1
|
Frodella CM, Liu L, Tan W, Pruett SB, Kaplan BLF. The mechanism by which cannabidiol (CBD) suppresses TNF-α secretion involves inappropriate localization of TNF-α converting enzyme (TACE). Cell Immunol 2024; 397-398:104812. [PMID: 38245915 PMCID: PMC10947891 DOI: 10.1016/j.cellimm.2024.104812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/21/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Cannabidiol (CBD) is a phytocannabinoid derived from Cannabis sativa that exerts anti-inflammatory mechanisms. CBD is being examined for its putative effects on the neuroinflammatory disease, multiple sclerosis (MS). One of the major immune mediators that propagates MS and its mouse model experimental autoimmune encephalomyelitis (EAE) are macrophages. Macrophages can polarize into an inflammatory phenotype (M1) or an anti-inflammatory phenotype (M2a). Therefore, elucidating the impact on macrophage polarization with CBD pre-treatment is necessary to understand its anti-inflammatory mechanisms. To study this effect, murine macrophages (RAW 264.7) were pre-treated with CBD (10 µM) or vehicle (ethanol 0.1 %) and were either left untreated (naive; cell media only), or stimulated under M1 (IFN-γ + lipopolysaccharide, LPS) or M2a (IL-4) conditions for 24 hr. Cells were analyzed for macrophage polarization markers, and supernatants were analyzed for cytokines and chemokines. Immunofluorescence staining was performed on M1-polarized cells for the metalloprotease, tumor necrosis factor-α-converting enzyme (TACE), as this enzyme is responsible for the secretion of TNF-α. Overall results showed that CBD decreased several markers associated with the M1 phenotype while exhibiting less effects on the M2a phenotype. Significantly, under M1 conditions, CBD increased the percentage of intracellular and surface TNF-α but decreased secreted TNF-α. This phenomenon might be mediated by TACE as staining showed that CBD sequestered TACE intracellularly. CBD also prevented RelA nuclear translocation. These results suggest that CBD may exert its anti-inflammatory effects by reducing M1 polarization and decreasing TNF-α secretion via inappropriate localization of TACE and RelA.
Collapse
Affiliation(s)
- Christa M Frodella
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Liyuan Liu
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Wei Tan
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Stephen B Pruett
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA; Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA; Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
2
|
Xu N, Bai Y, Han X, Yuan J, Wang L, He Y, Yang L, Wu H, Shi H, Wu X. Taurochenodeoxycholic acid reduces astrocytic neuroinflammation and alleviates experimental autoimmune encephalomyelitis in mice. Immunobiology 2023; 228:152388. [PMID: 37079985 DOI: 10.1016/j.imbio.2023.152388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVE Multiple sclerosis (MS) is an immune regulatory disease that affects the central nervous system (CNS). The main pathological features include demyelination and neurodegeneration, and the pathogenesis is associated with astrocytic neuroinflammation. Taurochenodeoxycholic acid (TCDCA) is one of the conjugated bile acids in animal bile, and it is not clear whether TCDCA could improve MS by inhibiting the activation of astrocytes. This study was aimed to evaluate the effects of TCDCA on experimental autoimmune encephalomyelitis (EAE)-a classical animal model of MS, and to probe its mechanism from the aspect of suppressing astrocytic neuroinflammation. It is expected to prompt the potential application of TCDCA for the treatment of MS. RESULTS TCDCA effectively alleviated the progression of EAE and improved the impaired neurobehavior in mice. It mitigated the hyperactivation of astrocytes and down-regulated the mRNA expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 in the brain cortex. In the C6 astrocytic cell line induced by lipopolysaccharide (LPS), TCDCA treatment dose-dependently decreased the production of NO and the protein expression of iNOS and glial fibrillary acidic protein (GFAP). TCDCA consistently inhibited the mRNA expressions of COX2, iNOS and other inflammatory mediators. Furthermore, TCDCA decreased the protein expression of phosphorylated serine/threonine kinase (AKT), inhibitor of NFκB α (IκBα) and nuclear factor κB (NFκB). And TCDCA also inhibited the nuclear translocation of NFκB. Conversely, as an inhibitor of the G-protein coupled bile acid receptor Gpbar1 (TGR5), triamterene eliminated the effects of TCDCA in LPS-stimulated C6 cells. CONCLUSION TCDCA improves the progress of EAE by inhibiting the astrocytic neuroinflammation, which might be exerted by the regulation of TGR5 mediated AKT/NFκB signaling pathway. These findings may prompt the potential application of TCDCA for MS therapy by suppressing astrocyte inflammation.
Collapse
Affiliation(s)
- Nuo Xu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuyan Bai
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyan Han
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lupeng Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yixin He
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Alomar HA, Nadeem A, Ansari MA, Attia SM, Bakheet SA, Al-Mazroua HA, Alhazzani K, Assiri MA, Alqinyah M, Almudimeegh S, Ahmad SF. Mitogen-activated protein kinase inhibitor PD98059 improves neuroimmune dysfunction in experimental autoimmune encephalomyelitis in SJL/J mice through the inhibition of nuclear factor-kappa B signaling in B cells. Brain Res Bull 2023; 194:45-53. [PMID: 36646144 DOI: 10.1016/j.brainresbull.2023.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/20/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Multiple sclerosis (MS) is a severe autoimmune disease leading to demyelination, followed by consequent axonal degeneration, causing sensory, motor, cognitive, and visual symptoms. Experimental autoimmune encephalomyelitis (EAE) is the most well-studied animal model of MS. Most current MS treatments are not completely effective, and severe side effects remain a great challenge. In this study, we report the therapeutic efficacy of PD98059, a potent mitogen-activated protein kinase inhibitor, on proteolipid protein (PLP)139-151-induced EAE in SJL/J mice. Following the induction of EAE, mice were intraperitoneally treated with PD98059 (5 mg/kg for 14 days) daily from day 14 to day 28. This study investigated the effects of PD98059 on C-C motif chemokine receptor 6 (CCR6), CD14, NF-κB p65, IκBα, GM-CSF, iNOS, IL-6, TNF-α in CD45R+ B lymphocytes using flow cytometry. Furthermore, we analyzed the effect of PD98059 on CCR6, CD14, NF-κB p65, GM-CSF, iNOS, IL-6, and TNF-α mRNA and protein expression levels using qRT-PCR analysis in brain tissues. Mechanistic investigations revealed that PD98059-treated in mice with EAE had reduced CD45R+CCR6+, CD45R+CD14+, CD45R+NF-κB p65+, CD45R+GM-CSF+, CD45R+iNOS+, CD45R+IL-6+, and CD45R+TNF-α+ cells and increased CD45R+IκBα+ cells compared with vehicle-treated control mice in the spleen. Moreover, downregulation of CCR6, CD14, NF-κB p65, GM-CSF, iNOS, IL-6, and TNF-α mRNA expression level was observed in PD98059-treated mice with EAE compared with vehicle-treated control mice in the brain tissue. The results of this study demonstrate that PD98059 modulates inflammatory mediators through multiple cellular mechanisms. The results of this study suggest that PD98059 may be pursued as a therapeutic agent for the treatment of MS.
Collapse
Affiliation(s)
- Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
4
|
Cavalcanti F, Gonzalez-Rey E, Delgado M, Falo CP, Mestre L, Guaza C, O’Valle F, Lufino MMP, Xaus J, Mascaró C, Lunardi S, Sacilotto N, Dessanti P, Rotllant D, Navarro X, Herrando-Grabulosa M, Buesa C, Maes T. Efficacy of Vafidemstat in Experimental Autoimmune Encephalomyelitis Highlights the KDM1A/RCOR1/HDAC Epigenetic Axis in Multiple Sclerosis. Pharmaceutics 2022; 14:pharmaceutics14071420. [PMID: 35890315 PMCID: PMC9323733 DOI: 10.3390/pharmaceutics14071420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Lysine specific demethylase 1 (LSD1; also known as KDM1A), is an epigenetic modulator that modifies the histone methylation status. KDM1A forms a part of protein complexes that regulate the expression of genes involved in the onset and progression of diseases such as cancer, central nervous system (CNS) disorders, viral infections, and others. Vafidemstat (ORY-2001) is a clinical stage inhibitor of KDM1A in development for the treatment of neurodegenerative and psychiatric diseases. However, the role of ORY-2001 targeting KDM1A in neuroinflammation remains to be explored. Here, we investigated the effect of ORY-2001 on immune-mediated and virus-induced encephalomyelitis, two experimental models of multiple sclerosis and neuronal damage. Oral administration of ORY-2001 ameliorated clinical signs, reduced lymphocyte egress and infiltration of immune cells into the spinal cord, and prevented demyelination. Interestingly, ORY-2001 was more effective and/or faster acting than a sphingosine 1-phosphate receptor antagonist in the effector phase of the disease and reduced the inflammatory gene expression signature characteristic ofEAE in the CNS of mice more potently. In addition, ORY-2001 induced gene expression changes concordant with a potential neuroprotective function in the brain and spinal cord and reduced neuronal glutamate excitotoxicity-derived damage in explants. These results pointed to ORY-2001 as a promising CNS epigenetic drug able to target neuroinflammatory and neurodegenerative diseases and provided preclinical support for the subsequent design of early-stage clinical trials.
Collapse
Affiliation(s)
- Fernando Cavalcanti
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
| | - Elena Gonzalez-Rey
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, PTS-Granada, 18016 Granada, Spain; (E.G.-R.); (M.D.)
| | - Mario Delgado
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, PTS-Granada, 18016 Granada, Spain; (E.G.-R.); (M.D.)
| | - Clara P. Falo
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, PTS-Granada, 18016 Granada, Spain; (E.G.-R.); (M.D.)
| | - Leyre Mestre
- Department of Functional and Systems Neurobiology, Cajal Institute (CSIC), 28034 Madrid, Spain; (L.M.); (C.G.)
| | - Carmen Guaza
- Department of Functional and Systems Neurobiology, Cajal Institute (CSIC), 28034 Madrid, Spain; (L.M.); (C.G.)
| | - Francisco O’Valle
- Department of Pathology, School of Medicine, IBIMER and IBS-Granada, Granada University, 18071 Granada, Spain;
| | - Michele M. P. Lufino
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
| | - Jordi Xaus
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
| | - Cristina Mascaró
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
| | - Serena Lunardi
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
| | - Natalia Sacilotto
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
| | - Paola Dessanti
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
| | - David Rotllant
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
| | - Xavier Navarro
- Departament de Biologia Cellular, Fisiologia i Immunologia, Institut de Neurociències, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Barcelona, Spain; (X.N.); (M.H.-G.)
| | - Mireia Herrando-Grabulosa
- Departament de Biologia Cellular, Fisiologia i Immunologia, Institut de Neurociències, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Barcelona, Spain; (X.N.); (M.H.-G.)
| | - Carlos Buesa
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
| | - Tamara Maes
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
- Correspondence:
| |
Collapse
|
5
|
Yu X, Lv J, Wu J, Chen Y, Chen F, Wang L. The autoimmune encephalitis-related cytokine TSLP in the brain primes neuroinflammation by activating the JAK2-NLRP3 axis. Clin Exp Immunol 2022; 207:113-122. [PMID: 35020848 PMCID: PMC8802176 DOI: 10.1093/cei/uxab023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/08/2021] [Accepted: 11/20/2021] [Indexed: 12/28/2022] Open
Abstract
NLRP3 inflammasome hyperactivation contributes to neuroinflammation in autoimmune disorders, but the underlying regulatory mechanism remains to be elucidated. We demonstrate that compared with wild-type (WT) mice, mice lacking thymic stromal lymphopoietin (TSLP) receptor (TSLPR) (Tslpr−/− mice) exhibit a significantly decreased experimental autoimmune encephalomyelitis (EAE) score, reduced CD4+ T cell infiltration, and restored myelin basic protein (MBP) expression in the brain after EAE induction by myelin oligodendrocyte glycoprotein35–55 (MOG35–55). TSLPR signals through Janus kinase (JAK)2, but not JAK1 or JAK3, to induce NLRP3 expression, and Tslpr−/− mice with EAE show decreased JAK2 phosphorylation and NLRP3 expression in the brain. JAK2 inhibition by ruxolitinib mimicked loss of TSLPR function in vivo and further decreased TSLP expression in the EAE mouse brain. The NLRP3 inhibitor MCC950 decreased CD4+ T cell infiltration, restored MBP expression, and decreased IL-1β and TSLP levels, verifying the pro-inflammatory role of NLRP3. In vitro experiments using BV-2 murine microglia revealed that TSLP directly induced NLRP3 expression, phosphorylation of JAK2 but not JAK1orJAK3, and IL-1β release, which were markedly inhibited by ruxolitinib. Furthermore, EAE induction led to an increase in the Th17 cell number, a decrease in the regulatory T (Treg) cell number in the blood, and an increase in the expression of the cytokine IL-17A in the WT mouse brain, which was drastically reversed in Tslpr−/− mice. In addition, ruxolitinib suppressed the increase in IL-17A expression in the EAE mouse brain. These findings identify TSLP as a prospective target for treating JAK2-NLRP3 axis-associated autoimmune inflammatory disorders.
Collapse
Affiliation(s)
- Xueyuan Yu
- Department of Clinical Laboratory, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jiajia Lv
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Wu
- Department of Clinical Laboratory, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yong Chen
- Department of Clinical Laboratory, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fei Chen
- Department of Clinical Laboratory, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Wang
- Department of Clinical Laboratory, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
6
|
Jiang Q, Li Z, Tao T, Duan R, Wang X, Su W. TNF-α in Uveitis: From Bench to Clinic. Front Pharmacol 2021; 12:740057. [PMID: 34795583 PMCID: PMC8592912 DOI: 10.3389/fphar.2021.740057] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Uveitis is an inflammation of the iris, ciliary body, vitreous, retina, or choroid, which has been shown to be the first manifestation of numerous systemic diseases. Studies about the immunopathogenesis and treatment of uveitis are helpful to comprehend systemic autoimmune diseases, and delay the progression of systemic autoimmune diseases, respectively. Tumor necrosis factor-alpha (TNF-α), a pleiotropic cytokine, plays a pivotal role in intraocular inflammation based on experimental and clinical data. Evidence of the feasibility of using anti-TNF-α agents for uveitis management has increased. Although there are numerous studies on TNF-α in various autoimmune diseases, the pathological mechanism and research progress of TNF-α in uveitis have not been reviewed. Therefore, the objective of this review is to provide a background on the role of TNF-α in the immunopathogenesis of uveitis, as well as from bench to clinical research progress, to better guide TNF-α-based therapeutics for uveitis.
Collapse
Affiliation(s)
- Qi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Tianyu Tao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xianggui Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Baker D, Hadjicharalambous C, Gnanapavan S, Giovannoni G. Can rheumatologists stop causing demyelinating disease? Mult Scler Relat Disord 2021; 53:103057. [PMID: 34126373 DOI: 10.1016/j.msard.2021.103057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Perhaps the most informative experiments in human disease are clinical trials and notably, responses to specific therapies can be highly-informative to help understand disease pathogenesis. There are reagents that inhibit a variety of different autoimmune conditions, such as CD20 memory B cell depleters that are active in both multiple sclerosis (MS), rheumatoid arthritis (RA) and other conditions, suggesting influences on common immune mechanisms in different diseases. However, a notable exception seemed to be the use of tumour necrosis factor (TNF) inhibitors that limits RA, yet seem to, rarely, trigger demyelination and induce MS. This was first seen with TNF-inhibiting monoclonal antibodies and TNF-receptor-immunoglobulin fusion proteins. However, this is also seen with tyrosine and Janus kinase inhibitors that inhibit RA, yet induce demyelinating disease in some individuals PURPOSE: To provide an overview, from a B cell centric perspective, that may underpin the biology that links arthritis treatments to the development of demyelinating disease. CONCLUSIONS It is apparent that the disease modifying anti-rheumatoid drugs that cause demyelination share a number of common features. These agents tend to inhibit TNF-receptor signalling, augment or exhibit limited inhibitor activity on class-switched memory B cells and importantly appear to be relatively excluded from the central nervous system (CNS). They will thus not target ectopic B cell follicles in the CNS, unlike that occurring in peripheral autoimmunity as seen with anti-TNF treatments in RA. Agents such as ibudilast and some Janus kinase inhibitors that inhibit TNF and clearly penetrate the CNS do not appear to induce demyelination and may even be neuroprotective. It remains to be established whether selection or development of CNS penetrant agents may avoid CNS-complications of treatments for RA. Clearly, further studies are warranted.
Collapse
Affiliation(s)
- David Baker
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, E1 2AT, United Kingdom.
| | - Charalambos Hadjicharalambous
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, E1 2AT, United Kingdom
| | - Sharmilee Gnanapavan
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, E1 2AT, United Kingdom; Clinical Board:Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Gavin Giovannoni
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, E1 2AT, United Kingdom; Clinical Board:Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
8
|
Behl T, Kaur G, Sehgal A, Bhardwaj S, Singh S, Buhas C, Judea-Pusta C, Uivarosan D, Munteanu MA, Bungau S. Multifaceted Role of Matrix Metalloproteinases in Neurodegenerative Diseases: Pathophysiological and Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms22031413. [PMID: 33573368 PMCID: PMC7866808 DOI: 10.3390/ijms22031413] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegeneration is the pathological condition, in which the nervous system or neuron loses its structure, function, or both, leading to progressive degeneration or the death of neurons, and well-defined associations of tissue system, resulting in clinical manifestations. Neuroinflammation has been shown to precede neurodegeneration in several neurodegenerative diseases (NDs). No drug is yet known to delay or treat neurodegeneration. Although the etiology and potential causes of NDs remain widely indefinable, matrix metalloproteinases (MMPs) evidently have a crucial role in the progression of NDs. MMPs, a protein family of zinc (Zn2+)-containing endopeptidases, are pivotal agents that are involved in various biological and pathological processes in the central nervous system (CNS). The current review delineates the several emerging evidence demonstrating the effects of MMPs in the progression of NDs, wherein they regulate several processes, such as (neuro)inflammation, microglial activation, amyloid peptide degradation, blood brain barrier (BBB) disruption, dopaminergic apoptosis, and α-synuclein modulation, leading to neurotoxicity and neuron death. Published papers to date were searched via PubMed, MEDLINE, etc., while using selective keywords highlighted in our manuscript. We also aim to shed a light on pathophysiological effect of MMPs in the CNS and focus our attention on its detrimental and beneficial effects in NDs, with a special focus on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), multiple sclerosis (MS), and Huntington's disease (HD), and discussed various therapeutic strategies targeting MMPs, which could serve as potential modulators in NDs. Over time, several agents have been developed in order to overcome challenges and open up the possibilities for making selective modulators of MMPs to decipher the multifaceted functions of MMPs in NDs. There is still a greater need to explore them in clinics.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| | - Gagandeep Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Shaveta Bhardwaj
- Department of Pharmacology, GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana 141104, Punjab, India;
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Camelia Buhas
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (C.J.-P.)
| | - Claudia Judea-Pusta
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (C.J.-P.)
| | - Diana Uivarosan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| |
Collapse
|
9
|
Kristensen LB, Lambertsen KL, Nguyen N, Byg KE, Nielsen HH. The Role of Non-Selective TNF Inhibitors in Demyelinating Events. Brain Sci 2021; 11:brainsci11010038. [PMID: 33401396 PMCID: PMC7824660 DOI: 10.3390/brainsci11010038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022] Open
Abstract
The use of non-selective tumor necrosis factor (TNF) inhibitors is well known in the treatment of inflammatory diseases such as rheumatoid arthritis, Crohn’s disease, and psoriasis. Its use in neurological disorders is limited however, due to rare adverse events of demyelination, even in patients without preceding demyelinating disease. We review here the molecular and cellular aspects of this neuroinflammatory process in light of a case of severe monophasic demyelination caused by treatment with infliximab. Focusing on the role of TNF, we review the links between CNS inflammation, demyelination, and neurodegenerative changes leading to permanent neurological deficits in a young woman, and we discuss the growing evidence for selective soluble TNF inhibitors as a new treatment approach in inflammatory and neurological diseases.
Collapse
Affiliation(s)
- Line Buch Kristensen
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (L.B.K.); (K.L.L.); (K.-E.B.)
| | - Kate Lykke Lambertsen
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (L.B.K.); (K.L.L.); (K.-E.B.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, St., 5000 Odense C, Denmark
- BRIDGE—Brain Research—Inter Disciplinary Guided Excellence, Department of Clinical Research, J.B. Winsloewsvej 19, 5000 Odense C, Denmark
| | - Nina Nguyen
- Department of Radiology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark;
| | - Keld-Erik Byg
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (L.B.K.); (K.L.L.); (K.-E.B.)
- BRIDGE—Brain Research—Inter Disciplinary Guided Excellence, Department of Clinical Research, J.B. Winsloewsvej 19, 5000 Odense C, Denmark
- Rheumatology Research Unit, Odense University Hospital and University of Southern Denmark, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark
| | - Helle H Nielsen
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (L.B.K.); (K.L.L.); (K.-E.B.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, St., 5000 Odense C, Denmark
- BRIDGE—Brain Research—Inter Disciplinary Guided Excellence, Department of Clinical Research, J.B. Winsloewsvej 19, 5000 Odense C, Denmark
- Correspondence:
| |
Collapse
|
10
|
Delbridge ARD, Huh D, Brickelmaier M, Burns JC, Roberts C, Challa R, Raymond N, Cullen P, Carlile TM, Ennis KA, Liu M, Sun C, Allaire NE, Foos M, Tsai HH, Franchimont N, Ransohoff RM, Butts C, Mingueneau M. Organotypic Brain Slice Culture Microglia Exhibit Molecular Similarity to Acutely-Isolated Adult Microglia and Provide a Platform to Study Neuroinflammation. Front Cell Neurosci 2020; 14:592005. [PMID: 33473245 PMCID: PMC7812919 DOI: 10.3389/fncel.2020.592005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Microglia are central nervous system (CNS) resident immune cells that have been implicated in neuroinflammatory pathogenesis of a variety of neurological conditions. Their manifold context-dependent contributions to neuroinflammation are only beginning to be elucidated, which can be attributed in part to the challenges of studying microglia in vivo and the lack of tractable in vitro systems to study microglia function. Organotypic brain slice cultures offer a tissue-relevant context that enables the study of CNS resident cells and the analysis of brain slice microglial phenotypes has provided important insights, in particular into neuroprotective functions. Here we use RNA sequencing, direct digital quantification of gene expression with nCounter® technology and targeted analysis of individual microglial signature genes, to characterize brain slice microglia relative to acutely-isolated counterparts and 2-dimensional (2D) primary microglia cultures, a widely used in vitro surrogate. Analysis using single cell and population-based methods found brain slice microglia exhibited better preservation of canonical microglia markers and overall gene expression with stronger fidelity to acutely-isolated adult microglia, relative to in vitro cells. We characterized the dynamic phenotypic changes of brain slice microglia over time, after plating in culture. Mechanical damage associated with slice preparation prompted an initial period of inflammation, which resolved over time. Based on flow cytometry and gene expression profiling we identified the 2-week timepoint as optimal for investigation of microglia responses to exogenously-applied stimuli as exemplified by treatment-induced neuroinflammatory changes observed in microglia following LPS, TNF and GM-CSF addition to the culture medium. Altogether these findings indicate that brain slice cultures provide an experimental system superior to in vitro culture of microglia as a surrogate to investigate microglia functions, and the impact of soluble factors and cellular context on their physiology.
Collapse
Affiliation(s)
- Alex R D Delbridge
- Multiple Sclerosis and Neuroimmunology Research Unit, Biogen, Cambridge, MA, United States.,Biogen Postdoctoral Scientist Program, Biogen, Cambridge, MA, United States
| | - Dann Huh
- Translational Biology, Biogen, Cambridge, MA, United States
| | - Margot Brickelmaier
- Multiple Sclerosis and Neuroimmunology Research Unit, Biogen, Cambridge, MA, United States
| | - Jeremy C Burns
- Multiple Sclerosis and Neuroimmunology Research Unit, Biogen, Cambridge, MA, United States
| | - Chris Roberts
- Translational Biology, Biogen, Cambridge, MA, United States
| | - Ravi Challa
- Translational Biology, Biogen, Cambridge, MA, United States
| | - Naideline Raymond
- Multiple Sclerosis and Neuroimmunology Research Unit, Biogen, Cambridge, MA, United States
| | - Patrick Cullen
- Translational Biology, Biogen, Cambridge, MA, United States
| | | | - Katelin A Ennis
- Genetic and Neurodevelopmental Disorders, Biogen, Cambridge, MA, United States
| | - Mei Liu
- Biogen Postdoctoral Scientist Program, Biogen, Cambridge, MA, United States
| | - Chao Sun
- Biogen Postdoctoral Scientist Program, Biogen, Cambridge, MA, United States
| | - Normand E Allaire
- Biogen Postdoctoral Scientist Program, Biogen, Cambridge, MA, United States
| | - Marianna Foos
- Biogen Postdoctoral Scientist Program, Biogen, Cambridge, MA, United States
| | - Hui-Hsin Tsai
- Multiple Sclerosis and Neuroimmunology Research Unit, Biogen, Cambridge, MA, United States
| | | | - Richard M Ransohoff
- Multiple Sclerosis and Neuroimmunology Research Unit, Biogen, Cambridge, MA, United States
| | - Cherie Butts
- Digital & Quantitative Medicine, Biogen, Cambridge, MA, United States
| | - Michael Mingueneau
- Multiple Sclerosis and Neuroimmunology Research Unit, Biogen, Cambridge, MA, United States
| |
Collapse
|
11
|
Bagnoud M, Briner M, Remlinger J, Meli I, Schuetz S, Pistor M, Salmen A, Chan A, Hoepner R. c-Jun N-Terminal Kinase as a Therapeutic Target in Experimental Autoimmune Encephalomyelitis. Cells 2020; 9:cells9102154. [PMID: 32977663 PMCID: PMC7598244 DOI: 10.3390/cells9102154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
c-Jun N-terminal kinase (JNK) is upregulated during multiple sclerosis relapses and at the peak of experimental autoimmune encephalomyelitis (EAE). We aim to investigate the effects of pharmacological pan-JNK inhibition on the course of myelin oligodendrocyte glycoprotein (MOG35-55) EAE disease using in vivo and in vitro experimental models. EAE was induced in female C57BL/6JRj wild type mice using MOG35-55. SP600125 (SP), a reversible adenosine triphosphate competitive pan-JNK inhibitor, was then given orally after disease onset. Positive correlation between SP plasma and brain concentration was observed. Nine, but not three, consecutive days of SP treatment led to a significant dose-dependent decrease of mean cumulative MOG35-55 EAE severity that was associated with increased mRNA expression of interferon gamma (INF-γ) and tumor necrosis factor alpha (TNF-α) in the spinal cord. On a histological level, reduced spinal cord immune cell-infiltration predominantly of CD3+ T cells as well as increased activity of Iba1+ cells were observed in treated animals. In addition, in vitro incubation of murine and human CD3+ T cells with SP resulted in reduced T cell apoptosis and proliferation. In conclusion, our study demonstrates that pharmacological pan-JNK inhibition might be a treatment strategy for autoimmune central nervous system demyelination.
Collapse
Affiliation(s)
- Maud Bagnoud
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.B.); (J.R.); (I.M.); (S.S.); (M.P.); (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3010 Bern, Switzerland
- Correspondence: ; Tel.: +41-31-6323076
| | - Myriam Briner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.B.); (J.R.); (I.M.); (S.S.); (M.P.); (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Jana Remlinger
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.B.); (J.R.); (I.M.); (S.S.); (M.P.); (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3010 Bern, Switzerland
| | - Ivo Meli
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.B.); (J.R.); (I.M.); (S.S.); (M.P.); (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Sara Schuetz
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.B.); (J.R.); (I.M.); (S.S.); (M.P.); (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Maximilian Pistor
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.B.); (J.R.); (I.M.); (S.S.); (M.P.); (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Anke Salmen
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.B.); (J.R.); (I.M.); (S.S.); (M.P.); (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.B.); (J.R.); (I.M.); (S.S.); (M.P.); (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Robert Hoepner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.B.); (J.R.); (I.M.); (S.S.); (M.P.); (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
12
|
Wagner CA, Roqué PJ, Goverman JM. Pathogenic T cell cytokines in multiple sclerosis. J Exp Med 2020; 217:jem.20190460. [PMID: 31611252 PMCID: PMC7037255 DOI: 10.1084/jem.20190460] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/21/2019] [Accepted: 09/11/2019] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system that is believed to have an autoimmune etiology. As MS is the most common nontraumatic disease that causes disability in young adults, extensive research has been devoted to identifying therapeutic targets. In this review, we discuss the current understanding derived from studies of patients with MS and animal models of how specific cytokines produced by autoreactive CD4 T cells contribute to the pathogenesis of MS. Defining the roles of these cytokines will lead to a better understanding of the potential of cytokine-based therapies for patients with MS.
Collapse
Affiliation(s)
| | - Pamela J Roqué
- Department of Immunology, University of Washington, Seattle, WA
| | - Joan M Goverman
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
13
|
Smagina IV, Elchaninova SA, Palashchenko AS, Galaktionova LP. [Pathological and protective effects of tumor necrosis factor-alpha in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:14-20. [PMID: 31934984 DOI: 10.17116/jnevro20191191014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The immunomodulatory cytokine tumor necrosis factor-alpha (TNF-α) is involved in the regulation of both physiological and pathological processes in the central nervous system (CNS). The effects of TNF-α on CNS reported in clinical trials and experimental studies, evidence of involvement of this cytokine in the pathogenesis of multiple sclerosis are analyzed. Possible causes of failures of non-selective pharmacological inhibition of TNF-α effects in MS are considered in view of current concepts on mechanisms of TNF-α action.
Collapse
Affiliation(s)
- I V Smagina
- Altai State Medical University, Barnaul, Russia; Regional Clinical Hospital, Barnaul, Russia
| | | | - A S Palashchenko
- Altai State Medical University, Barnaul, Russia; Regional Clinical Hospital, Barnaul, Russia
| | | |
Collapse
|
14
|
Baaklini CS, Rawji KS, Duncan GJ, Ho MFS, Plemel JR. Central Nervous System Remyelination: Roles of Glia and Innate Immune Cells. Front Mol Neurosci 2019; 12:225. [PMID: 31616249 PMCID: PMC6764409 DOI: 10.3389/fnmol.2019.00225] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
In diseases such as multiple sclerosis (MS), inflammation can injure the myelin sheath that surrounds axons, a process known as demyelination. The spontaneous regeneration of myelin, called remyelination, is associated with restoration of function and prevention of axonal degeneration. Boosting remyelination with therapeutic intervention is a promising new approach that is currently being tested in several clinical trials. The endogenous regulation of remyelination is highly dependent on the immune response. In this review article, we highlight the cell biology of remyelination and its regulation by innate immune cells. For the purpose of this review, we discuss the roles of microglia, and also astrocytes and oligodendrocyte progenitor cells (OPCs) as they are being increasingly recognized to have immune cell functions.
Collapse
Affiliation(s)
- Charbel S. Baaklini
- Department of Medicine, Division of Neurology, Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Khalil S. Rawji
- Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Greg J. Duncan
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, United States
| | - Madelene F. S. Ho
- Department of Medicine, Division of Neurology, Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
15
|
Baker D, Jacobs BM, Gnanapavan S, Schmierer K, Giovannoni G. Plasma cell and B cell-targeted treatments for use in advanced multiple sclerosis. Mult Scler Relat Disord 2019; 35:19-25. [PMID: 31279232 DOI: 10.1016/j.msard.2019.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
There is increasing evidence that agents that target peripheral B cells and in some instances plasma cells can exhibit marked effects on relapsing multiple sclerosis. In addition, B cells, including plasma cells, within the central nervous system compartment are likely to play an important role in disease progression in both relapsing and progressive MS. However, current B cell-targeting antibodies may not inhibit these, because of poor penetration into the central nervous system and often oligoclonal bands of immunoglobulin persist within the cerebrospinal fluid despite immunotherapy. Through targeting B cells and plasma cells in the CNS, it may be possible to obtain additional benefit above simple peripheral depletion of B cells. As such there are a number of inhibitors of B cell function and B cell depleting agents that have been developed for myeloma and B cell leukaemia and lymphoma, which could potentially be used off-label or as an experimental treatment for advanced (progressive) MS.
Collapse
Affiliation(s)
- David Baker
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom.
| | - Benjamin M Jacobs
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
| | - Sharmilee Gnanapavan
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Clinical Board:Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London E1 1BB, United Kingdom
| | - Klaus Schmierer
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Clinical Board:Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London E1 1BB, United Kingdom
| | - Gavin Giovannoni
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Clinical Board:Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London E1 1BB, United Kingdom
| |
Collapse
|
16
|
Achiron A, Barak Y, Goren M, Gabbay U, Miron S, Rotstein Z, Noy S, Sarova-Pinhas I. Intravenous immune globulin in multiple sclerosis: clinical and neuroradiological results and implications for possible mechanisms of action. Clin Exp Immunol 2019. [DOI: 10.1111/cei.1996.104.s1.67] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
17
|
Gogoleva VS, Atretkhany KSN, Drutskaya MS, Mufazalov IA, Kruglov AA, Nedospasov SA. Cytokines as Mediators of Neuroinflammation in Experimental Autoimmune Encephalomyelitis. BIOCHEMISTRY (MOSCOW) 2018; 83:1089-1103. [PMID: 30472948 DOI: 10.1134/s0006297918090110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytokines play a pivotal role in maintaining homeostasis of the immune system and in regulation of the immune response. Cytokine dysregulation is often associated with development of various pathological conditions, including autoimmunity. Recent studies have provided insights into the cytokine signaling pathways that are involved not only in pathogenesis of autoimmune neuroinflammatory disorders, such as multiple sclerosis, but also in neurodegenerative states, for example, Alzheimer's disease. Understanding the exact molecular mechanisms of disease pathogenesis and evaluation of relevant experimental animal models are necessary for development of effective therapeutic approaches.
Collapse
Affiliation(s)
- V S Gogoleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia. .,Lomonosov Moscow State University, Biological Faculty, Moscow, 119234, Russia
| | - K-S N Atretkhany
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Lomonosov Moscow State University, Biological Faculty, Moscow, 119234, Russia
| | - M S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Lomonosov Moscow State University, Biological Faculty, Moscow, 119234, Russia
| | - I A Mufazalov
- University of California, San Francisco, CA 94143, USA
| | - A A Kruglov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - S A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia. .,Lomonosov Moscow State University, Biological Faculty, Moscow, 119234, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
18
|
Wang K, Song F, Fernandez-Escobar A, Luo G, Wang JH, Sun Y. The Properties of Cytokines in Multiple Sclerosis: Pros and Cons. Am J Med Sci 2018; 356:552-560. [PMID: 30447707 DOI: 10.1016/j.amjms.2018.08.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 08/12/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system and is characterized by demyelination, axonal loss, gliosis and inflammation. The last plays a major role in the onset and propagation of the disease. MS presents with heterogeneous lesions containing a broad range of cells and soluble mediators of the immune system such as T cells, B cells, macrophages, microglia, cytokines, chemokines, antibodies, complement and other toxic substances. This review outlines, analyzes and discusses the different immune mechanisms of MS that are responsible for the initiation and propagation of active lesions, demyelination, axonal injury, remyelination and cell loss as well as the role of cytokines in the disease process. Proinflammatory cytokines such as interleukin-17 (IL-17), IL-22, tumor necrosis factor-α, IL-1, IL-12 and interferon-γ may cause MS through several signaling pathways. Conversely, anti-inflammatory circulating cytokines such as IL-4 and IL-10 are reduced and theoretically can exert a direct protective effect in this condition. Future studies are necessary to develop effective, safe and long-lasting strategies to reduce the abnormal cytokine cascades and to treat MS.
Collapse
Affiliation(s)
- Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Feng Song
- Qingdao University Affiliated Qingdao Municipal Hospital, Qingdao, Shandong, China
| | | | - Gang Luo
- Department of Interventional Neurology, Beijing Tiantan Hospital, Beijing, China
| | - Jun-Hui Wang
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Yu Sun
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
19
|
Stafford CA, Lawlor KE, Heim VJ, Bankovacki A, Bernardini JP, Silke J, Nachbur U. IAPs Regulate Distinct Innate Immune Pathways to Co-ordinate the Response to Bacterial Peptidoglycans. Cell Rep 2018; 22:1496-1508. [DOI: 10.1016/j.celrep.2018.01.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/02/2017] [Accepted: 01/08/2018] [Indexed: 12/19/2022] Open
|
20
|
Gu SM, Park MH, Yun HM, Han SB, Oh KW, Son DJ, Yun JS, Hong JT. CCR5 knockout suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice. Oncotarget 2017; 7:15382-93. [PMID: 26985768 PMCID: PMC4941248 DOI: 10.18632/oncotarget.8097] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 02/28/2016] [Indexed: 12/26/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease in which myelin in the spinal cord is damaged. C-C chemokine receptor type 5 (CCR5) is implicated in immune cell migration and cytokine release in central nervous system (CNS). We investigated whether CCR5 plays a role in MS progression using a murine model, experimental autoimmune encephalomyelitis (EAE), in CCR5 deficient (CCR5-/-) mice. CCR5-/- and CCR5+/+ (wild-type) mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) followed by pertussis toxin, after which EAE paralysis was scored for 28 days. We found that clinical scoring and EAE neuropathology were lower in CCR5-/- mice than CCR5+/+ mice. Immune cells (CD3+, CD4+, CD8+, B cell, NK cell and macrophages) infiltration and astrocytes/microglial activation were attenuated in CCR5-/- mice. Moreover, levels of IL-1β, TNF-α, IFN-γ and MCP-1 cytokine levels were decreased in CCR5-/- mice spinal cord. Myelin basic protein (MBP) and CNPase were increased while NG2 and O4 were decreased in CCR5-/- mice, indicating that demyelination was suppressed by CCR5 gene deletion. These findings suggest that CCR5 is likely participating in demyelination in the spinal cord the MS development, and that it could serve as an effective therapeutic target for the treatment of MS.
Collapse
Affiliation(s)
- Sun Mi Gu
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Hyung Mun Yun
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, Seoul, Republic of Korea
| | - Sang Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Ki Wan Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jae Suk Yun
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
21
|
Oligodendroglial TNFR2 Mediates Membrane TNF-Dependent Repair in Experimental Autoimmune Encephalomyelitis by Promoting Oligodendrocyte Differentiation and Remyelination. J Neurosci 2017; 36:5128-43. [PMID: 27147664 DOI: 10.1523/jneurosci.0211-16.2016] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/30/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Tumor necrosis factor (TNF) is associated with the pathophysiology of various neurological disorders, including multiple sclerosis. It exists as a transmembrane form tmTNF, signaling via TNF receptor 2 (TNFR2) and TNFR1, and a soluble form, solTNF, signaling via TNFR1. Multiple sclerosis is associated with the detrimental effects of solTNF acting through TNFR1, while tmTNF promotes repair and remyelination. Here we demonstrate that oligodendroglial TNFR2 is a key mediator of tmTNF-dependent protection in experimental autoimmune encephalomyelitis (EAE). CNP-cre:TNFR2(fl/fl) mice with TNFR2 ablation in oligodendrocytes show exacerbation of the disease with increased axon and myelin pathology, reduced remyelination, and increased loss of oligodendrocyte precursor cells and mature oligodendrocytes. The clinical course of EAE is not improved by the solTNF inhibitor XPro1595 in CNP-cre:TNFR2(fl/fl) mice, indicating that for tmTNF to promote recovery TNFR2 in oligodendrocytes is required. We show that TNFR2 drives differentiation of oligodendrocyte precursor cells, but not proliferation or survival. TNFR2 ablation leads to dysregulated expression of microRNAs, among which are regulators of oligodendrocyte differentiation and inflammation, including miR-7a. Our data provide the first direct in vivo evidence that TNFR2 in oligodendrocytes is important for oligodendrocyte differentiation, thereby sustaining tmTNF-dependent repair in neuroimmune disease. Our studies identify TNFR2 in the CNS as a molecular target for the development of remyelinating agents, addressing the most pressing need in multiple sclerosis therapy nowadays. SIGNIFICANCE STATEMENT Our study, using novel TNF receptor 2 (TNFR2) conditional KO mice with selective TNFR2 ablation in oligodendrocytes, provides the first direct evidence that TNFR2 is an important signal for oligodendrocyte differentiation. Following activation by transmembrane TNF, TNFR2 initiates pathways that drive oligodendrocytes into a reparative mode contributing to remyelination following disease. This identifies TNFR2 as a new molecular target for the development of therapeutic agents in multiple sclerosis.
Collapse
|
22
|
Martin R, Sospedra M, Rosito M, Engelhardt B. Current multiple sclerosis treatments have improved our understanding of MS autoimmune pathogenesis. Eur J Immunol 2017; 46:2078-90. [PMID: 27467894 DOI: 10.1002/eji.201646485] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is the most common inflammatory disorder of the central nervous system (CNS) in young adults. When MS is not treated, it leads to irreversible and severe disability. The etiology of MS and its pathogenesis are not fully understood. The recent discovery that MS-associated genetic variants code for molecules related to the function of specific immune cell subsets is consistent with the concept of MS as a prototypic, T-cell-mediated autoimmune disease targeting the CNS. While the therapeutic efficacy of the currently available immunomodulatory therapies further strengthen this concept, differences observed in responses to MS treatment as well as additional clinical and imaging observations have also shown that the autoimmune pathogenesis underlying MS is much more complex than previously thought. There is therefore an unmet need for continued detailed phenotypic and functional analysis of disease-relevant adaptive immune cells and tissues directly derived from MS patients to unravel the immune etiology of MS in its entire complexity. In this review, we will discuss the currently available MS treatment options and approved drugs, including how they have contributed to the understanding of the immune pathology of this autoimmune disease.
Collapse
Affiliation(s)
- Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Maria Rosito
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
23
|
Abstract
Tumor necrosis factor-α (TNF-α) blockers are a popular therapeutic choice in a number of inflammatory diseases. Thus far, five TNF- α blockers have been approved for clinical use (etanercept, infliximab, adalimumab, golimumab. and certolizumab). Despite being considered relatively safe, serious side effects associated with immune suppression have been reported, including central and peripheral nervous system (CNS) demyelinating disorders. It is still elusive whether these events are mere coincidence or a side effect of anti-TNF-α use. In this paper, we review the published case reports of CNS demyelination associated with anti-TNF-α therapy and present the follow-up of our 4 previously reported patients who developed neurologic symptoms suggestive of CNS demyelination after having received anti-TNF-α treatment. We also discuss the possible role of TNF-α blockers in demyelination.
Collapse
Affiliation(s)
- Elissavet Kemanetzoglou
- Department of Neurology, Agii Anargiri General Oncological Hospital of Kifissia, Athens, Greece
- 1st Department of Neurology, Athens National and Kapodistrian University, Aeginition Hospital, 74, Vas. Sophia's Ave, Athens, Greece
| | - Elisabeth Andreadou
- 1st Department of Neurology, Athens National and Kapodistrian University, Aeginition Hospital, 74, Vas. Sophia's Ave, Athens, Greece.
| |
Collapse
|
24
|
Martín-Álvarez R, Paúl-Fernández N, Palomo V, Gil C, Martínez A, Mengod G. A preliminary investigation of phoshodiesterase 7 inhibitor VP3.15 as therapeutic agent for the treatment of experimental autoimmune encephalomyelitis mice. J Chem Neuroanat 2017; 80:27-36. [DOI: 10.1016/j.jchemneu.2016.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/10/2016] [Accepted: 12/09/2016] [Indexed: 01/08/2023]
|
25
|
Gu SM, Yun J, Son DJ, Kim HY, Nam KT, Kim HD, Choi MG, Choi JS, Kim YM, Han SB, Hong JT. Piperlongumine attenuates experimental autoimmune encephalomyelitis through inhibition of NF-kappaB activity. Free Radic Biol Med 2017; 103:133-145. [PMID: 28011150 DOI: 10.1016/j.freeradbiomed.2016.12.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/28/2022]
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune and neurodegenerative disease in which demyelination sporadically and repeatedly occurs in the central nervous system (CNS). The activity of nuclear factor kappa B (NF-κB), a family of transcription factors, was increased in the cerebrospinal fluid (CSF) and/or the serum and brain and/or spinal cord of MS patients than in a healthy donors. In our study, we investigated whether piperlongumine (PL), which is known to have inhibitory effect on activity of NF-κB, can alleviate an experimental autoimmune encephalomyelitis (EAE). The mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55), and then we injected PL (1.5mg/kg/day or 3.0mg/kg/day) into the mice intraperitoneally on every second day from days 2 to 28. For in vitro study, we treated PL (0.5, 1 and 2.5μM) to RAW 264.7 and Jurkat cells with each stimulator. We observed that the paralytic severity and neuropathology of EAE in PL-treated group were decreased compared with the EAE group. PL showed a suppressed effect on demyelination, immune cells infiltration, astrocytes/microglials activation, level of inflammatory cytokines and proteins as well as NF-κB activity. Production of inflammatory cytokines and proteins as well as translocation of NF-κB into nucleus by treatment stimulators in RAW 264.7 and Jurkat cells were reduced by PL. Moreover, treatment of NF-κB inhibitor further inhibited production of inflammatory cytokines and proteins. These results suggest that PL can mitigate MOG-induced EAE symptoms and activation of macrophages and T cells by inhibiting NF-κB signaling. Therefore, PL could be useful for the treatment for MS.
Collapse
Affiliation(s)
- Sun Mi Gu
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Jaesuk Yun
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Hoi Yeong Kim
- Department of Food Science and Technology Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong-gun, Jeungpyeong-eup, Chungbuk 27909, Republic of Korea
| | - Kyung Tak Nam
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Hae Deun Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Min Gi Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Jeong Soon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Young Min Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea.
| |
Collapse
|
26
|
Adalimumab Induced or Provoked MS in Patient with Autoimmune Uveitis: A Case Report and Review of the Literature. Case Rep Med 2016; 2016:1423131. [PMID: 27840642 PMCID: PMC5093248 DOI: 10.1155/2016/1423131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/03/2016] [Indexed: 12/17/2022] Open
Abstract
Anti-tumor necrosis factor α (anti-TNF-α) agents have been widely used in the field of autoimmune diseases and have proved decisive efficacy and relative safety. Data concerning their adverse effects has been lately describing central nervous system (CNS) demyelination process at escalating basis. Case Presentation. A 23-year-old male with autoimmune uveitis and a family history of multiple sclerosis (MS) developed two neurological attacks, after Adalimumab infusion, simultaneously with several cerebral lesions on magnetic resonance imaging (MRI). Hence the diagnosis of Adalimumab induced MS was suspected. Conclusion. This case is reported to tell physicians to be cautious when using anti-TNF-α in patients with family history of MS and to reconsider the risk of MS in patients with autoimmune diseases.
Collapse
|
27
|
Salehi Z, Doosti R, Beheshti M, Janzamin E, Sahraian MA, Izad M. Differential Frequency of CD8+ T Cell Subsets in Multiple Sclerosis Patients with Various Clinical Patterns. PLoS One 2016; 11:e0159565. [PMID: 27467597 PMCID: PMC4965085 DOI: 10.1371/journal.pone.0159565] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/04/2016] [Indexed: 12/05/2022] Open
Abstract
Recent evidence points to a pathogenic role for CD8+ cytotoxic T (Tc) cells in Multiple sclerosis (MS). Based on cytokine profile, Tc cells can be divided into different subsets: IFN-γ (Tc1), IL-4 (Tc2), IL-10 (Tc10), IL-17 (Tc17), IL-21 (Tc21), IL-22 (Tc22) and TNF-α producing cells. In this study we evaluated the frequency of Tc cell subsets and the serum level of Tc17 differentiation cytokines in MS patients with different clinical patterns. We analyzed Tc cell subsets percentage in peripheral blood of relapsing-remitting (RRMS) (n = 28), secondary-progressive (SPMS) (n = 10) and primary-progressive (PPMS) (n = 4) MS patients in comparison to healthy controls (n = 15) using flow cytometry. Serum level of TGF-β, IL-6 and IL-23 were measured by ELISA. We showed elevated levels of Tc1 and Tc17 cells in SPMS and RRMS patients in relapse phase, respectively (P = 0.04). Interestingly, the percentage of TNF-α producing CD8+ T cells in relapse and remission phase of RRMS and SPMS patients were higher than controls (P = 0.01, P = 0.004, P = 0.01, respectively) and Tc21 increased in remission phase of RRMS compared to SPMS (P = 0.03). We also found higher frequency of CD8+ IFN-γ+ TNF-α+ IL-17+ T cells in relapse phase of RRMS compared to remission phase, SPMS patients and controls (P = 0.01, P = 0.004 and P = 0.02, respectively). TGF- β increased in sera of RRMS patients in remission phase (P = 0.03) and SPMS (P = 0.05) compared to healthy subjects. Increased level of Tc17 and CD8+ IFN-γ+ TNF-α+ IL-17+ T cells in relapse phase highlights the critical role of IL-17 in RRMS pathogenesis.
Collapse
Affiliation(s)
- Zahra Salehi
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rozita Doosti
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Beheshti
- Pathophysiology laboratory, Sina hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Janzamin
- Flow Cytometry laboratory, Department of Stem Cell and Developmental Biology, Royan Institute, Tehran, Iran
| | - Mohammad Ali Sahraian
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail: (MI); (M-AS)
| | - Maryam Izad
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail: (MI); (M-AS)
| |
Collapse
|
28
|
Valentin-Torres A, Savarin C, Hinton DR, Phares TW, Bergmann CC, Stohlman SA. Sustained TNF production by central nervous system infiltrating macrophages promotes progressive autoimmune encephalomyelitis. J Neuroinflammation 2016; 13:46. [PMID: 26906225 PMCID: PMC4763407 DOI: 10.1186/s12974-016-0513-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/17/2016] [Indexed: 12/25/2022] Open
Abstract
Background Tumor necrosis factor (TNF) has pleiotropic functions during both the demyelinating autoimmune disease multiple sclerosis (MS) and its murine model experimental autoimmune encephalomyelitis (EAE). How TNF regulates disability during progressive disease remains unresolved. Using a progressive EAE model characterized by sustained TNF and increasing morbidity, this study evaluates the role of unregulated TNF in exacerbating central nervous system (CNS) pathology and inflammation. Methods Progressive MS was mimicked by myelin oligodendrocyte glycoprotein (MOG) peptide immunization of mice expressing a dominant negative IFN-γ receptor alpha chain under the human glial fibrillary acidic protein promoter (GFAPγR1∆). Diseased GFAPγR1∆ mice were treated with anti-TNF or control monoclonal antibody during acute disease to monitor therapeutic effects on sustained disability, demyelination, CNS inflammation, and blood brain barrier (BBB) permeability. Results TNF was specifically sustained in infiltrating macrophages. Anti-TNF treatment decreased established clinical disability and mortality rate within 7 days. Control of disease progression was associated with a decline in myelin loss and leukocyte infiltration, as well as macrophage activation. In addition to mitigating CNS inflammation, TNF neutralization restored BBB integrity and enhanced CNS anti-inflammatory responses. Conclusions Sustained TNF production by infiltrating macrophages associated with progressive EAE exacerbates disease severity by promoting inflammation and disruption of BBB integrity, thereby counteracting establishment of an anti-inflammatory environment required for disease remission.
Collapse
Affiliation(s)
- Alice Valentin-Torres
- Department of Neurosciences NC-30, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, 44195, USA.
| | - Carine Savarin
- Department of Neurosciences NC-30, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, 44195, USA.
| | - David R Hinton
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Timothy W Phares
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.
| | - Cornelia C Bergmann
- Department of Neurosciences NC-30, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, 44195, USA.
| | - Stephen A Stohlman
- Department of Neurosciences NC-30, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, 44195, USA.
| |
Collapse
|
29
|
Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases. Mediators Inflamm 2015; 2015:620581. [PMID: 26538832 PMCID: PMC4619970 DOI: 10.1155/2015/620581] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 12/11/2022] Open
Abstract
Neurodegeneration is a chronic progressive loss of neuronal cells leading to deterioration of central nervous system (CNS) functionality. It has been shown that neuroinflammation precedes neurodegeneration in various neurodegenerative diseases. Matrix metalloproteinases (MMPs), a protein family of zinc-containing endopeptidases, are essential in (neuro)inflammation and might be involved in neurodegeneration. Although MMPs are indispensable for physiological development and functioning of the organism, they are often referred to as double-edged swords due to their ability to also inflict substantial damage in various pathological conditions. MMP activity is strictly controlled, and its dysregulation leads to a variety of pathologies. Investigation of their potential use as therapeutic targets requires a better understanding of their contributions to the development of neurodegenerative diseases. Here, we review MMPs and their roles in neurodegenerative diseases: Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and multiple sclerosis (MS). We also discuss MMP inhibition as a possible therapeutic strategy to treat neurodegenerative diseases.
Collapse
|
30
|
TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects. Neuroscience 2015; 302:2-22. [DOI: 10.1016/j.neuroscience.2015.06.038] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 12/15/2022]
|
31
|
Eckhardt J, Döbbeler M, König C, Kuczera K, Kuhnt C, Ostalecki C, Zinser E, Mak TW, Steinkasserer A, Lechmann M. Thymic stromal lymphopoietin deficiency attenuates experimental autoimmune encephalomyelitis. Clin Exp Immunol 2015; 181:51-64. [PMID: 25753260 DOI: 10.1111/cei.12621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 12/19/2022] Open
Abstract
In the present study we examined the role of thymic stromal lymphopoietin (TSLP) in experimental autoimmune encephalomyelitis (EAE). Here, we report that TSLP knock-out (KO) mice display a delayed onset of disease and an attenuated form of EAE. This delayed onset was accompanied by a reduced number of encephalitogenic T helper type 1 (Th1) cells in the central nervous system (CNS) of TSLP KO mice. In addition, CD4(+) and CD8(+) T cells from CNS of TSLP KO mice show a reduced activation status in comparison to wild-type mice. It is noteworthy that we could also show that lymph node cells from TSLP KO mice expanded less efficiently and that interleukin (IL)-6-, interferon (IFN)-γ and tumour necrosis factor (TNF)-α levels were reduced. Furthermore, CD3(+) T cells isolated in the preclinical phase from myelin oligodendrocyte glycoprotein peptide 35-55 (MOG(35-55))-immunized TSLP KO mice showed a reduced response after secondary exposure to MOG(35-55), indicating that differentiation of naive T cells into MOG(35-55)-specific effector and memory T cells was impaired in KO mice. The addition of recombinant TSLP enhanced T cell proliferation during MOG(35-55) restimulation, showing that T cells also respond directly to TSLP. In summary, these data demonstrate that expression of, and immune activation by, TSLP contributes significantly to the immunopathology of EAE.
Collapse
Affiliation(s)
- J Eckhardt
- Department of Immune Modulation at the Department of Dermatology
| | - M Döbbeler
- Department of Immune Modulation at the Department of Dermatology
| | - C König
- Department of Immune Modulation at the Department of Dermatology
| | - K Kuczera
- Department of Immune Modulation at the Department of Dermatology
| | - C Kuhnt
- Department of Immune Modulation at the Department of Dermatology
| | - C Ostalecki
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - E Zinser
- Department of Immune Modulation at the Department of Dermatology
| | - T W Mak
- The Campbell Family Institute for Breast Cancer Research at Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | - A Steinkasserer
- Department of Immune Modulation at the Department of Dermatology
| | - M Lechmann
- Department of Immune Modulation at the Department of Dermatology
| |
Collapse
|
32
|
Ramaglia V, Jackson SJ, Hughes TR, Neal JW, Baker D, Morgan BP. Complement activation and expression during chronic relapsing experimental autoimmune encephalomyelitis in the Biozzi ABH mouse. Clin Exp Immunol 2015; 180:432-41. [PMID: 25619542 DOI: 10.1111/cei.12595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 12/29/2022] Open
Abstract
Chronic relapsing experimental autoimmune encephalomyelitis (crEAE) in mice recapitulates many of the clinical and histopathological features of human multiple sclerosis (MS), making it a preferred model for the disease. In both, adaptive immunity and anti-myelin T cells responses are thought to be important, while in MS a role for innate immunity and complement has emerged. Here we sought to test whether complement is activated in crEAE and important for disease. Disease was induced in Biozzi ABH mice that were terminated at different stages of the disease to assess complement activation and local complement expression in the central nervous system. Complement activation products were abundant in all spinal cord areas examined in acute disease during relapse and in the progressive phase, but were absent in early disease remission, despite significant residual clinical disease. Local expression of C1q and C3 was increased at all stages of disease, while C9 expression was increased only in acute disease; expression of the complement regulators CD55, complement receptor 1-related gene/protein y (Crry) and CD59a was reduced at all stages of the disease compared to naive controls. These data show that complement is activated in the central nervous system in the model and suggest that it is a suitable candidate for exploring whether anti-complement agents might be of benefit in MS.
Collapse
Affiliation(s)
- V Ramaglia
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - S J Jackson
- Neuroinflammation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - T R Hughes
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - J W Neal
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - D Baker
- Neuroinflammation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - B P Morgan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
33
|
Shinoda K, Sun X, Oyamada A, Yamada H, Muta H, Podack ER, Kira JI, Yoshikai Y. CD30 ligand is a new therapeutic target for central nervous system autoimmunity. J Autoimmun 2014; 57:14-23. [PMID: 25533628 DOI: 10.1016/j.jaut.2014.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/02/2014] [Accepted: 11/26/2014] [Indexed: 01/13/2023]
Abstract
The CD30 ligand (CD30L)/CD30 axis plays a critical role in Th1 and Th17 cell differentiation. However, the role in the pathogenesis of central nervous system autoimmunity remains unknown. Here we show the resistance for experimental autoimmune encephalomyelitis (EAE) with markedly reduced induction of antigen-specific Th1 and Th17 cells in CD30L knockout mice. Bone marrow chimera experiments indicated that CD30L on bone marrow-derived cells were critical for the development of EAE and that CD30L reverse signaling in CD4 T cells was dispensable for the pathogenic Th17 cell differentiation at the induction phase. Adoptive transfer experiment revealed an additional role for CD30L in the environment at the effector phase. In vivo neutralization of CD30L by soluble murine CD30-Immunoglobulin fusion protein before disease onset or even after disease onset significantly ameliorated the clinical symptoms. These results indicate that CD30L/CD30 signaling is critically involved in antigen-specific CD4 T cell responses at both the induction and effector phase, thus could be a new target molecule for the treatment of central nervous system autoimmunity.
Collapse
Affiliation(s)
- Koji Shinoda
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Xun Sun
- Department of Immunology, China Medical University, Shenyang 110001, China
| | - Akiko Oyamada
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hisakata Yamada
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiromi Muta
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Eckhard R Podack
- Department of Microbiology and Immunology, University of Miami, Miami, FL 33124, USA
| | - Jun-ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
34
|
Baker D, Amor S. Experimental autoimmune encephalomyelitis is a good model of multiple sclerosis if used wisely. Mult Scler Relat Disord 2014; 3:555-64. [PMID: 26265267 DOI: 10.1016/j.msard.2014.05.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/01/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023]
Abstract
Although multiple sclerosis is a uniquely human disease, many pathological features can be induced in experimental autoimmune encephalomyelitis (EAE) models following induction of central nervous system-directed autoimmunity. Whilst it is an imperfect set of models, EAE can be used to identify pathogenic mechanisms and therapeutics. However, the failure to translate many treatments from EAE into human benefit has led some to question the validity of the EAE model. Whilst differences in biology between humans and other species may account for this, it is suggested here that the failure to translate may be considerably influenced by human activity. Basic science contributes to failings in aspects of experimental design and over-interpretation of results and lack of transparency and reproducibility of the studies. Importantly issues in trial design by neurologists and other actions of the pharmaceutical industry destine therapeutics to failure and terminate basic science projects. However animal, particularly mechanism-orientated, studies have increasingly identified useful treatments and provided mechanistic ideas on which most hypothesis-led clinical research is based. Without EAE and other animal studies, clinical investigations will continue to be "look-see" exercises, which will most likely provide more misses than hits and will fail the people with MS that they aim to serve.
Collapse
Affiliation(s)
- David Baker
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom.
| | - Sandra Amor
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Pathology Department, VU Medical Centre, Free University of Amsterdam, The Netherlands
| |
Collapse
|
35
|
Chang KC, Ponder J, Labarbera DV, Petrash JM. Aldose reductase inhibition prevents endotoxin-induced inflammatory responses in retinal microglia. Invest Ophthalmol Vis Sci 2014; 55:2853-61. [PMID: 24677107 DOI: 10.1167/iovs.13-13487] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Retinal microglia become activated in diabetes and produce pro-inflammatory molecules associated with changes in retinal vasculature and increased apoptosis of retinal neurons and glial cells. We sought to determine if the action of aldose reductase (AR), an enzyme linked to the pathogenesis of diabetic retinopathy, contributes to activation of microglial cells. METHODS Involvement of AR in the activation process was studied using primary cultures of retinal microglia (RMG) isolated from wild-type and AR-null mice, or in mouse macrophage cultures treated with either AR inhibitors or small interfering RNA (siRNA) directed to AR. Inflammatory cytokines were measured by ELISA. Cell migration was measured using a transwell assay. Gelatin zymography was used to detect active matrix metalloproteinase (MMP)-9, while RMG-induced apoptosis of adult retinal pigment epithelium (ARPE-19) cells was studied in a cell coculture system. RESULTS Aldose reductase inhibition or genetic deficiency substantially reduced lipopolysacharide (LPS)-induced cytokine secretion from macrophages and RMG. Aldose reductase inhibition or deficiency also reduced the activation of MMP-9 and attenuated LPS-induced cell migration. Additionally, blockade of AR by sorbinil or through genetic means caused a reduction in the ability of activated RMG to induce apoptosis of ARPE-19 cells. CONCLUSIONS These results demonstrate that the action of AR contributes to the activation of RMG. Inhibition of AR may be a therapeutic strategy to reduce inflammation associated with activation of RMG in disease.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
| | | | | | | |
Collapse
|
36
|
Levels of soluble TNF-RII are increased in serum of patients with primary progressive multiple sclerosis. J Neuroimmunol 2014; 271:56-9. [PMID: 24794503 DOI: 10.1016/j.jneuroim.2014.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 11/20/2022]
Abstract
The levels of soluble tumor necrosis factor receptor II (sTNF-RII) were determined in serum of 161 untreated multiple sclerosis (MS) patients with different clinical forms and 46 healthy controls (HC) by ELISA. Our results show that serum sTNF-RII levels were significantly increased in patients with primary progressive MS (PPMS) compared with other MS forms and HC. Although sTNF-RII levels significantly increased over a 2-year follow-up period in a subgroup of PPMS patients, they could not discriminate between patients with and without disability progression. Additional studies are needed to further implicate sTNF-RII in patients with PPMS.
Collapse
|
37
|
Dendrou CA, Bell JI, Fugger L. A clinical conundrum: the detrimental effect of TNF antagonists in multiple sclerosis. Pharmacogenomics 2014; 14:1397-404. [PMID: 24024893 DOI: 10.2217/pgs.13.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although TNF antagonists are efficacious in treating a range of autoimmune conditions, they exacerbate or even promote multiple sclerosis (MS)--a clinical finding that has been a conundrum for over a decade and has been a source of debate regarding the role of these drugs and of TNF signaling in the development of demyelinating disease. Recent work investigating the functional consequences of MS-associated genetic variation in the gene encoding TNFR1 has demonstrated that genetic risk drives the production of a novel, endogenous TNF antagonist. This mirrors the clinical experience with the drugs and indicates that the net effect of TNF function in MS development is a protective one, warranting a re-evaluation of the studies that have contributed to our understanding of TNF signaling in inflammation, immunoregulation and neuroprotection, to determine how future research can be directed towards targeting this pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Calliope A Dendrou
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | | | | |
Collapse
|
38
|
The role of lymphotoxin signaling in the development of autoimmune pancreatitis and associated secondary extra-pancreatic pathologies. Cytokine Growth Factor Rev 2014; 25:125-37. [DOI: 10.1016/j.cytogfr.2014.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 12/23/2013] [Accepted: 01/02/2014] [Indexed: 12/24/2022]
|
39
|
Williams SK, Maier O, Fischer R, Fairless R, Hochmeister S, Stojic A, Pick L, Haar D, Musiol S, Storch MK, Pfizenmaier K, Diem R. Antibody-mediated inhibition of TNFR1 attenuates disease in a mouse model of multiple sclerosis. PLoS One 2014; 9:e90117. [PMID: 24587232 PMCID: PMC3938650 DOI: 10.1371/journal.pone.0090117] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/28/2014] [Indexed: 12/02/2022] Open
Abstract
Tumour necrosis factor (TNF) is a proinflammatory cytokine that is known to regulate inflammation in a number of autoimmune diseases, including multiple sclerosis (MS). Although targeting of TNF in models of MS has been successful, the pathological role of TNF in MS remains unclear due to clinical trials where the non-selective inhibition of TNF resulted in exacerbated disease. Subsequent experiments have indicated that this may have resulted from the divergent effects of the two TNF receptors, TNFR1 and TNFR2. Here we show that the selective targeting of TNFR1 with an antagonistic antibody ameliorates symptoms of the most common animal model of MS, experimental autoimmune encephalomyelitis (EAE), when given following both a prophylactic and therapeutic treatment regime. Our results demonstrate that antagonistic TNFR1-specific antibodies may represent a therapeutic approach for the treatment of MS in the future.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Gene Expression
- Immunotherapy
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Targeted Therapy
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/therapy
- Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type II/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/genetics
Collapse
Affiliation(s)
- Sarah K. Williams
- Department of Neuro-oncology, University Clinic Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Olaf Maier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Richard Fairless
- Department of Neuro-oncology, University Clinic Heidelberg, Heidelberg, Germany
| | | | - Aleksandar Stojic
- Department of Neuro-oncology, University Clinic Heidelberg, Heidelberg, Germany
| | - Lara Pick
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany
| | - Doreen Haar
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany
| | - Sylvia Musiol
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany
| | - Maria K. Storch
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Ricarda Diem
- Department of Neuro-oncology, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
40
|
Batoulis H, Recks MS, Holland FO, Thomalla F, Williams RO, Kuerten S. Blockade of tumour necrosis factor-α in experimental autoimmune encephalomyelitis reveals differential effects on the antigen-specific immune response and central nervous system histopathology. Clin Exp Immunol 2014; 175:41-8. [PMID: 24111507 DOI: 10.1111/cei.12209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2013] [Indexed: 12/22/2022] Open
Abstract
In various autoimmune diseases, anti-tumour necrosis factor (TNF)-α treatment has been shown to reduce both clinical disease severity and T helper type 1 (Th1)1/Th17 responses. In experimental autoimmune encephalomyelitis (EAE), however, the role of TNF-α has remained unclear. Here, C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 and treated with anti-TNF-α, control antibody or vehicle. The clinical disease course, incidence and severity were assessed. On day 20 after immunization the antigen-specific Th1/Th17 response was evaluated by enzyme-linked immunospot (ELISPOT) in spleen and central nervous system (CNS). Also, the extent of spinal cord histopathology was analysed on semi- and ultrathin sections. Our results demonstrate that anti-TNF-α treatment reduced the incidence and delayed the onset of EAE, but had no effect on disease severity once EAE had been established. Whereas anti-TNF-α treatment induced an increase in splenic Th1/Th17 responses, there was no effect on the number of antigen-specific Th1/Th17 cells in the spinal cord. Accordingly, the degree of CNS histopathology was comparable in control and anti-TNF-α-treated mice. In conclusion, while the anti-TNF-α treatment had neither immunosuppressive effects on the Th1/Th17 response in the CNS nor histoprotective properties in EAE, it enhanced the myelin-specific T cell response in the immune periphery.
Collapse
Affiliation(s)
- H Batoulis
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Baker D, Lidster K, Sottomayor A, Amor S. Two years later: journals are not yet enforcing the ARRIVE guidelines on reporting standards for pre-clinical animal studies. PLoS Biol 2014; 12:e1001756. [PMID: 24409096 PMCID: PMC3883646 DOI: 10.1371/journal.pbio.1001756] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
There is growing concern that poor experimental design and lack of transparent reporting contribute to the frequent failure of pre-clinical animal studies to translate into treatments for human disease. In 2010, the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines were introduced to help improve reporting standards. They were published in PLOS Biology and endorsed by funding agencies and publishers and their journals, including PLOS, Nature research journals, and other top-tier journals. Yet our analysis of papers published in PLOS and Nature journals indicates that there has been very little improvement in reporting standards since then. This suggests that authors, referees, and editors generally are ignoring guidelines, and the editorial endorsement is yet to be effectively implemented.
Collapse
Affiliation(s)
- David Baker
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Katie Lidster
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- * E-mail:
| | - Ana Sottomayor
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Escola de Ciências da Saúde, Universidade do Minho, Braga, Portugal
| | - Sandra Amor
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Pathology Department, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Hanieh H, Alzahrani A. MicroRNA-132 suppresses autoimmune encephalomyelitis by inducing cholinergic anti-inflammation: a new Ahr-based exploration. Eur J Immunol 2013; 43:2771-82. [PMID: 23780851 DOI: 10.1002/eji.201343486] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/03/2013] [Accepted: 06/14/2013] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) are a small group of RNAs that are emerging as a new avenue by which autoimmune diseases may be modulated. Accumulating evidence shows that miRNAs are involved in the pathogenesis of MS; however, the interaction of miRNAs with environmentally responsive transcription factors that play prominent roles in MS is unexplored. The activation of aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alleviates inflammation in experimental autoimmune encephalomyelitis (EAE), the best available model of MS. Therefore, we predicted that TCDD could attenuate EAE by inducing miRNA(s) targeting inflammatory mediators. Here, we show that TCDD induces cholinergic anti-inflammation in EAE mice by upregulating acetylcholinesterase-targeting miR-132. The expression of miR-132 was downregulated in CD4⁺ cells and associated with EAE severity, while TCDD treatment attenuated EAE by inducing the miR-132/acetylcholinesterase module. Silencing miR-132 in vivo abolished TCDD-induced cholinergic anti-inflammation and aggravated EAE. Overexpression of miR-132 in encephalitogenic CD4⁺ cells decreased IL-17 and IFN-γ and suppressed T-cell proliferation. In conclusion, our findings identify a new miRNA-based mechanism through which miR-132 mediates TCDD-induced EAE attenuation, suggesting that miR-132 could be a promising therapeutic target for anti-inflammatory treatment of MS.
Collapse
Affiliation(s)
- Hamza Hanieh
- Biological Sciences Department, King Faisal University, Ahsaa, Saudi Arabia
| | | |
Collapse
|
43
|
Di Penta A, Chiba A, Alloza I, Wyssenbach A, Yamamura T, Villoslada P, Miyake S, Vandenbroeck K. A trifluoromethyl analogue of celecoxib exerts beneficial effects in neuroinflammation. PLoS One 2013; 8:e83119. [PMID: 24349442 PMCID: PMC3859644 DOI: 10.1371/journal.pone.0083119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/31/2013] [Indexed: 12/31/2022] Open
Abstract
Celecoxib is a selective cyclooxygenase-2 (COX2) inhibitor. We have previously shown that celecoxib inhibits experimental autoimmune encephalomyelitis (EAE) in COX-2-deficient mice, suggestive for a mode of action involving COX2-independent pathways. In the present study, we tested the effect of a trifluoromethyl analogue of celecoxib (TFM-C) with 205-fold lower COX-2 inhibitory activity in two models of neuroinflammation, i.e. cerebellar organotypic cultures challenged with LPS and the EAE mouse model for multiple sclerosis. TFM-C inhibited secretion of IL-1β, IL-12 and IL-17, enhanced that of TNF-α and RANTES, reduced neuronal axonal damage and protected from oxidative stress in the organotypic model. TFM-C blocked TNF-α release in microglial cells through a process involving intracellular retention, but induced TNF-α secretion in primary astrocyte cultures. Finally, we demonstrate that TFM-C and celecoxib ameliorated EAE with equal potency. This coincided with reduced secretion of IL-17 and IFN-γ by MOG-reactive T-cells and of IL-23 and inflammatory cytokines by bone marrow-derived dendritic cells. Our study reveals that non-coxib analogues of celecoxib may have translational value in the treatment of neuro-inflammatory conditions.
Collapse
Affiliation(s)
- Alessandra Di Penta
- Neurogenomiks Laboratory, University of Basque Country (UPV/ EHU), Zamudio, Spain
- Achucarro Basque Center for Neuroscience, Zamudio, Spain
| | - Asako Chiba
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Iraide Alloza
- Neurogenomiks Laboratory, University of Basque Country (UPV/ EHU), Zamudio, Spain
- Achucarro Basque Center for Neuroscience, Zamudio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ane Wyssenbach
- Neurotek Laboratory, University of Basque Country (UPV/EHU), Zamudio, Spain
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Pablo Villoslada
- Center of Neuroimmunology, Institute of Biomedical Research August Pi Sunyer (IDIBAPS) – Hospital Clinic of Barcelona, Barcelona, Spain
| | - Sachiko Miyake
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koen Vandenbroeck
- Neurogenomiks Laboratory, University of Basque Country (UPV/ EHU), Zamudio, Spain
- Achucarro Basque Center for Neuroscience, Zamudio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- * E-mail:
| |
Collapse
|
44
|
Peripheral elevation of TNF-α leads to early synaptic abnormalities in the mouse somatosensory cortex in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2013; 110:10306-11. [PMID: 23733958 DOI: 10.1073/pnas.1222895110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sensory abnormalities such as numbness and paresthesias are often the earliest symptoms in neuroinflammatory diseases including multiple sclerosis. The increased production of various cytokines occurs in the early stages of neuroinflammation and could have detrimental effects on the central nervous system, thereby contributing to sensory and cognitive deficits. However, it remains unknown whether and when elevation of cytokines causes changes in brain structure and function under inflammatory conditions. To address this question, we used a mouse model for experimental autoimmune encephalomyelitis (EAE) to examine the effect of inflammation and cytokine elevation on synaptic connections in the primary somatosensory cortex. Using in vivo two-photon microscopy, we found that the elimination and formation rates of dendritic spines and axonal boutons increased within 7 d of EAE induction--several days before the onset of paralysis--and continued to rise during the course of the disease. This synaptic instability occurred before T-cell infiltration and microglial activation in the central nervous system and was in conjunction with peripheral, but not central, production of TNF-α. Peripheral administration of a soluble TNF inhibitor prevented abnormal turnover of dendritic spines and axonal boutons in presymptomatic EAE mice. These findings indicate that peripheral production of TNF-α is a key mediator of synaptic instability in the primary somatosensory cortex and may contribute to sensory and cognitive deficits seen in autoimmune diseases.
Collapse
|
45
|
McPherson RC, Anderton SM. Adaptive immune responses in CNS autoimmune disease: mechanisms and therapeutic opportunities. J Neuroimmune Pharmacol 2013; 8:774-90. [PMID: 23568718 DOI: 10.1007/s11481-013-9453-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/13/2013] [Indexed: 01/20/2023]
Abstract
The processes underlying autoimmune CNS inflammation are complex, but key roles for autoimmune lymphocytes seem inevitable, based on clinical investigations in multiple sclerosis (MS) and related diseases such as neuromyelitis optica, together with the known pathogenic activity of T cells in experimental autoimmune encephalomyelitis (EAE) models. Despite intense investigation, the details of etiopathology in these diseases have been elusive. Here we describe recent advances in the rodent models that begin to allow a map of pathogenic and protective immunity to be drawn. This map might illuminate previous successful and unsuccessful therapeutic strategies targeting particular pathways, whilst also providing better opportunities for the future, leading to tailored intervention based on understanding the quality of each individual's autoimmune response.
Collapse
Affiliation(s)
- Rhoanne C McPherson
- Centre for Inflammation Research and Centre for Multiple Sclerosis Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | |
Collapse
|
46
|
Ristori G, Annibali V, Salvetti M. The mood–immunity relationship in multiple sclerosis. Exp Neurol 2013; 241:34-7. [DOI: 10.1016/j.expneurol.2012.11.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 11/29/2012] [Indexed: 11/28/2022]
|
47
|
Gregory AP, Dendrou CA, Attfield KE, Haghikia A, Xifara DK, Butter F, Poschmann G, Kaur G, Lambert L, Leach OA, Prömel S, Punwani D, Felce JH, Davis SJ, Gold R, Nielsen FC, Siegel RM, Mann M, Bell JI, McVean G, Fugger L. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature 2012; 488:508-511. [PMID: 22801493 PMCID: PMC4268493 DOI: 10.1038/nature11307] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 06/10/2012] [Indexed: 01/08/2023]
Abstract
Although there has been much success in identifying genetic variants associated with common diseases using genome-wide association studies (GWAS), it has been difficult to demonstrate which variants are causal and what role they have in disease. Moreover, the modest contribution that these variants make to disease risk has raised questions regarding their medical relevance. Here we have investigated a single nucleotide polymorphism (SNP) in the TNFRSF1A gene, that encodes tumour necrosis factor receptor 1 (TNFR1), which was discovered through GWAS to be associated with multiple sclerosis (MS), but not with other autoimmune conditions such as rheumatoid arthritis, psoriasis and Crohn’s disease. By analysing MS GWAS data in conjunction with the 1000 Genomes Project data we provide genetic evidence that strongly implicates this SNP, rs1800693, as the causal variant in the TNFRSF1A region. We further substantiate this through functional studies showing that the MS risk allele directs expression of a novel, soluble form of TNFR1 that can block TNF. Importantly, TNF-blocking drugs can promote onset or exacerbation of MS, but they have proven highly efficacious in the treatment of autoimmune diseases for which there is no association with rs1800693. This indicates that the clinical experience with these drugs parallels the disease association of rs1800693, and that the MS-associated TNFR1 variant mimics the effect of TNF-blocking drugs. Hence, our study demonstrates that clinical practice can be informed by comparing GWAS across common autoimmune diseases and by investigating the functional consequences of the disease-associated genetic variation.
Collapse
Affiliation(s)
- Adam P. Gregory
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Calliope A. Dendrou
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Kathrine E. Attfield
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Aiden Haghikia
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
- Department of Neurology, St. Josef-Hospital Bochum, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Dionysia K. Xifara
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
| | - Falk Butter
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Gurman Kaur
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Lydia Lambert
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Oliver A. Leach
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Simone Prömel
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Divya Punwani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - James H. Felce
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Simon J. Davis
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital Bochum, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Finn C. Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Richard M. Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases/NIH, 10 Center Drive, Bethesda, MD 20892-1930, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - John I. Bell
- Richard Doll Building, Roosevelt Drive, University of Oxford, Oxford OX3 7DG, UK
| | - Gil McVean
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
| | - Lars Fugger
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
- Clinical Institute, Aarhus University Hospital, Skejby Sygehus, 8200 N Aarhus, Denmark
| |
Collapse
|
48
|
Demyelinating Disease in Patients Treated with TNF Antagonists in Rheumatology: Data from BIOBADASER, a Pharmacovigilance Database, and a Systematic Review. Semin Arthritis Rheum 2011; 41:524-33. [DOI: 10.1016/j.semarthrit.2011.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Taoufik E, Tseveleki V, Chu SY, Tselios T, Karin M, Lassmann H, Szymkowski DE, Probert L. Transmembrane tumour necrosis factor is neuroprotective and regulates experimental autoimmune encephalomyelitis via neuronal nuclear factor-kappaB. ACTA ACUST UNITED AC 2011; 134:2722-35. [PMID: 21908876 DOI: 10.1093/brain/awr203] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumour necrosis factor mediates chronic inflammatory pathologies including those affecting the central nervous system, but non-selective tumour necrosis factor inhibitors exacerbate multiple sclerosis. In addition, TNF receptor SF1A, which encodes one of the tumour necrosis factor receptors, has recently been identified as a multiple sclerosis susceptibility locus in genome-wide association studies in large patient cohorts. These clinical data have emphasized the need for a better understanding of the beneficial effects of tumour necrosis factor during central nervous system inflammation. In this study, we present evidence that the soluble and transmembrane forms of tumour necrosis factor exert opposing deleterious and beneficial effects, respectively, in a multiple sclerosis model. We compared the effects, in experimental autoimmune encephalomyelitis, of selectively inhibiting soluble tumour necrosis factor, and of both soluble and transmembrane tumour necrosis factor. Blocking the action of soluble tumour necrosis factor, but not of soluble tumour necrosis factor and transmembrane tumour necrosis factor, protected mice against the clinical symptoms of experimental autoimmune encephalomyelitis. Therapeutic benefit was independent of changes in antigen-specific immune responses and focal inflammatory spinal cord lesions, but was associated with reduced overall central nervous system immunoreactivity, increased expression of neuroprotective molecules, and was dependent upon the activity of neuronal nuclear factor-κB, a downstream mediator of neuroprotective tumour necrosis factor/tumour necrosis factor receptor signalling, because mice lacking IκB kinase β in glutamatergic neurons were not protected by soluble tumour necrosis factor blockade. Furthermore, blocking the action of soluble tumour necrosis factor, but not of soluble tumour necrosis factor and transmembrane tumour necrosis factor, protected neurons in astrocyte-neuron co-cultures against glucose deprivation, an in vitro neurodegeneration model relevant for multiple sclerosis, and this was dependent upon contact between the two cell types. Our results show that soluble tumour necrosis factor promotes central nervous system inflammation, while transmembrane tumour necrosis factor is neuroprotective, and suggest that selective inhibition of soluble tumour necrosis factor may provide a new way forward for the treatment of multiple sclerosis and possibly other inflammatory central nervous system disorders.
Collapse
Affiliation(s)
- Era Taoufik
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 11521 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Brambilla R, Ashbaugh JJ, Magliozzi R, Dellarole A, Karmally S, Szymkowski DE, Bethea JR. Inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis and promotes axon preservation and remyelination. ACTA ACUST UNITED AC 2011; 134:2736-54. [PMID: 21908877 DOI: 10.1093/brain/awr199] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tumour necrosis factor is linked to the pathophysiology of various neurodegenerative disorders including multiple sclerosis. Tumour necrosis factor exists in two biologically active forms, soluble and transmembrane. Here we show that selective inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis. Treatment with XPro1595, a selective soluble tumour necrosis factor blocker, improves the clinical outcome, whereas non-selective inhibition of both forms of tumour necrosis factor with etanercept does not result in protection. The therapeutic effect of XPro1595 is associated with axon preservation and improved myelin compaction, paralleled by increased expression of axon-specific molecules (e.g. neurofilament-H) and reduced expression of non-phosphorylated neurofilament-H which is associated with axon damage. XPro1595-treated mice show significant remyelination accompanied by elevated expression of myelin-specific genes and increased numbers of oligodendrocyte precursors. Immunohistochemical characterization of tumour necrosis factor receptors in the spinal cord following experimental autoimmune encephalomyelitis shows tumour necrosis factor receptor 1 expression in neurons, oligodendrocytes and astrocytes, while tumour necrosis factor receptor 2 is localized in oligodendrocytes, oligodendrocyte precursors, astrocytes and macrophages/microglia. Importantly, a similar pattern of expression is found in post-mortem spinal cord of patients affected by progressive multiple sclerosis, suggesting that pharmacological modulation of tumour necrosis factor receptor signalling may represent an important target in affecting not only the course of mouse experimental autoimmune encephalomyelitis but human multiple sclerosis as well. Collectively, our data demonstrate that selective inhibition of soluble tumour necrosis factor improves recovery following experimental autoimmune encephalomyelitis, and that signalling mediated by transmembrane tumour necrosis factor is essential for axon and myelin preservation as well as remyelination, opening the possibility of a new avenue of treatment for multiple sclerosis.
Collapse
Affiliation(s)
- Roberta Brambilla
- The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | | | | | | | | | | | |
Collapse
|