, allowing accumulation of target substrate in cells and eventually causing cell death. Enzyme replacement therapy is the principal treatment for most of these diseases. However, these therapies are often complicated by immune responses to the enzymes, blocking efficacy and causing severe adverse outcomes by neutralizing product activity. It is thus crucial to understand the relationships between genetic mutations, endogenous residual enzyme proteins (cross-reactive immunologic material), development of neutralizing antibodies and their impact on clinical outcomes of lysosomal storage diseases. For patients in whom neutralizing antibodies may cause severe adverse clinical outcomes, it is paramount to develop tolerance inducing protocols to preclude, where predictable, or treat such life-threatening responses.
Collapse
Affiliation(s)
- Jinhai Wang
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, NIH Building 29B, 8800 Rockville Pike, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Bachmann MF, Wolint P, Walton S, Schwarz K, Oxenius A. Differential role of IL-2R signaling for CD8+ T cell responses in acute and chronic viral infections. Eur J Immunol 2007; 37:1502-12. [PMID: 17492805 DOI: 10.1002/eji.200637023] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
IL-2 is a cytokine with multiple and even divergent functions; it has been described as a key cytokine for in vitro T cell proliferation but is also essential for down-regulating T cell responses by inducing activation-induced cell death as well as regulatory T cells. The in vivo analysis of IL-2 function in regulating specific T cell responses has been hampered by the fact that mice deficient in IL-2 or its receptors develop lymphoproliferative diseases and/or autoimmunity. Here we generated chimeric mice harboring both IL-2R-competent and IL-2R-deficient T cells and assessed CD8+ T cell induction, function and maintenance after acute or persistent viral infections. Induction and maintenance of CD8+ T cells were relatively independent of IL-2R signaling during acute/resolved viral infection. In marked contrast, IL-2 was crucial for secondary expansion of memory CD8+ T cells and for the maintenance of virus-specific CD8+ T cells during persistent viral infections. Thus, depending on the chronicity of antigen exposure, IL-2R signaling is either essential or largely dispensable for induction and maintenance of virus-specific CD8+ T cell responses.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Viral/immunology
- Bone Marrow Transplantation
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/transplantation
- Chronic Disease
- Epitopes, T-Lymphocyte/immunology
- Glycoproteins/immunology
- Interferon-gamma/metabolism
- Interleukin-2/metabolism
- Interleukin-2 Receptor alpha Subunit/genetics
- Interleukin-2 Receptor alpha Subunit/physiology
- Interleukin-7 Receptor alpha Subunit/metabolism
- L-Selectin/metabolism
- Lymphocyte Activation/immunology
- Lymphocytic choriomeningitis virus/immunology
- Lysosomal Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Interleukin-2/genetics
- Receptors, Interleukin-2/physiology
- Signal Transduction
- Tumor Necrosis Factor-alpha/metabolism
- Viral Proteins/immunology
- Virus Diseases/immunology
Collapse
|
6
|
Abstract
Thymus is the site of generation and selection of T-lymphocytes. It also contains phenotypically and functionally distinct dendritic cell (DC) populations, including conventional DC (cDC) and plasmacytoid DC (pDC). Thymic cDC are heterogeneous and contain two subsets: a major subset derived from the precursors within thymus, and a minor subset presumably of extrathymic origin. Increasing evidence suggest that thymic cDC can cross-present self-antigens to developing thymocytes and play an important role in thymocyte negative selection and central tolerance induction. Thymic pDC can produce type-I interferon upon appropriate activation. However, their role in a steady state thymus is currently unclear.
Collapse
Affiliation(s)
- Li Wu
- The Walter and Eliza Hall Institute of Medical Research, 1G, Royal Parade, Parkville, Vic. 3050, Australia.
| | | |
Collapse
|
7
|
Pechhold K, Chakrabarty S, Harlan DM. Cytotoxic T cell-mediated diabetes in RIP-CD80 transgenic mice: autoantigen peptide sensitivity and fine specificity. Ann N Y Acad Sci 2007; 1103:132-42. [PMID: 17376836 DOI: 10.1196/annals.1394.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rodent immune-mediated diabetes model studies have advanced understanding of beta cell-specific T cell responses, and the testing of therapeutic approaches. We have used an inducible diabetes model based on rat insulin promotor (RIP)-driven expression of CD80 (B7-1) on pancreatic beta cells. Using these mice, we have established that immunizing with a single autoantigen can promote progressive islet inflammation and eventually T cell-mediated diabetes. We now describe a potent immunization protocol using peptide-pulsed mature dendritic cells (DCs) to examine peptide epitopes derived from endogenous (preproinsulin) and transgenically expressed beta cell antigens, namely lymphocytic choriomeningitis virus glycoprotein (LCMV-GP). LCMV-GP epitopes efficiently promote beta cell destruction, and the autoantigenic peptide concentration used to load the DCs correlates directly with diabetes onset. The system allowed us to assess cytotoxic T cell (CTL) fine specificity by immunizing with DCs presenting altered peptide ligands (APLs) of the dominant LCMV-GP epitope, gp33. Finally, using an adoptive transfer system, we tested alternative in vitro T cell activation conditions, including APLs and mitogens, for their impact on T cell effector function and diabetes onset. Our studies revealed a marked discrepancy between (inflammatory) effector functions and diabetes progression, thus emphasizing the importance of structural identity between sensitizing and target epitope and the context of initial T cell activation.
Collapse
Affiliation(s)
- Klaus Pechhold
- Diabetes Branch, NIDDK, NIH, 10 Center Drive, Bldg. 10-CRC, Room 5W-5888, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
8
|
Jost PJ, Weiss S, Ferch U, Gross O, Mak TW, Peschel C, Ruland J. Bcl10/Malt1 signaling is essential for TCR-induced NF-kappaB activation in thymocytes but dispensable for positive or negative selection. THE JOURNAL OF IMMUNOLOGY 2007; 178:953-60. [PMID: 17202357 DOI: 10.4049/jimmunol.178.2.953] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During T cell development in the thymus, high-affinity/avidity TCR engagement induces negative selection by apoptosis, while lower affinity/avidity TCR interactions lead to positive selection and survival of thymocytes. Yet, the mechanisms that discriminate between positive and negative selection are not fully understood. One major regulator of survival and apoptosis in lymphoid cells is the transcription factor NF-kappaB. Several reports have indicated key roles for NF-kappaB in positive and negative selection. In peripheral T cells, TCR ligation activates NF-kappaB through a selective pathway that involves protein kinase Ctheta, Bcl10, and Malt1. While protein kinase Ctheta is dispensable for thymic TCR signaling, the molecular roles of Bcl10 and Malt1 in thymocytes have not been investigated. In the present study, we show that both Bcl10 and Malt1 are essential for TCR signaling in thymocytes as a genetic disruption of either molecule blocks TCR-induced NF-kappaB activation in these cells. To investigate the function of this pathway in thymic selection, we introduced the Bcl10 or Malt1 mutations into three well-established TCR transgenic mouse models. Surprisingly, using several in vivo or in vitro assays, we were unable to demonstrate a role for TCR-induced NF-kappaB activation in either positive or negative selection. Thus, while TCR signaling to NF-kappaB controls the activation of mature T cells, we suggest that this pathway is not involved in the positive or negative selection of thymocytes.
Collapse
Affiliation(s)
- Philipp J Jost
- Third Medical Department, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
T lymphocytes express receptors (T-cell receptor) that are not only specific for antigenic peptide but also molecules encoded by the major histocompatibility complex (MHC) that present peptide on the surface of cells (MHC-restricted antigen recognition). However, the vast majority of T cells are tolerant to their own MHC molecules and do not give rise to autoimmune disease. This MHC-restricted, but tolerant, repertoire of T cells is determined by selection triggered by the appropriate recognition of peptide/MHC on thymic stromal cell by immature thymocytes. We have developed a fetal thymus organ culture (FTOC) system based on transporter associated with antigen processing (TAP) 1-deficient mice to examine the role of peptide/MHC in triggering the differentiation of T cells restricted to class I MHC (positive selection). We also describe an FTOC system to study central T-cell tolerance, which occurs through clonal deletion in the thymus (negative selection).
Collapse
Affiliation(s)
- Philip G Ashton-Rickardt
- Department of Pathology and Ben May Institute for Cancer Research, University of Chicago, IL, USA
| |
Collapse
|
10
|
Abstract
Recent elucidation of the role of central tolerance in preventing organ-specific autoimmunity has changed our concepts of self/nonself discrimination. This paradigmatic shift is largely attributable to the discovery of promiscuous expression of tissue-restricted self-antigens (TRAs) by medullary thymic epithelial cells (mTECs). TRA expression in mTECs mirrors virtually all tissues of the body, irrespective of developmental or spatio-temporal expression patterns. This review summarizes current knowledge on the cellular and molecular regulation of TRA expression in mTECs, outlines relevant mechanisms of antigen presentation and modes of tolerance induction, and discusses implications for the pathogenesis of autoimmune diseases and other biological processes such as fertility, pregnancy, puberty, and tumor defense.
Collapse
Affiliation(s)
- Bruno Kyewski
- Division of Developmental Immunology, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany.
| | | |
Collapse
|
11
|
Bättig P, Saudan P, Storni T, Gallimore A, Bachmann MF. Limited in vivo reactivity of polyclonal effector cytotoxic T cells towards altered peptide ligands. Microbes Infect 2005; 7:729-37. [PMID: 15857805 DOI: 10.1016/j.micinf.2005.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 01/21/2005] [Accepted: 01/25/2005] [Indexed: 10/25/2022]
Abstract
T cell responses are regulated by the affinity/avidity of the T cell receptor for the MHC/peptide complex, available costimulation and duration of antigenic stimulation. Altered peptide ligands (APLs) are usually recognized with a reduced affinity/avidity by the T cell receptor and are often able to only partially activate T cells in vitro or may even function as antagonists. Here we assessed the ability of APLs derived from peptide p33 of lymphocytic choriomeningitis virus (LCMV) to mediate lysis of target cells in vivo, confer anti-viral protection and cause auto-immune disease. In general, in vitro cross-reactivity between APLs was rather limited, and even strongly cross-reactive cytotoxic T lymphocytes were only able to mediate moderate anti-viral protection. Partial protection was observed for infection with LCMV or low doses of recombinant vaccinia virus, while no reduced viral titers could be seen upon infection with high dose of vaccinia virus. In a transgenic mouse model expressing LCMV glycoprotein in the islets of the pancreas, APLs induced a transient insulitis but failed to induce autoimmune diabetes. Thus, effector functions induced by even highly homologous APLs are rather limited in vivo.
Collapse
MESH Headings
- Animals
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/pharmacology
- Autoimmune Diseases/etiology
- Autoimmune Diseases/immunology
- Autoimmune Diseases/prevention & control
- Cross Reactions
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/prevention & control
- Disease Models, Animal
- Glycoproteins/chemistry
- Glycoproteins/genetics
- Glycoproteins/immunology
- Glycoproteins/pharmacology
- Ligands
- Lymphocyte Activation/drug effects
- Lymphocytic Choriomeningitis/complications
- Lymphocytic Choriomeningitis/immunology
- Lymphocytic choriomeningitis virus/immunology
- Lymphocytic choriomeningitis virus/pathogenicity
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/pharmacology
- Peptides/chemistry
- Peptides/genetics
- Peptides/immunology
- Peptides/pharmacology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccinia virus/genetics
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/pharmacology
Collapse
Affiliation(s)
- Patrick Bättig
- Cytos Biotechnology, AG Wagistrasse 25, 8952 Zürich-Schlieren, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Santori FR, Vukmanovic S. Delineation of Signals Required for Thymocyte Positive Selection. THE JOURNAL OF IMMUNOLOGY 2004; 173:5517-23. [PMID: 15494500 DOI: 10.4049/jimmunol.173.9.5517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peptide/MHC complexes capable of inducing positive selection in mouse fetal thymic organ cultures fail to do so in suspension culture. Furthermore, this type of culture does not promote initial stages of differentiation, such as coreceptor down-modulation, unless peptides used for stimulation have (at least) weak agonist activity. We show in this study that signals provided in suspension culture by nonagonist peptide/MHC complexes on the surface of macrophages, even though apparently silent, are sufficient to promote complete phenotypic differentiation when CD4+CD8+ thymocytes are subsequently placed in a proper anatomical setting. Furthermore, the synergistic actions of suboptimal concentrations of phorbol esters and nonagonist peptide/MHC complexes can make the initial stages of positive selection visible, without converting maturation into negative selection. Thus, the correlation between efficiency of positive selection and the degree of coreceptor down-modulation on CD4+CD8+ thymocytes is not linear. Furthermore, these results suggest that the unique role of thymic stromal cells in positive selection is related not to presentation of self-peptide/MHC complexes, but most likely to another ligand.
Collapse
Affiliation(s)
- Fabio R Santori
- Michael Heidelberger Division of Immunology, Department of Pathology and New York University Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
13
|
He XY, Li J, Qian XP, Fu WX, Li Y, Wu L, Chen WF. The thymic stromal cell line MTSC4 induced thymocyte apoptosis in a non-MHC-restricted manner. Cell Res 2004; 14:125-33. [PMID: 15115613 DOI: 10.1038/sj.cr.7290211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mouse thymic stromal cell line 4 (MTSC4) is one of the stromal cell lines established in our laboratory. While losing the characteristics of epithelial cells, they express some surface markers shared with thymic dendritic cells (TDCs). To further study the biological functions of these cells, we compared the capability of MTSC4 with TDCs in the induction of thymocyte apoptosis, using thymic reaggregation culture system. Apoptosis of thymocytes induced by MTSC4 and TDCs was measured by Annexin V and PI staining and analyzed by flow cytometry. We found that MTSC4 selectively augmented the apoptosis of CD4+8+ (DP) thymocytes. This effect was Fas/FasL independent and could not be blocked by antibodies to MHC class I and class II molecules. In addition, MTSC4 enhanced the apoptosis of DP thymocytes from different strains of mice, which implies that MTSC4-induced thymocyte apoptosis is not mediated by the TCR recognition of self peptide/MHC molecules. In contrast to MTSC4, thymocyte apoptosis induced by TDCs was MHC-restricted. Thus, MHC-independent fashion of stromal-DP thymocyte interaction may be one of the ways to induce thymocyte apoptosis in thymus. Our study has also shown that the interaction of MTSC4 stromal cells and thymocytes is required for the induction of thymocyte apoptosis.
Collapse
Affiliation(s)
- Xue Ying He
- Department of Immunology, Peking University Health Science Center,38 Xueyuan Road, Beijing 100083, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Terra R, Labrecque N, Perreault C. Thymic and extrathymic T cell development pathways follow different rules. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:684-92. [PMID: 12097370 DOI: 10.4049/jimmunol.169.2.684] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Separation between primary and secondary lymphoid organs is a universal feature in jawed vertebrates. Strikingly, oncostatin M (OM)-transgenic mice present massive extrathymic T cell development, localized exclusively in the lymph nodes (LN). According to the prevailing paradigm, the thymus is the main source of T lymphocytes in gnathostomes mainly because thymic epithelial cells have a unique ability to support early steps in T cell development. It is therefore remarkable that productive T cell development occurs in the OM(+) LN, despite the absence of epithelial cells. The present study shows that in the OM(+) LN: 1) MHC class I expression strictly on hemopoietic cells is sufficient to support the development of a diversified repertoire of CD8 T cells; 2) the efficiency of positive selection of specific TCR-transgenic T cells is not the same as in the thymus; 3) negative selection is very effective, despite the lack of an organized thymic-like medulla. Furthermore, our data suggest that extrathymic T lymphocytes developing in the OM(+) LN undergo extensive postselection expansion because they live in the microenvironment in which they were positively selected. This work illustrates how the division of labor between primary and secondary lymphoid organs influences the repertoire and homeostasis of T lymphocytes.
Collapse
Affiliation(s)
- Rafik Terra
- Guy-Bernier Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
15
|
Storni T, Lechner F, Erdmann I, Bächi T, Jegerlehner A, Dumrese T, Kündig TM, Ruedl C, Bachmann MF. Critical role for activation of antigen-presenting cells in priming of cytotoxic T cell responses after vaccination with virus-like particles. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2880-6. [PMID: 11884458 DOI: 10.4049/jimmunol.168.6.2880] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Virus-like particles (VLPs) are known to induce strong Ab responses in the absence of adjuvants. In addition, VLPs are able to prime CTL responses in vivo. To study the efficiency of this latter process, we fused peptide p33 derived from lymphocytic choriomeningitis virus to the hepatitis B core Ag, which spontaneously assembles into VLPs (p33-VLPs). These p33-VLPs were efficiently processed in vitro and in vivo for MHC class I presentation. Nevertheless, p33-VLPs induced weak CTL responses that failed to mediate effective protection from viral challenge. However, if APCs were activated concomitantly in vivo using either anti-CD40 Abs or CpG oligonucleotides, the CTL responses induced were fully protective against infection with lymphocytic choriomeningitis virus or recombinant vaccinia virus. Moreover, these CTL responses were comparable to responses generally induced by live vaccines, because they could be measured in primary ex vivo (51)Cr release assays. Thus, while VLPs alone are inefficient at inducing CTL responses, they become very powerful vaccines if applied together with substances that activate APCs.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antigen Presentation/genetics
- Antigen-Presenting Cells/immunology
- Antigens, Viral/administration & dosage
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- CD40 Antigens/immunology
- Chromium Radioisotopes
- Cytotoxicity Tests, Immunologic
- Cytotoxicity, Immunologic
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Glycoproteins/administration & dosage
- Glycoproteins/genetics
- Glycoproteins/immunology
- Hepatitis B Core Antigens/genetics
- Hepatitis B Core Antigens/immunology
- Injections, Intradermal
- Injections, Subcutaneous
- L Cells
- Lymphocyte Activation/immunology
- Lymphocytic Choriomeningitis/prevention & control
- Lymphocytic choriomeningitis virus/genetics
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/immunology
- Peptide Fragments/administration & dosage
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
- Tumor Cells, Cultured
- Vaccinia/prevention & control
- Viral Proteins/administration & dosage
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Virion/genetics
- Virion/immunology
Collapse
Affiliation(s)
- Tazio Storni
- Cytos Biotechnology, AG, Department of Dermatology and Institute of Experimental Immunology, University Hospital, and Elektronenmikroskopisches Zentrallabor Universität, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sebzda E, Bracke M, Tugal T, Hogg N, Cantrell DA. Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling. Nat Immunol 2002; 3:251-8. [PMID: 11836528 DOI: 10.1038/ni765] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cell receptor (TCR) stimulation activates the small GTPase Rap1A, which is reported to antagonize Ras signaling and induces T cell anergy. To address its role in vivo, we generated transgenic mice that constitutively expressed active Rap1A within the T cell lineage. We found that active Rap1A did not interfere with the Ras signaling pathway or antagonize T cell activation. Instead of anergy, the T lymphocytes that constitutively expressed active Rap1A showed enhanced TCR-mediated responses, both in thymocytes and mature T cells. In addition, Rap1A activation was sufficient to induce strong activation of the beta1 and beta2 integrins via an avidity-modulation mechanism. This shows that, far from playing an inhibitory role during T cell activation, Rap1A positively influences T cells by augmenting lymphocyte responses and directing integrin activation.
Collapse
Affiliation(s)
- Eric Sebzda
- Lymphocyte Activation Laboratory, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | |
Collapse
|
17
|
Guy R, Yefenof E, Naor D, Dorogin A, Zilberman Y. CD44 co-stimulates apoptosis in thymic lymphomas and T cell hybridomas. Cell Immunol 2002; 216:82-92. [PMID: 12381353 DOI: 10.1016/s0008-8749(02)00505-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thymic lymphomas and hybridomas vary in their sensitivity to dexamethasone (DEX). Identical variance has been demonstrated in our laboratory for apoptosis of such cells by primary thymic epithelial cells or a cell line (TEC). We have also shown that apoptosis induced by TEC was partially mediated by TEC-derived glucocorticoids (GC). We studied the responses of various thymic lymphomas and hybridomas to TEC and DEX. Of these cells, PD1.6 and 2B4 were sensitive whereas B10 were relatively resistant to either inducer. In the present study we found that TEC and DEX synergize in inducing B10 cell apoptosis. B10 cells could also undergo apoptosis by TEC, conditional upon the presence of a TEC-sensitive cell (PD1.6 or 2B4). Contact between TEC and B10 was essential for apoptosis to occur. Thus, TEC may provide two signals, one mediated by GC and the other requiring cell to cell contact. We then analyzed the involvement of co-stimulatory or adhesion molecules in the TEC-induced apoptosis of thymic lymphoma cells. Soluble anti-CD44 antibodies but not anti-CD18, CD2 or CD28, inhibited TEC-induced apoptosis of PD1.6. Dimerization of CD44 by immobilized antibodies augmented DEX-induced apoptosis of all the lymphomas tested. CD44 cross-linkage up-regulated expression of the pro-apoptotic protein Bax, and down-regulated the anti-apoptotic protein, Bclx(L), in the presence of DEX. Taken together, the data suggest that CD44 enhances the apoptotic response of T lymphoma cells to DEX, and that CD44 modulates TEC-induced apoptosis of thymic lymphomas.
Collapse
Affiliation(s)
- R Guy
- The Lautenberg Center for General and Tumor Immunology, The Hebrew University, Hadassah Medical School, P.O. Box 12272, 91120 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
18
|
Abstract
The complexity of the lymphostromal interplay that is essential to alphabetaT-cell development is reflected by the heterogeneity of both lymphocytes and thymic stromal cells. While panels of monoclonal antibodies have described many of the cellular components of these microenvironments, the means to quantify stromal cell subsets using flow cytometry remains poorly defined. This study refines and compares various stromal cell isolation procedures and determines the effects of various digestion enzymes on important surface molecules. Three- and four-color flow cytometry is used to correlate established and novel stromal cell markers to define thymic fibroblasts, epithelium and a unique subset of thymic endothelium that express MHC class II. This work provides a basis for the purification of thymic stromal cells for further phenotypic, functional and genetic analysis.
Collapse
Affiliation(s)
- D H D Gray
- Department of Pathology and Immunology, Monash Medical School, Commercial Road, Prahran, 3181, Melbourne, Australia.
| | | | | |
Collapse
|
19
|
Abstract
In this study we investigated the balance between activating and inhibitory signals during T cell activation. We have used transgenic mice in which CD8+ T cells expressed an inhibitory receptor, Ly49A, and a specific activating alphabeta TCR. This TCR recognizes an lymphocytic choriomeningitis virus peptide in combination with H-2Db. We observed a quantitative influence on cellular responses that depended upon the activating signals received through the TCR and the inhibitory signals received through Ly49A. By varying the peptide concentration given to stimulating cells or target cells, we could adjust the amount of ligand available to trigger the TCR. At low doses of peptide, Ly49A-expressing T cells were unresponsive on target cells that expressed H-2Dd, but responded against target cells without H-2Dd. However, this inhibition could be overcome by increasing the peptide concentration or by addition of anti-Ly49A F(ab')2 fragments. Thus, rather than behaving as simple "off" switches, our data indicate that Ly49 receptors modulate T cell signaling so that higher amounts of activating signals are required for effector-cell responses.
Collapse
MESH Headings
- Animals
- Antigens, Ly
- Antigens, Viral/immunology
- Crosses, Genetic
- Cytotoxicity, Immunologic
- H-2 Antigens/immunology
- Histocompatibility Antigen H-2D
- Lectins, C-Type
- Lymphocyte Activation
- Lymphocytic choriomeningitis virus/immunology
- Lymphoma, T-Cell/pathology
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- NK Cell Lectin-Like Receptor Subfamily A
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, NK Cell Lectin-Like
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- L Oberg
- Umeå Center for Molecular Pathogenesis, Umeå University, Sweden
| | | | | | | |
Collapse
|
20
|
Tissot AC, Ciatto C, Mittl PR, Grütter MG, Plückthun A. Viral escape at the molecular level explained by quantitative T-cell receptor/peptide/MHC interactions and the crystal structure of a peptide/MHC complex. J Mol Biol 2000; 302:873-85. [PMID: 10993729 DOI: 10.1006/jmbi.2000.4501] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viral escape, first characterized for the lymphocytic choriomeningitis virus (LCMV) in a mouse transgenic for the P14 T cell-receptor (TCR), can be due to mutations in T-cell epitopes. We have measured the affinity between the H-2D(b) containing the wild-type and two of its "viral escape" epitopes, as well as other altered peptide ligands (APL), by using BIACORE analysis, and solved the crystal structure of H-2D(b) in complex with the wild-type peptide at 2.75 A resolution. We show that viral escape is due to a 50 to 100-fold reduction in the level of affinity between the P14 TCR and the binary complexes of the MHC molecule with the different peptides. Structurally, one of the mutations alters a TCR contact residue, while the effect of the other on the binding of the TCR must be indirect through structural rearrangements. The former is a null ligand, while the latter still leads to some central tolerance. This work defines the structural and energetic threshold for viral escape.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/isolation & purification
- Crystallography, X-Ray
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/isolation & purification
- Glycoproteins/chemistry
- Glycoproteins/genetics
- Glycoproteins/immunology
- Glycoproteins/isolation & purification
- H-2 Antigens/chemistry
- H-2 Antigens/immunology
- H-2 Antigens/isolation & purification
- Histocompatibility Antigen H-2D
- Immune Tolerance/immunology
- Ligands
- Lymphocytic choriomeningitis virus/genetics
- Lymphocytic choriomeningitis virus/immunology
- Lymphocytic choriomeningitis virus/physiology
- Mice
- Mice, Transgenic
- Models, Molecular
- Molecular Sequence Data
- Mutation/genetics
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/isolation & purification
- Protein Structure, Secondary
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/isolation & purification
- Solvents
- Surface Plasmon Resonance
- Thermodynamics
- Viral Proteins
Collapse
Affiliation(s)
- A C Tissot
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Abstract
Abstract
In this report we present a transgenic mouse model in which we targeted gene expression specifically to B-lymphocytes. Using the human CD19 promoter, we expressed major histocompatibility complex class II I-E molecules specifically on B cells of all tissues, but not on other cell types. If only B cells expressed I-E in a class II-deficient background, positive selection of CD4+ T cells could not be observed. A comparison of the frequencies of I-E reactive Vβ5+ and Vβ11+ T cells shows that I-E expression on thymic B cells is sufficient to negatively select I-E reactive CD4+ T cells partially, but not CD8+ T cells. Thus partial negative but no positive selection events can be induced by B-lymphocytes in vivo.
Collapse
|
22
|
Abstract
In this report we present a transgenic mouse model in which we targeted gene expression specifically to B-lymphocytes. Using the human CD19 promoter, we expressed major histocompatibility complex class II I-E molecules specifically on B cells of all tissues, but not on other cell types. If only B cells expressed I-E in a class II-deficient background, positive selection of CD4+ T cells could not be observed. A comparison of the frequencies of I-E reactive Vβ5+ and Vβ11+ T cells shows that I-E expression on thymic B cells is sufficient to negatively select I-E reactive CD4+ T cells partially, but not CD8+ T cells. Thus partial negative but no positive selection events can be induced by B-lymphocytes in vivo.
Collapse
|
23
|
Klein L, Kyewski B. Self-antigen presentation by thymic stromal cells: a subtle division of labor. Curr Opin Immunol 2000; 12:179-86. [PMID: 10712940 DOI: 10.1016/s0952-7915(99)00069-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Self-antigen-MHC complexes expressed by thymic stromal cells serve as ligands for TCR-mediated positive and negative selection, resulting in a self-MHC-restricted, self-tolerant T cell repertoire. It has recently become apparent that thymic stromal cells differ in their accessibility to antigen as well as their ability to process and present antigen. These differences result in the sampling by thymic stromal cells of largely nonoverlapping self-antigen pools and the display of self-peptide profiles specific for each cell type. In conjunction with single or serial cell-cell interactions between thymocytes and stromal cells, such differences in self-antigen display allow for maximal (re)presentation of 'self' in the thymus and optimize the efficacy of positive and negative selection.
Collapse
Affiliation(s)
- L Klein
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA 02115, USA.
| | | |
Collapse
|
24
|
Tissot AC, Pecorari F, Plückthun A. Characterizing the functionality of recombinant T-cell receptors in vitro: a pMHC tetramer based approach. J Immunol Methods 2000; 236:147-65. [PMID: 10699587 DOI: 10.1016/s0022-1759(99)00226-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The very low affinity of the T-cell receptor (TCR) for the peptide-major histocompatibility complex (pMHC) has made it very challenging to design assays for testing the functionality of these molecules on small scales, which in turn has severely hampered the progress in developing expression and refolding methodologies for the TCR. We have now developed an ELISA assay for detecting pMHC binding to functional recombinant TCRs. It uses tetramers of biotinylated pMHCs bound to a neutravidin-horseradish peroxidase conjugate and detects the presence of functional TCR, bound in a productive orientation to an immobilized anti-Cbeta antibody. Specificity can be stringently demonstrated by inhibition with monomeric pMHCs. The assay is very sensitive and specific, and requires only very small amounts of protein. It has allowed us to study the unstable recombinant TCR P14, which we expressed and refolded from Escherichia coli. The TCR P14 is directed against the most abundant epitope of LCMV. We have confirmed the specificity of the interaction by BIAcore, and were able to determine the dissociation constant of the interaction of the P14 TCR and of the gp33-pMHC as 6 microM. This affinity ranks it among the tighter ones of TCR-pMHC interactions, and unusually low affinity thus does not seem to be the cause of the modest protective power of these T-cells, compared to others elicited in the anti-LCMV response. This strategy of multimerizing one partner and immobilizing the other in both a native form and productive orientation should be generally useful for characterizing the weak interactions of cell-surface molecules.
Collapse
Affiliation(s)
- A C Tissot
- Biochemisches Institut, Universität Zürich, Winterthurstrasse 190, CH-8057, Zürich, Switzerland
| | | | | |
Collapse
|
25
|
Abstract
It has been proposed that CD2, which is highly expressed on T cells, serves to enhance T cell-antigen presenting cell (APC) adhesion and costimulate T cell activation. Here we analyzed the role of CD2 using CD2-deficient mice crossed with transgenic mice expressing a T cell receptor specific for lymphocytic choriomeningitis virus (LCMV)-derived peptide p33. We found that absence of CD2 on T cells shifted the p33-specific dose-response curve in vitro by a factor of 3-10. In comparison, stimulation of T cells in the absence of lymphocyte function-associated antigen (LFA)-1-intercellular adhesion molecule (ICAM)-1 interaction shifted the dose-response curve by a factor of 10, whereas absence of both CD2-CD48 and LFA-1-ICAM-1 interactions shifted the response by a factor of approximately 100. This indicates that CD2 and LFA-1 facilitate T cell activation additively. T cell activation at low antigen density was blocked at its very first steps, as T cell APC conjugate formation, TCR triggering, and Ca(2+) fluxes were affected by the absence of CD2. In vivo, LCMV-specific, CD2-deficient T cells proliferated normally upon infection with live virus but responded in a reduced fashion upon cross-priming. Thus, CD2 sets quantitative thresholds and fine-tunes T cell activation both in vitro and in vivo.
Collapse
Affiliation(s)
- M F Bachmann
- Basel Institute for Immunology, CH 4005 Basel, Switzerland.
| | | | | |
Collapse
|
26
|
Bachmann MF, Speiser DE, Mak TW, Ohashi PS. Absence of co-stimulation and not the intensity of TCR signaling is critical for the induction of T cell unresponsiveness in vivo. Eur J Immunol 1999; 29:2156-66. [PMID: 10427978 DOI: 10.1002/(sici)1521-4141(199907)29:07<2156::aid-immu2156>3.0.co;2-p] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Understanding the mechanisms of T cell activation versus induction of unresponsiveness is of critical importance for the rational modulation of immune responses. Efficient T cell activation is critical for vaccination purposes, while the inhibition of T cell responses is potentially important for the ablation of autoimmune diseases. Modulation of co-stimulation and changing TCR-mediated signaling using altered peptide ligands (APL) have been shown to result in clonal T cell unresponsiveness. This study compares for the first time the efficiency of the two approaches for the induction of CD8+ T cell unresponsiveness in vivo for naive and memory T cells using TCR-transgenic mice. The results demonstrate that inhibition of CD28-mediated co-stimulation in the presence of a strong TCR-mediated signal most efficiently induces T cell unresponsiveness. In contrast, APL that are capable of weak TCR triggering fail to interfere with T cell responsiveness in vivo and are ignored by T cells. Thus, short-term blockage of CD28 during antigenic stimulation rather than the use of APL is the most promising way to actively down-modulate responsiveness of naive CD8+ T cells at least in the particular TCR-transgenic mouse model analyzed in this study.
Collapse
|
27
|
Abstract
Thymic negative selection renders the developing T-cell repertoire tolerant to self-major histocompatability complex (MHC)/peptide ligands. The major mechanism of induction of self-tolerance is thought to be thymic clonal deletion, ie, the induction of apoptotic cell death in thymocytes expressing a self-reactive T-cell receptor. Consistent with this hypothesis, in mice deficient in thymic clonal deletion mediated by cells of hematopoietic origin, a twofold to threefold increased generation of mature thymocytes has been observed. Here we describe the analysis of the specificity of T lymphocytes developing in the absence of clonal deletion mediated by hematopoietic cells. In vitro, targets expressing syngeneic MHC were readily lysed by activated CD8+ T cells from deletion-deficient mice. However, proliferative responses of T cells from these mice on activation with syngeneic antigen presenting cells were rather poor. In vivo, deletion-deficient T cells were incapable of induction of lethal graft-versus-host disease in syngeneic hosts. These data indicate that in the absence of thymic deletion mediated by hematopoietic cells functional T-cell tolerance can be induced by nonhematopoietic cells in the thymus. Moreover, our results emphasize the redundancy in thymic negative selection mechanisms.
Collapse
|
28
|
In Vivo T-Lymphocyte Tolerance in the Absence of Thymic Clonal Deletion Mediated by Hematopoietic Cells. Blood 1999. [DOI: 10.1182/blood.v93.11.3856] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Thymic negative selection renders the developing T-cell repertoire tolerant to self-major histocompatability complex (MHC)/peptide ligands. The major mechanism of induction of self-tolerance is thought to be thymic clonal deletion, ie, the induction of apoptotic cell death in thymocytes expressing a self-reactive T-cell receptor. Consistent with this hypothesis, in mice deficient in thymic clonal deletion mediated by cells of hematopoietic origin, a twofold to threefold increased generation of mature thymocytes has been observed. Here we describe the analysis of the specificity of T lymphocytes developing in the absence of clonal deletion mediated by hematopoietic cells. In vitro, targets expressing syngeneic MHC were readily lysed by activated CD8+ T cells from deletion-deficient mice. However, proliferative responses of T cells from these mice on activation with syngeneic antigen presenting cells were rather poor. In vivo, deletion-deficient T cells were incapable of induction of lethal graft-versus-host disease in syngeneic hosts. These data indicate that in the absence of thymic deletion mediated by hematopoietic cells functional T-cell tolerance can be induced by nonhematopoietic cells in the thymus. Moreover, our results emphasize the redundancy in thymic negative selection mechanisms.
Collapse
|
29
|
Dave VP, Allman D, Wiest DL, Kappes DJ. Limiting TCR Expression Leads to Quantitative But Not Qualitative Changes in Thymic Selection. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.10.5764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Thymic selection is controlled in part by the avidity of the interaction between thymocytes and APCs. In agreement, the selective outcome can be modulated by altering the expression levels of selecting ligands on APCs. Here we test the converse proposition, i.e., whether changing TCR levels on thymocytes can alter the selective outcome. To this end, we have generated mice in which all thymocytes express two transgenic TCRs simultaneously (dual TCR-expressing (DTE) mice), the class I-restricted HY TCR and the class II-restricted AND TCR. Due to mutual dilution, surface expression levels of the two individual transgenic TCRs are diminished in DTE relative to single TCR-expressing mice. We find that thymic selection is highly sensitive to these reductions in TCR surface expression. Positive selection mediated by the AND and HY TCRs is severely impaired or abolished, respectively. Negative selection of the HY TCR in male DTE mice is also partly blocked, leading to the appearance of significant numbers of double positive thymocytes. Also, in the periphery of male, but not female, DTE mice, substantial numbers of single positive CD8bright cells accumulate, which are positively selected in the thymus but by a highly inefficient hemopoietic cell-dependent process. Overall our results favor the interpretation that the outcome of thymic selection is not determined solely by avidity and the resulting signal intensity, but is also constrained by other factors such as the nature of the ligand and/or its presentation by different subsets of APCs.
Collapse
|
30
|
Laufer TM, Fan L, Glimcher LH. Self-Reactive T Cells Selected on Thymic Cortical Epithelium Are Polyclonal and Are Pathogenic In Vivo. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.9.5078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Positive selection of CD4+ T cells requires that the TCR of a developing thymocyte interact with self MHC class II molecules on thymic cortical epithelium. In contrast, clonal deletion is mediated by dendritic cells and medullary epithelium. We previously generated K14 mice expressing MHC class II only on thymic cortical epithelium. K14 CD4+ T cells were positively, but not negatively, selected and had significant in vitro autoreactivity. Here, we examine the function of these autoreactive CD4+ T cells in more detail. Analysis of a series of K14-derived T hybrids demonstrated that the autoreactive population of CD4+ T cells is phenotypically and functionally diverse. Purified K14 CD4+ T cells transferred into lethally irradiated wild-type B6 mice cause acute graft vs host disease with bone marrow failure. Further, these autoreactive CD4+ T cells cause hypergammaglobulinemia and the production of autoantibodies when transferred into unirradiated wild-type hosts. Thus, positive selection by normal thymic cortical epithelial cells, unopposed by negative selection, produces polyclonal CD4+ T cells that are pathologic.
Collapse
Affiliation(s)
- Terri M. Laufer
- *Department of Immunology and Infectious Diseases, Harvard School of Public Health, and
- †Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Lian Fan
- *Department of Immunology and Infectious Diseases, Harvard School of Public Health, and
| | - Laurie H. Glimcher
- *Department of Immunology and Infectious Diseases, Harvard School of Public Health, and
- †Department of Medicine, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
31
|
Ferrero I, Anjuère F, Martín P, Martínez del Hoyo G, Fraga ML, Wright N, Varona R, Márquez G, Ardavín C. Functional and phenotypic analysis of thymic B cells: role in the induction of T cell negative selection. Eur J Immunol 1999; 29:1598-609. [PMID: 10359114 DOI: 10.1002/(sici)1521-4141(199905)29:05<1598::aid-immu1598>3.0.co;2-o] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The phenotype of mouse thymic B cells and their capacity to induce T cell negative selection in vitro were analyzed. Thymic B cells expressed B cell markers such as IgM, Fc gamma receptor, CD44, heat-stable antigen, LFA-1 and CD40. In addition, they were positive for the activation molecule CD69 and displayed high levels of B7-2. Although thymic B cells expressed CD5 on their surface, no CD5-specific mRNA was detected. Moreover, thymic B cells induced a stronger deletion of TCR-transgenic (TG) thymocytes than splenic B cells, which had low CD69 and B7-2 levels. Interestingly, CD40-activated splenic B cells up-regulated CD69 and B7-2 and acquired a capacity to induce T cell deletion comparable to that of thymic B cells. Moreover, thymic B cells from CD40-deficient mice displayed lower CD69 and B7-2 levels than control thymic B cells, and lower capacity to induce the deletion of TCR TG thymocytes. These results support the hypothesis that CD40-mediated activation of thymic B cells determines a high efficiency of antigen presentation, suggesting that within the thymus B cells may play an important role in the elimination of autoreactive thymocytes.
Collapse
Affiliation(s)
- I Ferrero
- Department of Cell Biology, Faculty of Biology, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Aberrant activation of cell cycle molecules has been postulated to play a role in apoptosis ("catastrophic cell cycle"). Here we show that in noncycling developing thymocytes, the cyclin- dependent kinase Cdk2 is activated in response to all specific and nonspecific apoptotic stimuli tested, including peptide-specific thymocyte apoptosis. Cdk2 was found to function upstream of the tumor suppressor p53, transactivation of the death promoter Bax, alterations of mitochondrial permeability, Bcl-2, caspase activation, and caspase-dependent proteolytic cleavage of the retinoblastoma protein. Inhibition of Cdk2 completely protected thymocytes from apoptosis, mitochondrial changes, and caspase activation. These data provide the first evidence that Cdk2 activity is crucial for the induction of thymocyte apoptosis.
Collapse
Affiliation(s)
- A Hakem
- The Amgen Institute, Department of Medical Biophysics, University of Toronto, Ontario, Canada M5G 2C1
| | | | | | | |
Collapse
|
33
|
McGargill MA, Hogquist KA. Antigen-Induced Coreceptor Down-Regulation on Thymocytes Is Not a Result of Apoptosis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The various stages of T cell development are typically characterized by the expression level of the two coreceptors, CD4 and CD8. During the CD4+CD8+ (double-positive, DP) stage of development, thymocytes that perceive a low avidity signal through the TCR go on to differentiate (positive selection), and ultimately down-regulate one coreceptor to express either CD4 or CD8. Alternatively, thymocytes that perceive a high avidity signal down-regulate both coreceptors and are induced to die via apoptosis (negative selection). However, it has recently been suggested that positively selected thymocytes may also partially down-regulate both coreceptors before up-regulating the one coreceptor that is ultimately expressed. This would imply that coreceptor down-regulation (dulling) is not a consequence of commitment to the death pathway. To explore this possibility, we have utilized an in vitro assay to demonstrate that dulling occurred in response to both positive and negative selecting ligands in vitro, was not a result of nonspecific membrane perturbation, was not dependent on the type of APC, and occurred before death in vitro. Furthermore, when thymocyte apoptosis was blocked, CD4 and CD8 were down-regulated in response to TCR stimulation. These data suggest that dulling in response to TCR ligation is distinct from death, and support a model in which DP dulling occurs during both positive and negative selection. The biological implications of this phenomenon are discussed.
Collapse
Affiliation(s)
- Maureen A. McGargill
- Department of Lab Medicine and Pathology and the Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Kristin A. Hogquist
- Department of Lab Medicine and Pathology and the Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
34
|
Dautigny N, Le Campion A, Lucas B. Timing and Casting for Actors of Thymic Negative Selection. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We have recently proposed a new model for the differentiation pathway of αβ TCR thymocytes, with the CD4 and CD8 coreceptors undergoing an unexpectedly complex series of expression changes. Taking into account this new insight, we reinvestigated the timing of thymic negative selection. We found that, although endogenous superantigen-driven thymic negative selection could occur at different steps during double-positive/single-positive cell transition, this event was never observed among CD4lowCD8low TCRint CD69+ thymocytes, i.e., within the first subset to be generated upon TCR-mediated activation of immature double-positive cells. We confirm a role for CD40/CD40L interaction, and the absence of involvement of CD28 costimulation, in thymic deletion in vivo. Surprisingly, we found that thymic negative selection was impaired in the absence of Fas, but not FasL, molecule expression. Finally, we show involvement in opposing directions for p59fyn and SHP-1 molecules in signaling for thymic negative selection.
Collapse
Affiliation(s)
- Nicole Dautigny
- Institut National de la Santé et de la Recherche Médicale, Unit 345, Institut Necker, Paris, France
| | - Armelle Le Campion
- Institut National de la Santé et de la Recherche Médicale, Unit 345, Institut Necker, Paris, France
| | - Bruno Lucas
- Institut National de la Santé et de la Recherche Médicale, Unit 345, Institut Necker, Paris, France
| |
Collapse
|
35
|
Affiliation(s)
- B Stockinger
- Division of Molecular Immunology, National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
36
|
Kong YY, Fischer KD, Bachmann MF, Mariathasan S, Kozieradzki I, Nghiem MP, Bouchard D, Bernstein A, Ohashi PS, Penninger JM. Vav regulates peptide-specific apoptosis in thymocytes. J Exp Med 1998; 188:2099-111. [PMID: 9841924 PMCID: PMC2212394 DOI: 10.1084/jem.188.11.2099] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The protooncogene Vav functions as a GDP/GTP exchange factor (GEF) for Rho-like small GTPases involved in cytoskeletal reorganization and cytokine production in T cells. Gene-targeted mice lacking Vav have a severe defect in positive and negative selection of T cell antigen receptor transgenic thymocytes in vivo, and vav-/- thymocytes are completely resistant to peptide-specific and anti-CD3/anti-CD28-mediated apoptosis. Vav acts upstream of mitochondrial pore opening and caspase activation. Biochemically, Vav regulates peptide-specific Ca2+ mobilization and actin polymerization. Peptide-specific cell death was blocked both by cytochalasin D inhibition of actin polymerization and by inhibition of protein kinase C (PKC). Activation of PKC with phorbol ester restored peptide-specific apoptosis in vav-/- thymocytes. Vav was found to bind constitutively to PKC-theta in thymocytes. Our results indicate that peptide-triggered thymocyte apoptosis is mediated via Vav activation, changes in the actin cytoskeleton, and subsequent activation of a PKC isoform.
Collapse
Affiliation(s)
- Y Y Kong
- Amgen Institute, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Geenen V, Kecha O, Martens H. Thymic expression of neuroendocrine self-peptide precursors: role in T cell survival and self-tolerance. J Neuroendocrinol 1998; 10:811-22. [PMID: 9831257 DOI: 10.1046/j.1365-2826.1998.00269.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- V Geenen
- Department of Medicine, Institute of Pathology CHU-1323, University of Liège, Belgium.
| | | | | |
Collapse
|
38
|
Bachmann MF, Speiser DE, Zakarian A, Ohashi PS. Inhibition of TCR triggering by a spectrum of altered peptide ligands suggests the mechanism for TCR antagonism. Eur J Immunol 1998; 28:3110-9. [PMID: 9808179 DOI: 10.1002/(sici)1521-4141(199810)28:10<3110::aid-immu3110>3.0.co;2-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the parameters involved in T cell activation has been complicated by the discovery of partial T cell agonists. Altered peptide ligands (APL) have recently shown that different subsets of T cell responses can be selectively activated by certain peptides, which define a hierarchy of T cell activation. For cytotoxic T cells, this hierarchy ranges from sensitizing target cells for lysis through proliferation to effector cell induction. The degree of TCR down-regulation mediated by APL-MHC interactions correlates well with the induction of specific T cell effector functions. This suggests that the potential agonist response induced by a given peptide occurs at different triggering thresholds. To examine the relative agonist and antagonist functions of different peptides, we have investigated the ability of lymphocytic choriomeningitis virus glycoprotein-derived APL to induce or inhibit a range of effector functions in naive CD8+ T cells. By this, we have defined a hierarchy of peptides that display a range of properties from strong agonist to no agonist function. At each level, peptides that were ranked lower in this hierarchy were able to interfere or antagonize the induction of effector functions by higher ranking peptides. We have therefore shown that this spectrum of peptides ranging from strong to no agonist function has an inverse gradient from strong antagonist to no antagonist function. Moreover, the ability of the different peptides to inhibit TCR internalization correlated with their ranking within the hierarchy. These findings support the model that antagonists are effectively preventing TCR oligomerization and functional TCR triggering.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigens, Viral
- Cell Division
- Cells, Cultured
- Down-Regulation
- Epitopes, T-Lymphocyte/immunology
- Glycoproteins/immunology
- Glycoproteins/pharmacology
- Ligands
- Macrophages/drug effects
- Macrophages/immunology
- Mice
- Mice, Transgenic
- Peptide Fragments/immunology
- Peptide Fragments/pharmacology
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes/immunology
- Viral Proteins
Collapse
|
39
|
Klein L, Klein T, Rüther U, Kyewski B. CD4 T cell tolerance to human C-reactive protein, an inducible serum protein, is mediated by medullary thymic epithelium. J Exp Med 1998; 188:5-16. [PMID: 9653079 PMCID: PMC2525550 DOI: 10.1084/jem.188.1.5] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Inducible serum proteins whose concentrations oscillate between nontolerogenic and tolerogenic levels pose a particular challenge to the maintenance of self-tolerance. Temporal restrictions of intrathymic antigen supply should prevent continuous central tolerization of T cells, in analogy to the spatial limitation imposed by tissue-restricted antigen expression. Major acute-phase proteins such as human C-reactive protein (hCRP) are typical examples for such inducible self-antigens. The circulating concentration of hCRP, which is secreted by hepatocytes, is induced up to 1,000-fold during an acute-phase reaction. We have analyzed tolerance to hCRP expressed in transgenic mice under its autologous regulatory regions. Physiological regulation of basal levels (<10(-9) M) and inducibility (>500-fold) are preserved in female transgenics, whereas male transgenics constitutively display induced levels. Surprisingly, crossing of hCRP transgenic mice to two lines of T cell receptor transgenic mice (specific for either a dominant or a subdominant epitope) showed that tolerance is mediated by intrathymic deletion of immature thymocytes, irrespective of widely differing serum levels. In the absence of induction, hCRP expressed by thymic medullary epithelial cells rather than liver-derived hCRP is necessary and sufficient to induce tolerance. Importantly, medullary epithelial cells also express two homologous mouse acute-phase proteins. These results support a physiological role of "ectopic" thymic expression in tolerance induction to acute-phase proteins and possibly other inducible self-antigens and have implications for delineating the relative contributions of central versus peripheral tolerance.
Collapse
Affiliation(s)
- L Klein
- Tumor Immunology Program, Divison of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
40
|
Viral Superantigen-Induced Negative Selection of TCR Transgenic CD4+ CD8+ Thymocytes Depends on Activation, but not Proliferation. Blood 1998. [DOI: 10.1182/blood.v91.11.4248.411a04_4248_4254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-cell negative selection, a process by which intrathymic immunological tolerance is induced, involves the apoptosis-mediated clonal deletion of potentially autoreactive T cells. Although different experimental approaches suggest that this process is triggered as the result of activation-mediated cell death, the signal transduction pathways underlying this process is not fully understood. In the present report we have used an in vitro system to analyze the cell activation and proliferation requirements for the deletion of viral superantigen (SAg)-reactive Vβ8.1 T-cell receptor (TCR) transgenic (TG) thymocytes. Our results indicate that in vitro negative selection of viral SAg-reactive CD4+ CD8+thymocytes is dependent on thymocyte activation but does not require the proliferation of the negatively signaled thymocytes.
Collapse
|
41
|
Salmon AM, Bruand C, Cardona A, Changeux JP, Berrih-Aknin S. An acetylcholine receptor alpha subunit promoter confers intrathymic expression in transgenic mice. Implications for tolerance of a transgenic self-antigen and for autoreactivity in myasthenia gravis. J Clin Invest 1998; 101:2340-50. [PMID: 9616205 PMCID: PMC508823 DOI: 10.1172/jci1615] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease targeting the skeletal muscle acetylcholine receptor (AChR). Although the autoantigen is present in the thymus, it is not tolerated in MG patients. In addition, the nature of the cell bearing the autoantigen is controversial. To approach these questions, we used two lineages of transgenic mice in which the beta-galactosidase (beta-gal) gene is under the control of a 842-bp (Tg1) or a 3300-bp promoter fragment (Tg2) of the chick muscle alpha subunit AChR gene. In addition to expression in muscle cells, thymic expression was observed in both mouse lines (mainly in myoid cells in Tg1 and myoid cells and epithelial cells in Tg2). After challenge with beta-gal, Tg1 mice produced Th2-dependent anti-beta-gal antibodies, while Tg2 mice were almost unresponsive. By contrast, in a proliferation assay both Tg lines were unresponsive to beta-gal. Cells from Tg1 mice produce Th2-dependent cytokine whereas cells from Tg2 mice were nonproducing in response to beta-gal. These data indicate that the level of expression in Tg1 mice could be sufficient to induce tolerance of Th1 cells but not of Th2 cells, while both populations are tolerated in Tg2 mice. These findings are compatible with the hypothesis that AChR expression is not sufficiently abundant in MG thymus to induce a full tolerance.
Collapse
Affiliation(s)
- A M Salmon
- Unité de Neurobiologie Moléculaire, CNRS URA-1284, Institut Pasteur, 75015 Paris, France
| | | | | | | | | |
Collapse
|
42
|
Viral Superantigen-Induced Negative Selection of TCR Transgenic CD4+ CD8+ Thymocytes Depends on Activation, but not Proliferation. Blood 1998. [DOI: 10.1182/blood.v91.11.4248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractT-cell negative selection, a process by which intrathymic immunological tolerance is induced, involves the apoptosis-mediated clonal deletion of potentially autoreactive T cells. Although different experimental approaches suggest that this process is triggered as the result of activation-mediated cell death, the signal transduction pathways underlying this process is not fully understood. In the present report we have used an in vitro system to analyze the cell activation and proliferation requirements for the deletion of viral superantigen (SAg)-reactive Vβ8.1 T-cell receptor (TCR) transgenic (TG) thymocytes. Our results indicate that in vitro negative selection of viral SAg-reactive CD4+ CD8+thymocytes is dependent on thymocyte activation but does not require the proliferation of the negatively signaled thymocytes.
Collapse
|
43
|
Abstract
Antigen receptors on lymphocytes play a central role in immune regulation by transmitting signals that positively or negatively regulate lymphocyte survival, migration, growth, and differentiation. This review focuses on how opposing positive or negative cellular responses are brought about by antigen receptor signaling. Four types of extracellular inputs shape the response to antigen: (a) the concentration of antigen; (b) the avidity with which antigen is bound; (c) the timing and duration of antigen encounter; and (d) the association of antigen with costimuli from pathogens, the innate immune system, or other lymphocytes. Intracellular signaling by antigen receptors is not an all-or-none event, and these external variables alter both the quantity and quality of signaling. Recent findings in B lymphocytes have clearly illustrated that these external inputs affect the magnitude and duration of the intracellular calcium response, which in turn contributes to differential triggering of the transcriptional regulators NF kappa B, JNK, NFAT, and ERK. The regulation of calcium responses involves a network of tyrosine kinases (e.g. lyn, syk), tyrosine or lipid phosphatases (CD45, SHP-1, SHIP), and accessory molecules (CD21/CD19, CD22, FcR gamma 2b). Understanding the biochemistry and logic behind these integrative processes will allow development of more selective and efficient pharmaceuticals that suppress, modify, or augment immune responses in autoimmunity, transplantation, allergy, vaccines, and cancer.
Collapse
Affiliation(s)
- J I Healy
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305, USA.
| | | |
Collapse
|
44
|
Geenen V, Martens H, Vandersmissen E, Achour I, Kecha O, Franchimont D. Cellular and molecular aspects of thymic T-cell education in neuroendocrine self principles. Implications for autoimmunity. Ann N Y Acad Sci 1998; 840:328-37. [PMID: 9629260 DOI: 10.1111/j.1749-6632.1998.tb09572.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thymic epithelial and nurse cells from different species express a repertoire of neuroendocrine polypeptide precursors. This repertoire exerts a dual role in T-lymphocyte selection according to their status either as cryptocrine signals or as neuroendocrine self-antigens of the peptide sequences that are processed from those precursors then presented to pre-T cells. Thymic neuroendocrine self-antigens correspond to peptide sequences highly conserved throughout evolution of their family. Though thymic MHC class I molecules are involved in the processing of thymic neuroendocrine self-antigens, preliminary data show that their presentation to pre-T cells is not allelically restricted. Thymic T-cell education in neuroendocrine families also implies that the structure of a given family may be presented to pre-T cells. Our studies have evidenced the homology between thymic neuroendocrine-related self-antigens and dominant T-cell epitopes of peripheral neuroendocrine signals (neuroendocrine autoantigens). The biochemical difference between neuroendocrine autoantigens and homologous thymic self-antigens might explain the opposite immune responses evoked by those two types of antigens (activation and memory induction vs. tolerogenic effect). Altogether, these studies support the therapeutic use of thymic neuroendocrine self-antigens in reprogramming the immunological self-tolerance that is broken in autoimmune endocrine diseases like insulin-dependent diabetes type I. As recently stated by P. M. Allen in an important review, the fate of developing T lymphocytes in the thymus is influenced by the numerous types of peptidic interactions within the thymic cellular environment. To define the precise nature of thymic cells and naturally occurring biochemical peptide signals involved in positive and negative selection of immature T cells has become a prominent objective for the future research efforts in thymic physiology. This paper will try to show how thymic neuroendocrine-related peptides synthesized and processed within the thymic microenvironment indeed can play a role both in the development of the peripheral T-cell repertoire and in the death of randomly rearranged, self-reactive T cells.
Collapse
Affiliation(s)
- V Geenen
- Institute of Pathology, University of Liège, Sart Tilman, Belgium
| | | | | | | | | | | |
Collapse
|
45
|
Martínez A, Farr A, Vos MD, Cuttitta F, Treston AM. Peptide-amidating enzymes are expressed in the stellate epithelial cells of the thymic medulla. J Histochem Cytochem 1998; 46:661-8. [PMID: 9562574 DOI: 10.1177/002215549804600511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
C-terminal amidation is a post-translational processing step necessary to convey biological activity to a large number of regulatory peptides. In this study we have demonstrated that the peptidyl-glycine alpha-amidating monooxygenase enzyme complex (PAM) responsible for this activity is located in the medullary stellate epithelial cells of the thymus and in cultured epithelial cells bearing a medullary phenotype, using Northern blot, immunocytochemistry, in situ hybridization, and enzyme assays. Immunocytochemical localization revealed a granular pattern in the cytoplasm of the stellate cells, which were also positive for cytokeratins and a B-lymphocyte-associated antigen. The presence of PAM activity in medium conditioned by thymic epithelial cell lines suggests that PAM is a secreted product of these cells. Among the four epithelial cell lines examined, there was a direct correlation between PAM activity and content of oxytocin, an amidated peptide. Taken together, these data provide convincing evidence that thymic epithelial cells have the capacity to generate amidated peptides that may influence T-cell differentiation and suggest that the amidating enzymes could play an important role in the regulation of thymic physiology.
Collapse
Affiliation(s)
- A Martínez
- Cell and Cancer Biology Department, Division of Clinical Sciences, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850-3300, USA
| | | | | | | | | |
Collapse
|
46
|
Motyka B, Teh HS. Naturally Occurring Low Affinity Peptide/MHC Class I Ligands Can Mediate Negative Selection and T Cell Activation. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.1.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
The affinity/avidity model for T cell development postulates that ligands with high affinity for the TCR are efficient in negative selection, whereas those with lower affinity/avidity favor positive selection. Using the 2C TCR transgenic model, we evaluated the efficacy of ligands with widely differing affinity for the TCR (3 × 103 to 2 × 106 M−1) in mediating thymocyte deletion. The relative affinities of the 2C TCR for the p2Ca/Ld, dEV-8/Kb, p2Ca-A3/Ld, and p2Ca/Kb ligands are approximately 1000:50:10:1, respectively. Here we show, using an in vitro assay, that the deletion of 2C CD4+CD8+ thymocytes is mediated not only by p2Ca/Ld, but also by the lower affinity ligands dEV-8/Kb, p2Ca-A3/Ld, and p2Ca/Kb, albeit at relatively higher peptide concentrations. Deletion mediated by low affinity ligands required CD8, whereas high affinity ligand-mediated deletion was CD8 independent. The p2Ca/Kb and dEV-8/Kb ligands are naturally occurring in H-2b mice, and others have shown that p2Ca/Kb can induce the maturation of CD4−CD8+2C-TCRhigh thymocytes in fetal thymic organ culture. In this study we showed that in addition to deletion, the p2Ca/Kb and dEV-8/Kb ligands, in the presence of exogenous IL-2, induced mature 2C T cell proliferation, albeit at a lower level than that induced by the high affinity p2Ca/Ld ligand. Thus, the same low affinity ligands that can effect negative selection and, in the case of p2Ca/Kb, the maturation of CD8 single-positive thymocytes can also induce the activation of mature CD8 T cells.
Collapse
Affiliation(s)
- Bruce Motyka
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hung-Sia Teh
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
47
|
Bachmann MF, Waterhouse P, Speiser DE, McKall-Faienza K, Mak TW, Ohashi PS. Normal Responsiveness of CTLA-4-Deficient Anti-Viral Cytotoxic T Cells. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.1.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
CTLA-4 has been proposed to negatively regulate immune responses, and mice deficient for CTLA-4 expression succumb to a lymphoproliferative disorder within a few weeks after birth. This study assessed the responsiveness of CTLA-4-deficient T cells expressing a class I-restricted TCR specific for lymphocytic choriomeningitis virus (LCMV). The kinetics of T cell proliferation were studied in vitro after stimulation of T cells with full and partial T cell agonists. No gross abnormalities in CTLA-4-deficient T cells could be detected. Using adoptive transfer experiments, T cell responses were also measured in vivo after infection with LCMV. Low dose infection with LCMV leads to strong expansion of specific T cells followed by a reduction in T cells that parallels the elimination of Ag. The kinetics of T cell expansion and elimination after low dose LCMV infection were not affected by the absence of CTLA-4. High dose infection of mice with LCMV leads to a transient expansion of T cells followed by T cell exhaustion, where all specific T cells are eliminated. T cell exhaustion also occurred in the absence of CTLA-4. Thus, surprisingly, the absence of CTLA-4 did not interfere with T cell activation, down-regulation of ongoing T cell responses after the elimination of Ag, or the exhaustion of T cell responses in the presence of excessive amounts of Ag.
Collapse
Affiliation(s)
- Martin F. Bachmann
- *Departments of Medical Biophysics and Immunology, Ontario Cancer Institute; and
| | - Paul Waterhouse
- *Departments of Medical Biophysics and Immunology, Ontario Cancer Institute; and
- †Amgen Institute, Toronto, Ontario, Canada
| | - Daniel E. Speiser
- *Departments of Medical Biophysics and Immunology, Ontario Cancer Institute; and
| | - Kim McKall-Faienza
- *Departments of Medical Biophysics and Immunology, Ontario Cancer Institute; and
| | - Tak W. Mak
- *Departments of Medical Biophysics and Immunology, Ontario Cancer Institute; and
- †Amgen Institute, Toronto, Ontario, Canada
| | - Pamela S. Ohashi
- *Departments of Medical Biophysics and Immunology, Ontario Cancer Institute; and
| |
Collapse
|
48
|
Bachmann MF, Mariathasan S, Bouchard D, Speiser DE, Ohashi PS. Four types of Ca2+ signals in naive CD8+ cytotoxic T cells after stimulation with T cell agonists, partial agonists and antagonists. Eur J Immunol 1997; 27:3414-9. [PMID: 9464830 DOI: 10.1002/eji.1830271241] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stimulation of T cells via the T cell receptor (TCR) leads to an increase intracellular in free Ca2+ levels ([Ca2+]i) and the activation of the MAP kinase signaling pathway. This study analyzes for the first time Ca2+ fluxes in naive cytotoxic T cells stimulated with full agonists, partial agonists, or antagonists. Four different types of Ca2+ responses could be observed. Full agonists triggered a strong and sustained increase in [Ca2+]i. In contrast, partial T cell agonists induced either a strong but transient Ca2+ flux or very low to no increases in [Ca2+]i, while T cell antagonists failed to induce any measurable Ca2+ flux. The ability of peptides to induce elevated [Ca2+]i perfectly paralleled their ability to trigger TCR internalization and T cell activation. Thus, stimulation of naive cytotoxic T cells with a panel of defined altered peptide ligands reveals a consistent picture, where Ca2+ fluxes predict agonist, partial agonist and antagonist properties of peptides.
Collapse
Affiliation(s)
- M F Bachmann
- Ontario Cancer Institute, Department of Medical Biophysics, Toronto, Canada.
| | | | | | | | | |
Collapse
|
49
|
Bachmann MF, McKall-Faienza K, Schmits R, Bouchard D, Beach J, Speiser DE, Mak TW, Ohashi PS. Distinct roles for LFA-1 and CD28 during activation of naive T cells: adhesion versus costimulation. Immunity 1997; 7:549-57. [PMID: 9354475 DOI: 10.1016/s1074-7613(00)80376-3] [Citation(s) in RCA: 337] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Efficient T cell activation requires the engagement of a variety of ligand/receptor molecules in addition to T cell receptor (TCR)-major histocompatibility complex (MHC)/peptide interactions. The leukocyte function antigen 1 (LFA-1) and the CD28 glycoprotein have both been implicated in T cell activation. The present study dissects the roles of LFA-1 and CD28 in the activation of naive virus-specific CD8+ T cells. We demonstrate that LFA-1 facilitates T cell activation by lowering the amounts of antigen necessary for T cell activation. In the absence of LFA-1, 100-fold more antigen was required for T cell-antigen-presenting cell (APC) conjugation and all subsequent events of T cell activation, including TCR down-regulation, Ca2+-flux, T cell proliferation, and lytic effector cell induction. Thus, LFA-1 facilitates the functional triggering of TCRs by promoting adhesion of T cells to APCs but does not affect T cell activation otherwise. In contrast, CD28 played an entirely different role during T cell activation. CD28 reduced the number of TCRs that had to be triggered for T cell activation and allowed activation of T cells by low affinity ligands. CD28 but not LFA-1 prevented induction of T cell unresponsiveness after stimulation of TCRs. These results demonstrate that LFA-1 and CD28 exhibit distinct, nonoverlapping ways to influence T cell activation and suggest that the terms costimulation and signal 2 should be revisited.
Collapse
Affiliation(s)
- M F Bachmann
- Ontario Cancer Institute, Department of Medical Biophysics, Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Abstract
Intrathymic expression of endogenous mouse mammary tumor virus (MMTV)–encoded superantigens (SAg) induces the clonal deletion of T cells bearing SAg-reactive T-cell receptor (TCR) Vβ elements. However, the identity of the thymic antigen-presenting cells (APC) involved in the induction of SAg tolerance remains to be defined. We have analyzed the potential of dendritic cells (DC) to mediate the clonal deletion of Mtv-7-reactive TCR αβ P14 transgenic thymocytes in an in vitro assay. Our results show that both thymic and splenic DC induced the deletion of TCR transgenic double positive (DP) thymocytes. DC appear to be more efficient than splenic B cells as negatively selecting APC in this experimental system. Interestingly, thymic and splenic DC display a differential ability to induce CD4+SP thymocyte proliferation. These observations suggest that thymic DC may have an important role in the induction of SAg tolerance in vivo.
Collapse
|