1
|
Bojarska J, Wolf WM. Short Peptides as Powerful Arsenal for Smart Fighting Cancer. Cancers (Basel) 2024; 16:3254. [PMID: 39409876 PMCID: PMC11476321 DOI: 10.3390/cancers16193254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Short peptides have been coming around as a strong weapon in the fight against cancer on all fronts-in immuno-, chemo-, and radiotherapy, and also in combinatorial approaches. Moreover, short peptides have relevance in cancer imaging or 3D culture. Thanks to the natural 'smart' nature of short peptides, their unique structural features, as well as recent progress in biotechnological and bioinformatics development, short peptides are playing an enormous role in evolving cutting-edge strategies. Self-assembling short peptides may create excellent structures to stimulate cytotoxic immune responses, which is essential for cancer immunotherapy. Short peptides can help establish versatile strategies with high biosafety and effectiveness. Supramolecular short peptide-based cancer vaccines entered clinical trials. Peptide assemblies can be platforms for the delivery of antigens, adjuvants, immune cells, and/or drugs. Short peptides have been unappreciated, especially in the vaccine aspect. Meanwhile, they still hide the undiscovered unlimited potential. Here, we provide a timely update on this highly active and fast-evolving field.
Collapse
Affiliation(s)
- Joanna Bojarska
- Chemistry Department, Institute of Inorganic and Ecological Chemistry, Łódź University of Technology, S. Żeromskiego Str. 116, 90-924 Łódź, Poland;
| | | |
Collapse
|
2
|
Han X, Gao Z, Cheng Y, Wu S, Chen J, Zhang W. A Therapeutic DNA Vaccine Targeting HPV16 E7 in Combination with Anti-PD-1/PD-L1 Enhanced Tumor Regression and Cytotoxic Immune Responses. Int J Mol Sci 2023; 24:15469. [PMID: 37895145 PMCID: PMC10607554 DOI: 10.3390/ijms242015469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Persistent infection of high-risk human papillomavirus (HPV) and the expression of E6 and E7 oncoproteins are the main causes of cervical cancer. Several prophylactic HPV vaccines are used in the clinic, but these vaccines have limited efficacy in patients already infected with HPV. Since HPV E7 is vital for tumor-specific immunity, developing a vaccine against HPV E7 is an attractive strategy for cervical cancer treatment. Here, we constructed an HPV16 E7 mutant that loses the ability to bind pRb while still eliciting a robust immune response. In order to build a therapeutic DNA vaccine, the E7 mutant was packaged in an adenovirus vector (Ad-E7) for efficient expression and enhanced immunogenicity of the vaccine. Our results showed that the Ad-E7 vaccine effectively inhibited tumor growth and increased the proportion of interferon-gamma (IFN-γ)-secreting CD8+ T cells in the spleen, and tumor-infiltrating lymphocytes in a mouse cervical cancer model was achieved by injecting with HPV16-E6/E7-expressing TC-1 cells subcutaneously. Combining the Ad-E7 vaccine with the PD-1/PD-L1 antibody blockade significantly improved the control of TC-1 tumors. Combination therapy elicited stronger cytotoxic T lymphocyte (CTL) responses, and IFN-γ secretion downregulated the proportion of Tregs and MDSCs significantly. The expressions of cancer-promoting factors, such as TNF-α, were also significantly down-regulated in the case of combination therapy. In addition, combination therapy inhibited the number of capillaries in tumor tissues and increased the thickness of the tumor capsule. Thus, Ad-E7 vaccination, in combination with an immune checkpoint blockade, may benefit patients with HPV16-associated cervical cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Weifang Zhang
- Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (X.H.); (Z.G.); (Y.C.); (S.W.); (J.C.)
| |
Collapse
|
3
|
Survivin (BIRC5) Peptide Vaccine in the 4T1 Murine Mammary Tumor Model: A Potential Neoadjuvant T Cell Immunotherapy for Triple Negative Breast Cancer: A Preliminary Study. Vaccines (Basel) 2023; 11:vaccines11030644. [PMID: 36992227 DOI: 10.3390/vaccines11030644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
A triple negative breast cancer model using the murine 4T1 tumor cell line was used to explore the efficacy of an adjuvanted survivin peptide microparticle vaccine using tumor growth as the outcome metric. We first performed tumor cell dose titration studies to determine a tumor cell dose that resulted in sufficient tumor takes but allowed multiple serial measurements of tumor volumes, yet with minimal morbidity/mortality within the study period. Later, in a second cohort of mice, the survivin peptide microparticle vaccine was administered via intraperitoneal injection at the study start with a second dose given 14 days later. An orthotopic injection of 4T1 cells into the mammary tissue was performed on the same day as the administration of the second vaccine dose. The mice were followed for up to 41 days with subcutaneous measurements of tumor volume made every 3–4 days. Vaccination with survivin peptides was associated with a peptide antigen-specific gamma interferon enzyme-linked immunosorbent spot response in the murine splenocyte population but was absent from the control microparticle group. At the end of the study, we found that vaccination with adjuvanted survivin peptide microparticles resulted in statistically significant slower primary tumor growth rates in BALB/c mice challenged with 4T1 cells relative to the control peptideless vaccination group. These studies suggest that T cell immunotherapy specifically targeting survivin might be an applicable neoadjuvant immunotherapy therapy for triple negative breast cancer. More preclinical studies and clinical trials are needed to explore this concept further.
Collapse
|
4
|
Da Silva DM, Martinez EA, Bogaert L, Kast WM. Investigation of the Optimal Prime Boost Spacing Regimen for a Cancer Therapeutic Vaccine Targeting Human Papillomavirus. Cancers (Basel) 2022; 14:4339. [PMID: 36077873 PMCID: PMC9454731 DOI: 10.3390/cancers14174339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Therapeutic vaccine studies should be designed to elicit durable, high magnitude, and efficacious T cell responses, all of which can be impacted by the choice of the vaccination schedule. Here, we compare different prime-boost intervals (PBI) in a human papillomavirus (HPV) model using a HPV16E7E6 Venezuelan equine encephalitis virus replicon particle (VRP) vaccination to address the optimal boosting schedule, quality of immune response, and overall in vivo efficacy. Six different vaccine regimens were tested with each group receiving booster vaccinations at different time intervals. Analysis of T-cell responses demonstrated a significant HPV16 E7 specific CD8+ T cell response with at minimum a one-week PBI between antigen re-exposure. Significant E7-specific in vivo cytotoxicity was also observed with longer PBIs. Additionally, longer PBIs led to an enhanced memory recall response to tumor challenge, which correlated with differential expansion of T cell memory subsets. Our findings imply that when using alphavirus vector platforms as a vaccination strategy, a one-week PBI is sufficient to induce high magnitude effector T cells with potent anti-tumor activity. However, longer PBIs lead to enhanced long-term protective anti-tumor immunity. These findings have implications for therapeutic vaccine clinical trials in which shorter intervals of prime-boost regimens may lead to suboptimal durable immune responses.
Collapse
Affiliation(s)
- Diane M. Da Silva
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Emma A. Martinez
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Lies Bogaert
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - W. Martin Kast
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA 90033, USA
- Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Sanami S, Rafieian-Kopaei M, Dehkordi KA, Pazoki-Toroudi H, Azadegan-Dehkordi F, Mobini GR, Alizadeh M, Nezhad MS, Ghasemi-Dehnoo M, Bagheri N. In silico design of a multi-epitope vaccine against HPV16/18. BMC Bioinformatics 2022; 23:311. [PMID: 35918631 PMCID: PMC9344258 DOI: 10.1186/s12859-022-04784-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cervical cancer is the fourth most common cancer affecting women and is caused by human Papillomavirus (HPV) infections that are sexually transmitted. There are currently commercially available prophylactic vaccines that have been shown to protect vaccinated individuals against HPV infections, however, these vaccines have no therapeutic effects for those who are previously infected with the virus. The current study's aim was to use immunoinformatics to develop a multi-epitope vaccine with therapeutic potential against cervical cancer. RESULTS In this study, T-cell epitopes from E5 and E7 proteins of HPV16/18 were predicted. These epitopes were evaluated and chosen based on their antigenicity, allergenicity, toxicity, and induction of IFN-γ production (only in helper T lymphocytes). Then, the selected epitopes were sequentially linked by appropriate linkers. In addition, a C-terminal fragment of Mycobacterium tuberculosis heat shock protein 70 (HSP70) was used as an adjuvant for the vaccine construct. The physicochemical parameters of the vaccine construct were acceptable. Furthermore, the vaccine was soluble, highly antigenic, and non-allergenic. The vaccine's 3D model was predicted, and the structural improvement after refinement was confirmed using the Ramachandran plot and ProSA-web. The vaccine's B-cell epitopes were predicted. Molecular docking analysis showed that the vaccine's refined 3D model had a strong interaction with the Toll-like receptor 4. The structural stability of the vaccine construct was confirmed by molecular dynamics simulation. Codon adaptation was performed in order to achieve efficient vaccine expression in Escherichia coli strain K12 (E. coli). Subsequently, in silico cloning of the multi-epitope vaccine was conducted into pET-28a ( +) expression vector. CONCLUSIONS According to the results of bioinformatics analyses, the multi-epitope vaccine is structurally stable, as well as a non-allergic and non-toxic antigen. However, in vitro and in vivo studies are needed to validate the vaccine's efficacy and safety. If satisfactory results are obtained from in vitro and in vivo studies, the vaccine designed in this study may be effective as a therapeutic vaccine against cervical cancer.
Collapse
Affiliation(s)
- Samira Sanami
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Korosh Ashrafi Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Gholam-Reza Mobini
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Muhammad Sadeqi Nezhad
- Department of Clinical Laboratory Science, Young Researchers and Elites Club, Gorgan Branch, Islamic Azad University, Gorgān, Iran
| | - Maryam Ghasemi-Dehnoo
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
6
|
Shamseddine AA, Burman B, Lee NY, Zamarin D, Riaz N. Tumor Immunity and Immunotherapy for HPV-Related Cancers. Cancer Discov 2021; 11:1896-1912. [PMID: 33990345 PMCID: PMC8338882 DOI: 10.1158/2159-8290.cd-20-1760] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Human papillomavirus (HPV) infection drives tumorigenesis in the majority of cervical, oropharyngeal, anal, and vulvar cancers. Genetic and epidemiologic evidence has highlighted the role of immunosuppression in the oncogenesis of HPV-related malignancies. Here we review how HPV modulates the immune microenvironment and subsequent therapeutic implications. We describe the landscape of immunotherapies for these cancers with a focus on findings from early-phase studies exploring antigen-specific treatments, and discuss future directions. Although responses across these studies have been modest to date, a deeper understanding of HPV-related tumor biology and immunology may prove instrumental for the development of more efficacious immunotherapeutic approaches. SIGNIFICANCE: HPV modulates the microenvironment to create a protumorigenic state of immune suppression and evasion. Our understanding of these mechanisms has led to the development of immunomodulatory treatments that have shown early clinical promise in patients with HPV-related malignancies. This review summarizes our current understanding of the interactions of HPV and its microenvironment and provides insight into the progress and challenges of developing immunotherapies for HPV-related malignancies.
Collapse
Affiliation(s)
- Achraf A Shamseddine
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bharat Burman
- Department of Medicine, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dmitriy Zamarin
- Department of Medicine, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
7
|
Kayyal M, Bolhassani A, Noormohammadi Z, Sadeghizadeh M. In Silico Design and Immunological Studies of Two Novel Multiepitope DNA-Based Vaccine Candidates Against High-Risk Human Papillomaviruses. Mol Biotechnol 2021; 63:1192-1222. [PMID: 34308516 DOI: 10.1007/s12033-021-00374-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
Human papillomaviruses (HPV)-16 and 18 are the most prevalent types associated with cervical cancer. HPV L1 and L2 capsid proteins and E7 oncoprotein play crucial roles in HPV-related diseases. Hence, these proteins were proposed as target antigens for preventive and therapeutic vaccines. In this study, two multiepitope DNA-based HPV vaccine candidates were designed using in silico analysis including the immunogenic and conserved epitopes of HPV16/18 L1, L2 and E7 proteins (the L1-L2-E7 fusion DNA), and of heat shock protein 70 (HSP70) linked to the L1-L2-E7 DNA construct (the HSP70-L1-L2-E7 fusion DNA). Next, the expression of the L1-L2-E7 and HSP70-L1-L2-E7 multiepitope DNA constructs was evaluated in a mammalian cell line. Finally, immunological responses and antitumor effects of the DNA constructs were investigated in C57BL/6 mice. Our data indicated high expression rates of the designed multiepitope L1-L2-E7 DNA (~ 56.16%) and HSP70-L1-L2-E7 DNA (~ 80.45%) constructs in vitro. The linkage of HSP70 epitopes to the L1-L2-E7 DNA construct significantly increased the gene expression. Moreover, the HSP70-L1-L2-E7 DNA construct could significantly increase immune responses toward Th1 response and CTL activity, and induce stronger antitumor effects in mouse model. Thus, the designed HSP70-L1-L2-E7 DNA construct represents promising results for development of HPV DNA vaccine candidates.
Collapse
Affiliation(s)
- Matin Kayyal
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Suo J, Yang Y, Che Y, Chen C, Lv X, Wang X. Anti-pulmonary metastases from cervical cancer responses induced by a human papillomavirus peptide vaccine adjuvanted with CpG-oligodeoxynucleotides in vivo. Int Immunopharmacol 2021; 90:107203. [PMID: 33234417 DOI: 10.1016/j.intimp.2020.107203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 01/25/2023]
Abstract
Metastasis, particularly hematogenous metastasis, is associated with poor prognosis in patients with cervical cancer. The lungs are the most common site for hematogenous metastasis of cervical cancer. The currently available therapeutic modalities, including surgery, radiotherapy, or chemotherapy do not provide satisfactory clinical outcome for patients with pulmonary metastases. Therefore, it is necessary to investigate an alternative efficacious treatment modality. Therapeutic vaccines may evoke tumor-specific immune responses in patients to attack tumor cells, representing an attractive treatment option for controlling metastatic tumors. Our previous study demonstrated that a single administration of a human papillomavirus 16 E7 peptide vaccine, adjuvanted with unmethylated CpG-oligodeoxynucleotides, induced the clearance of subcutaneous xenograft cervical cancer. In this study, we investigated the anti-metastases responses induced by this vaccine using a murine model of pulmonary metastases from cervical cancer. The results showed that subcutaneous administration of the vaccine inhibited the growth of pulmonary metastases, which may be attributed to the increased infiltration of CD4 + and CD8 + T cells, and decreased number of immunosuppressive cells (including myeloid-derived suppressive cells and tumor-associated macrophages) in the lungs. Meanwhile, the alteration in a panel of cytokines, chemokines, and matrix metalloproteinases induced by the vaccination may contribute to the re-modulation of the local suppressive environment and inhibition of pulmonary metastases. To the best of our knowledge, this is the first report on the efficacy of the vaccine formula against murine pulmonary metastases from cervical cancer.
Collapse
Affiliation(s)
- Jinguo Suo
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yang Yang
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yuxin Che
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Chunyan Chen
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xueying Lv
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xuelian Wang
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Woodham AW, Zeigler SH, Zeyang EL, Kolifrath SC, Cheloha RW, Rashidian M, Chaparro RJ, Seidel RD, Garforth SJ, Dearling JL, Mesyngier M, Duddempudi PK, Packard AB, Almo SC, Ploegh HL. In vivo detection of antigen-specific CD8 + T cells by immuno-positron emission tomography. Nat Methods 2020; 17:1025-1032. [PMID: 32929269 PMCID: PMC7541633 DOI: 10.1038/s41592-020-0934-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/23/2020] [Indexed: 12/27/2022]
Abstract
The immune system's ability to recognize peptides on major histocompatibility molecules contributes to the eradication of cancers and pathogens. Tracking these responses in vivo could help evaluate the efficacy of immune interventions and improve mechanistic understanding of immune responses. For this purpose, we employ synTacs, which are dimeric major histocompatibility molecule scaffolds of defined composition. SynTacs, when labeled with positron-emitting isotopes, can noninvasively image antigen-specific CD8+ T cells in vivo. Using radiolabeled synTacs loaded with the appropriate peptides, we imaged human papillomavirus-specific CD8+ T cells by positron emission tomography in mice bearing human papillomavirus-positive tumors, as well as influenza A virus-specific CD8+ T cells in the lungs of influenza A virus-infected mice. It is thus possible to visualize antigen-specific CD8+ T-cell populations in vivo, which may serve prognostic and diagnostic roles.
Collapse
Affiliation(s)
- Andrew W Woodham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stad H Zeigler
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ella L Zeyang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stephen C Kolifrath
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jason L Dearling
- Division of Nuclear Medicine, Department of Radiology, Children's Hospital Boston, Boston, MA, USA
| | - Maia Mesyngier
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Alan B Packard
- Nuclear Medicine and Molecular Imaging, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Peri SSS, Sabnani MK, Raza MU, Ghaffari S, Gimlin S, Wawro DD, Lee JS, Kim MJ, Weidanz J, Alexandrakis G. Detection of specific antibody-ligand interactions with a self-induced back-action actuated nanopore electrophoresis sensor. NANOTECHNOLOGY 2019; 31:085502. [PMID: 31675752 DOI: 10.1088/1361-6528/ab53a7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent advances in plasmonic nanopore technologies have enabled the use of concurrently acquired bimodal optical-electrical data for improved quantification of molecular interactions. This work presents the use of a new plasmonic nanosensor employing self-induced back-action (SIBA) for optical trapping to enable SIBA-actuated nanopore electrophoresis (SANE) for quantifying antibody-ligand interactions. T-cell receptor-like antibodies (TCRmAbs) engineered to target peptide-presenting major histocompatibility complex (pMHC) ligands, representing a model of target ligands presented on the surface of cancer cells, were used to test the SANE sensor's ability to identify specific antibody-ligand binding. Cancer-irrelevant TCRmAbs targeting the same pMHCs were also tested as a control. It was found that the sensor could provide bimodal molecular signatures that could differentiate between antibody, ligand and the complexes that they formed, as well as distinguish between specific and non-specific interactions. Furthermore, the results suggested an interesting phenomenon of increased antibody-ligand complex bound fraction detected by the SANE sensor compared to that expected for corresponding bulk solution concentrations. A possible physical mechanism and potential advantages for the sensor's ability to augment complex formation near its active sensing volume at concentrations lower than the free solution equilibrium binding constant (K D ) are discussed.
Collapse
Affiliation(s)
- Sai Santosh Sasank Peri
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jackaman C, Gardner JK, Tomay F, Spowart J, Crabb H, Dye DE, Fox S, Proksch S, Metharom P, Dhaliwal SS, Nelson DJ. CD8 + cytotoxic T cell responses to dominant tumor-associated antigens are profoundly weakened by aging yet subdominant responses retain functionality and expand in response to chemotherapy. Oncoimmunology 2019; 8:e1564452. [PMID: 30906657 PMCID: PMC6422383 DOI: 10.1080/2162402x.2018.1564452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/30/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Increasing life expectancy is associated with increased cancer incidence, yet the effect of cancer and anti-cancer treatment on elderly patients and their immune systems is not well understood. Declining T cell function with aging in response to infection and vaccination is well documented, however little is known about aged T cell responses to tumor antigens during cancer progression or how these responses are modulated by standard chemotherapy. We examined T cell responses to cancer in aged mice using AE17sOVA mesothelioma in which ovalbumin (OVA) becomes a 'spy' tumor antigen containing one dominant (SIINFEKL) and two subdominant (KVVRFDKL and NAIVFKGL) epitopes. Faster progressing tumors in elderly (22-24 months, cf. 60-70 human years) relative to young (2-3 months, human 15-18 years) mice were associated with increased pro-inflammatory cytokines and worsened cancer cachexia. Pentamer staining and an in-vivo cytotoxic T lymphocyte (CTL) assay showed that whilst elderly mice generated a greater number of CD8+ T cells recognizing all epitopes, they exhibited a profound loss of function in their ability to lyse targets expressing the dominant, but not subdominant, epitopes compared to young mice. Chemotherapy was less effective and more toxic in elderly mice however, similar to young mice, chemotherapy expanded CTLs recognizing at least one subdominant epitope in tumors and draining lymph nodes, yet treatment efficacy still required CD8+ T cells. Given the significant dysfunction associated with elderly CTLs recognizing dominant epitopes, our data suggest that responses to subdominant tumor epitopes may become important when elderly hosts with cancer are treated with chemotherapy.
Collapse
Affiliation(s)
- Connie Jackaman
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Joanne K Gardner
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Federica Tomay
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Joshua Spowart
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Hannah Crabb
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Danielle E Dye
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Simon Fox
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Stephen Proksch
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Pat Metharom
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Satvinder S Dhaliwal
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.,School of Public Health, Curtin University, Perth, Australia
| | - Delia J Nelson
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| |
Collapse
|
12
|
Massa S, Paolini F, Marino C, Franconi R, Venuti A. Bioproduction of a Therapeutic Vaccine Against Human Papillomavirus in Tomato Hairy Root Cultures. FRONTIERS IN PLANT SCIENCE 2019; 10:452. [PMID: 31031788 PMCID: PMC6470201 DOI: 10.3389/fpls.2019.00452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/26/2019] [Indexed: 05/17/2023]
Abstract
Human papillomavirus (HPV) tumor disease is a critical public health problem worldwide, especially in the developing countries. The recognized pathogenic function of E5, E6, and E7 oncoproteins offers the opportunity to devise therapeutic vaccines based on engineered recombinant proteins. The potential of plants to manufacture engineered compounds for pharmaceutical purposes, from small to complex protein molecules, allows the expression of HPV antigens and, possibly, the regulation of immune functions to develop very specific therapies as a reinforcement to available nonspecific therapies and preventive vaccination also in developed countries. Among plant-based expression formats, hairy root cultures are a robust platform combining the benefits of eukaryotic plant-based bioreactors, with those typical of cell cultures. In this work, to devise an experimental therapeutic vaccine against HPV, hairy root cultures were used to express a harmless form of the HPV type 16 E7 protein (E7*) fused to SAPKQ, a noncytotoxic form of the saporin protein from Saponaria officinalis, that we had shown to improve E7-specific cell-mediated responses as a fusion E7*-SAPKQ DNA vaccine. Hairy root clones expressing the E7*-SAPKQ candidate vaccine were obtained upon infection of leaf explants of Solanum lycopersicum using a recombinant plant expression vector. Yield was approximately 35.5 μg/g of fresh weight. Mouse immunization with vaccine-containing crude extracts was performed together with immunological and biological tests to investigate immune responses and anticancer activity, respectively. Animals were primed with either E7*-SAPKQ DNA-based vaccine or E7*-SAPKQ root extract-based vaccine and boosted with the same (homologous schedule) or with the other vaccine preparation (heterologous schedule) in the context of TC-1 experimental mouse model of HPV-associated tumor. All the formulations exhibited an immunological response associated to anticancer activity. In particular, DNA as prime and hairy root extract as boost demonstrated the highest efficacy. This work, based on the development of low-cost technologies, highlights the suitability of hairy root cultures as possible biofactories of therapeutic HPV vaccines and underlines the importance of the synergic combination of treatment modalities for future developments in this field.
Collapse
Affiliation(s)
- Silvia Massa
- Biotechnology Laboratory, Biotechnology and Agroindustry Division, Department of Sustainability, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Rome, Italy
- *Correspondence: Silvia Massa,
| | - Francesca Paolini
- Virology Laboratory, HPV-UNIT, Department of Research, Advanced Diagnostic and Technological Innovation (RIDAIT), Translational Research Functional Departmental Area, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - Carmela Marino
- Biomedical Technologies Laboratory, Health Technologies Division, Department of Sustainability, ENEA, Rome, Italy
| | - Rosella Franconi
- Biomedical Technologies Laboratory, Health Technologies Division, Department of Sustainability, ENEA, Rome, Italy
| | - Aldo Venuti
- Virology Laboratory, HPV-UNIT, Department of Research, Advanced Diagnostic and Technological Innovation (RIDAIT), Translational Research Functional Departmental Area, IRCSS Regina Elena National Cancer Institute, Rome, Italy
- Aldo Venuti,
| |
Collapse
|
13
|
Xiang SD, Wilson KL, Goubier A, Heyerick A, Plebanski M. Design of Peptide-Based Nanovaccines Targeting Leading Antigens From Gynecological Cancers to Induce HLA-A2.1 Restricted CD8 + T Cell Responses. Front Immunol 2018; 9:2968. [PMID: 30631324 PMCID: PMC6315164 DOI: 10.3389/fimmu.2018.02968] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/03/2018] [Indexed: 01/02/2023] Open
Abstract
Gynecological cancers are a leading cause of mortality in women. CD8+ T cell immunity largely correlates with enhanced survival, whereas inflammation is associated with poor prognosis. Previous studies have shown polystyrene nanoparticles (PSNPs) are biocompatible, do not induce inflammation and when used as vaccine carriers for model peptides induce CD8+ T cell responses. Herein we test the immunogenicity of 24 different peptides, from three leading vaccine target proteins in gynecological cancers: the E7 protein of human papilloma virus (HPV); Wilms Tumor antigen 1 (WT1) and survivin (SV), in PSNP conjugate vaccines. Of relevance to vaccine development was the finding that a minimal CD8+ T cell peptide epitope from HPV was not able to induce HLA-A2.1 specific CD8+ T cell responses in transgenic humanized mice using conventional adjuvants such as CpG, but was nevertheless able to generate strong immunity when delivered as part of a specific longer peptide conjugated to PSNPs vaccines. Conversely, in most cases, when the minimal CD8+ T cell epitopes were able to induce immune responses (with WT1 or SV super agonists) in CpG, they also induced responses when conjugated to PSNPs. In this case, extending the sequence around the CD8+ T cell epitope, using the natural protein context, or engineering linker sequences proposed to enhance antigen processing, had minimal effects in enhancing or changing the cross-reactivity pattern induced by the super agonists. Nanoparticle approaches, such as PSNPs, therefore may offer an alternative vaccination strategy when conventional adjuvants are unable to elicit the desired CD8+ T cell specificity. The findings herein also offer sequence specific insights into peptide vaccine design for nanoparticle-based vaccine carriers.
Collapse
Affiliation(s)
- Sue D Xiang
- Department of Immunology, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.,PX Biosolutions Pty Ltd., South Melbourne, VIC, Australia.,Ovarian Cancer Biomarker Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Kirsty L Wilson
- Department of Immunology, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anne Goubier
- PX Biosolutions Pty Ltd., South Melbourne, VIC, Australia
| | - Arne Heyerick
- PX Biosolutions Pty Ltd., South Melbourne, VIC, Australia
| | - Magdalena Plebanski
- Department of Immunology, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.,PX Biosolutions Pty Ltd., South Melbourne, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
14
|
Panahi HA, Bolhassani A, Javadi G, Noormohammadi Z. A comprehensive in silico analysis for identification of therapeutic epitopes in HPV16, 18, 31 and 45 oncoproteins. PLoS One 2018; 13:e0205933. [PMID: 30356257 PMCID: PMC6200245 DOI: 10.1371/journal.pone.0205933] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/11/2018] [Indexed: 11/25/2022] Open
Abstract
Human papillomaviruses (HPVs) are a group of circular double-stranded DNA viruses, showing severe tropism to mucosal tissues. A subset of HPVs, especially HPV16 and 18, are the primary etiological cause for several epithelial cell malignancies, causing about 5.2% of all cancers worldwide. Due to the high prevalence and mortality, HPV-associated cancers have remained as a significant health problem in human society, making an urgent need to develop an effective therapeutic vaccine against them. Achieving this goal is primarily dependent on the identification of efficient tumor-associated epitopes, inducing a robust cell-mediated immune response. Previous information has shown that E5, E6, and E7 early proteins are responsible for the induction and maintenance of HPV-associated cancers. Therefore, the prediction of major histocompatibility complex (MHC) class I T cell epitopes of HPV16, 18, 31 and 45 oncoproteins was targeted in this study. For this purpose, a two-step plan was designed to identify the most probable CD8+ T cell epitopes. In the first step, MHC-I and II binding, MHC-I processing, MHC-I population coverage and MHC-I immunogenicity prediction analyses, and in the second step, MHC-I and II protein-peptide docking, epitope conservation, and cross-reactivity with host antigens’ analyses were carried out successively by different tools. Finally, we introduced five probable CD8+ T cell epitopes for each oncoprotein of the HPV genotypes (60 epitopes in total), which obtained better scores by an integrated approach. These predicted epitopes are valuable candidates for in vitro or in vivo therapeutic vaccine studies against the HPV-associated cancers. Additionally, this two-step plan that each step includes several analyses to find appropriate epitopes provides a rational basis for DNA- or peptide-based vaccine development.
Collapse
Affiliation(s)
- Heidar Ali Panahi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: ,
| | - Gholamreza Javadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Woodham AW, Cheloha RW, Ling J, Rashidian M, Kolifrath SC, Mesyngier M, Duarte JN, Bader JM, Skeate JG, Da Silva DM, Kast WM, Ploegh HL. Nanobody-Antigen Conjugates Elicit HPV-Specific Antitumor Immune Responses. Cancer Immunol Res 2018; 6:870-880. [PMID: 29792298 DOI: 10.1158/2326-6066.cir-17-0661] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/19/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022]
Abstract
High-risk human papillomavirus-associated cancers express viral oncoproteins (e.g., E6 and E7) that induce and maintain the malignant phenotype. The viral origin of these proteins makes them attractive targets for development of a therapeutic vaccine. Camelid-derived single-domain antibody fragments (nanobodies or VHHs) that recognize cell surface proteins on antigen-presenting cells (APC) can serve as targeted delivery vehicles for antigens attached to them. Such VHHs were shown to induce CD4+ and CD8+ T-cell responses against model antigens conjugated to them via sortase, but antitumor responses had not yet been investigated. Here, we tested the ability of an anti-CD11b VHH (VHHCD11b) to target APCs and serve as the basis for a therapeutic vaccine to induce CD8+ T-cell responses against HPV+ tumors. Mice immunized with VHHCD11b conjugated to an H-2Db-restricted immunodominant E7 epitope (E749-57) had more E7-specific CD8+ T cells compared with those immunized with E749-57 peptide alone. These CD8+ T cells acted prophylactically and conferred protection against a subsequent challenge with HPV E7-expressing tumor cells. In a therapeutic setting, VHHCD11b-E749-57 vaccination resulted in greater numbers of CD8+ tumor-infiltrating lymphocytes compared with mice receiving E749-57 peptide alone in HPV+ tumor-bearing mice, as measured by in vivo noninvasive VHH-based immune-positron emission tomography (immunoPET), which correlated with tumor regression and survival outcome. Together, these results demonstrate that VHHs can serve as a therapeutic cancer vaccine platform for HPV-induced cancers. Cancer Immunol Res; 6(7); 870-80. ©2018 AACR.
Collapse
Affiliation(s)
- Andrew W Woodham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts. .,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Jingjing Ling
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Mohammad Rashidian
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Stephen C Kolifrath
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Maia Mesyngier
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Joao N Duarte
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Justin M Bader
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Joseph G Skeate
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Diane M Da Silva
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - W Martin Kast
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.,Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, California
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts.
| |
Collapse
|
16
|
Lei J, Wu Z, Jiang Z, Li J, Zong L, Chen X, Duan W, Xu Q, Zhang L, Han L, Ma Q, Wang Z, Zhang D. Pancreatic carcinoma-specific immunotherapy using novel tumor specific cytotoxic T cells. Oncotarget 2018; 7:83601-83610. [PMID: 27876704 PMCID: PMC5347791 DOI: 10.18632/oncotarget.13469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 09/24/2016] [Indexed: 01/13/2023] Open
Abstract
Pancreatic cancer represents one of the most lethal human cancers. Investigation of the effective targeting to the tumor cells is essential for both primary tumors and metastases. Tumor specific cytotoxic T lymphocytes (CTLs) have recently been considered to be the attractive vehicles for delivering therapeutic agents toward various tumor diseases. This study was to explore the distribution pattern of CTL carrying the lentiviral vectors with the characteristic of adenoviral E1 gene under the control of the cell activation-dependent CD40 ligand promoter (Lenti/hCD40L/E1AB). Following transduction with adenoviral particles containing chimeric type 5 and type 35 fiber proteins (Ad5/35-TRAIL), these CTLs produced infectious virus when exposed to SW1990 cells. We found that the novel CTL harboring Lenti/hCD40L/E1AB and Ad5/35-TRAIL inhibited pancreatic cancer cell growth and angiogenesis in vitro and in vivo. Furthermore, Ad5/35-TRAIL transduced CTL induced significant apoptosis in pancreatic carcinoma cell lines and upregulated IFN-gamma (IFN-γ) secretion of CTLs. Importantly, Ad5/35-TRAIL transduced CTLs had no inhibitory effect on normal cells. Thus, the novel CTLs may be safe and feasible for the development of gene therapy approaches to pancreatic carcinoma.
Collapse
Affiliation(s)
- Jianjun Lei
- Department of Hepatobiliary and Pancreas Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Zheng Wu
- Department of Hepatobiliary and Pancreas Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Zhengdong Jiang
- Department of Hepatobiliary and Pancreas Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Jiahui Li
- Department of Hepatobiliary and Pancreas Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Liang Zong
- Department of Hepatobiliary and Pancreas Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Xin Chen
- Department of Hepatobiliary and Pancreas Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Wanxing Duan
- Department of Hepatobiliary and Pancreas Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Qinhong Xu
- Department of Hepatobiliary and Pancreas Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Lun Zhang
- Department of Hepatobiliary and Pancreas Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Liang Han
- Department of Hepatobiliary and Pancreas Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Qingyong Ma
- Department of Hepatobiliary and Pancreas Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Zheng Wang
- Department of Hepatobiliary and Pancreas Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Dong Zhang
- Department of Hepatobiliary and Pancreas Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| |
Collapse
|
17
|
Memarnejadian A, Meilleur CE, Shaler CR, Khazaie K, Bennink JR, Schell TD, Haeryfar SMM. PD-1 Blockade Promotes Epitope Spreading in Anticancer CD8 + T Cell Responses by Preventing Fratricidal Death of Subdominant Clones To Relieve Immunodomination. THE JOURNAL OF IMMUNOLOGY 2017; 199:3348-3359. [PMID: 28939757 DOI: 10.4049/jimmunol.1700643] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/26/2017] [Indexed: 12/15/2022]
Abstract
The interactions between programmed death-1 (PD-1) and its ligands hamper tumor-specific CD8+ T cell (TCD8) responses, and PD-1-based "checkpoint inhibitors" have shown promise in certain cancers, thus revitalizing interest in immunotherapy. PD-1-targeted therapies reverse TCD8 exhaustion/anergy. However, whether they alter the epitope breadth of TCD8 responses remains unclear. This is an important question because subdominant TCD8 are more likely than immunodominant clones to escape tolerance mechanisms and may contribute to protective anticancer immunity. We have addressed this question in an in vivo model of TCD8 responses to well-defined epitopes of a clinically relevant oncoprotein, large T Ag. We found that unlike other coinhibitory molecules (CTLA-4, LAG-3, TIM-3), PD-1 was highly expressed by subdominant TCD8, which correlated with their propensity to favorably respond to PD-1/PD-1 ligand-1 (PD-L1)-blocking Abs. PD-1 blockade increased the size of subdominant TCD8 clones at the peak of their primary response, and it also sustained their presence, thus giving rise to an enlarged memory pool. The expanded population was fully functional as judged by IFN-γ production and MHC class I-restricted cytotoxicity. The selective increase in subdominant TCD8 clonal size was due to their enhanced survival, not proliferation. Further mechanistic studies utilizing peptide-pulsed dendritic cells, recombinant vaccinia viruses encoding full-length T Ag or epitope mingenes, and tumor cells expressing T Ag variants revealed that anti-PD-1 invigorates subdominant TCD8 responses by relieving their lysis-dependent suppression by immunodominant TCD8 To our knowledge, our work constitutes the first report that interfering with PD-1 signaling potentiates epitope spreading in tumor-specific responses, a finding with clear implications for cancer immunotherapy and vaccination.
Collapse
Affiliation(s)
- Arash Memarnejadian
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Courtney E Meilleur
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Christopher R Shaler
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | | | - Jack R Bennink
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Todd D Schell
- Department of Microbiology and Immunology, Pennsylvania State University, Hershey, PA 17033
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada; .,Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario N6G 5W9, Canada.,Centre for Human Immunology, Western University, London, Ontario N6A 5C1, Canada; and.,Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
| |
Collapse
|
18
|
Nolte MA, van der Meer JWM. Inflammatory responses to infection: the Dutch contribution. Immunol Lett 2014; 162:113-20. [PMID: 25455597 PMCID: PMC7132409 DOI: 10.1016/j.imlet.2014.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
At any given moment, our body is under attack by a large variety of pathogens, which aim to enter and use our body to propagate and disseminate. The extensive cellular and molecular complexity of our immune system enables us to efficiently eliminate invading pathogens or at least develop a condition in which propagation of the microorganism is reduced to a minimum. Yet, the evolutionary pressure on pathogens to circumvent our immune defense mechanisms is immense, which continuously leads to the development of novel pathogenic strains that challenge the health of mankind. Understanding this battle between pathogen and the immune system has been a fruitful area of immunological research over the last century and will continue to do so for many years. In this review, which has been written on the occasion of the 50th anniversary of the Dutch Society for Immunology, we provide an overview of the major contributions that Dutch immunologists and infection biologists have made in the last decades on the inflammatory response to viral, bacterial, fungal or parasitic infections. We focus on those studies that have addressed both the host and the pathogen, as these are most interesting from an immunological point of view. Although it is not possible to completely cover this comprehensive research field, this review does provide an interesting overview of Dutch research on inflammatory responses to infection.
Collapse
Affiliation(s)
- Martijn A Nolte
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jos W M van der Meer
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Bellone S, Pecorelli S, Cannon MJ, Santin AD. Advances in dendritic cell-based therapeutic vaccines for cervical cancer. Expert Rev Anticancer Ther 2014; 7:1473-86. [DOI: 10.1586/14737140.7.10.1473] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Wang Z, Li P, Xu Q, Xu J, Li X, Zhang X, Ma Q, Wu Z. Potent Antitumor Activity Generated by a Novel Tumor Specific Cytotoxic T Cell. PLoS One 2013; 8:e66659. [PMID: 23825554 PMCID: PMC3688986 DOI: 10.1371/journal.pone.0066659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/09/2013] [Indexed: 01/29/2023] Open
Abstract
Hepatocellular carcinoma is one of the most common malignant neoplasms in the world and is the main cause of death in patients with liver cirrhosis. Surgical intervention is not suitable for majority of hepatocellular carcinoma. Investigation of the effective targeting to the tumor cells is essential for both primary tumors and metastases. Tumor specific cytotoxic T lymphocytes (CTL) have been considered to be the attractive vehicles for delivering therapeutic agents toward various tumor diseases. This study was to explore the distribution pattern of CTL carrying the lentiviral vectors with the characteristic of adenoviral E1 gene under the control of the cell activation-dependent CD40 ligand promoter (Lenti/hCD40L/E1AB). Following transduction with adenoviral vectors containing chimeric type 5 and type 35 fiber proteins (Ad5/35-TRAIL), these CTLs produced infectious virus when exposed to HepG2 cells. We assessed the therapeutic ability of CTLs using MTT, Western blot and colony formation assay. The novel CTL harboring Lenti/hCD40L/E1AB and Ad5/35-TRAIL caused proliferation inhibition and significant apoptosis in hepatocellular carcinoma cell lines. Thus, the novel CTL may be useful for the development of gene therapy approaches to hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Pei Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qinhong Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jun Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuqi Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xufeng Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- * E-mail:
| |
Collapse
|
21
|
Jackaman C, Majewski D, Fox SA, Nowak AK, Nelson DJ. Chemotherapy broadens the range of tumor antigens seen by cytotoxic CD8(+) T cells in vivo. Cancer Immunol Immunother 2012; 61:2343-56. [PMID: 22714286 PMCID: PMC11029427 DOI: 10.1007/s00262-012-1307-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 06/04/2012] [Indexed: 12/22/2022]
Abstract
Cytotoxic chemotherapies may expose the immune system to high levels of tumor antigens and expand the CD8(+) T-cell response to include weak or subdominant antigens. Here, we evaluated the in vivo CTL response to tumor antigens using a murine mesothelioma tumor cell line transfected with a neotumor antigen, ovalbumin, that contains a known hierarchy of epitopes for MHC class I molecules. We show that as tumors progress, effector CTLs are generated in vivo that focus on the dominant epitope SIINFEKL, although a weak response was seen to one (KVVRFDKL) subdominant epitope. These CTLs did not prevent tumor growth. Cisplatin treatment slowed tumor growth, slightly improved in vivo SIINFEKL presentation to T cells and reduced SIINFEKL-CTL activity. However, the CTL response to KVVRFDKL was amplified, and a response to another subdominant epitope, NAIVFKGL, was revealed. Similarly, gemcitabine cured most mice, slightly enhanced SIINFEKL presentation, reduced SIINFEKL-CTL activity yet drove a significant CTL response to NAIVFKGL, but not KVVRFDKL. These NAIVFKGL-specific CTLs secreted IFNγ and proliferated in response to in vitro NAIVFKGL stimulation. IL-2 treatment during chemotherapy refocused the response to SIINFEKL and simultaneously degraded the cisplatin-driven subdominant CTL response. These data show that chemotherapy reveals weaker tumor antigens to the immune system, a response that could be rationally targeted. Furthermore, while integrating IL-2 into the chemotherapy regimen interfered with the hierarchy of the response, IL-2 or other strategies that support CTL activity could be considered upon completion of chemotherapy.
Collapse
Affiliation(s)
- Connie Jackaman
- Immunology and Cancer Group, School of Biomedical Sciences, Curtin University, Kent St., Bentley, Perth, WA 6102 Australia
- Western Australia Biomedical Research Institute, Bentley, Perth, WA 6102 Australia
- Curtin Health Innovation Research Institute, Bentley, Perth, WA 6102 Australia
| | - David Majewski
- Immunology and Cancer Group, School of Biomedical Sciences, Curtin University, Kent St., Bentley, Perth, WA 6102 Australia
- Western Australia Biomedical Research Institute, Bentley, Perth, WA 6102 Australia
- Curtin Health Innovation Research Institute, Bentley, Perth, WA 6102 Australia
| | - Simon A. Fox
- Western Australia Biomedical Research Institute, Bentley, Perth, WA 6102 Australia
- Curtin Health Innovation Research Institute, Bentley, Perth, WA 6102 Australia
- School of Pharmacy, Curtin University, Kent St., Perth, WA 6102 Australia
| | - Anna K. Nowak
- School of Medicine and Pharmacology, University of Western Australia, Nedlands Perth, WA 6009 Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Perth, WA 6009 Australia
| | - Delia J. Nelson
- Immunology and Cancer Group, School of Biomedical Sciences, Curtin University, Kent St., Bentley, Perth, WA 6102 Australia
- Western Australia Biomedical Research Institute, Bentley, Perth, WA 6102 Australia
- Curtin Health Innovation Research Institute, Bentley, Perth, WA 6102 Australia
| |
Collapse
|
22
|
Watson AM, Mylin LM, Thompson MM, Schell TD. Modification of a tumor antigen determinant to improve peptide/MHC stability is associated with increased immunogenicity and cross-priming a larger fraction of CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:5549-60. [PMID: 23175697 DOI: 10.4049/jimmunol.1102221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Altered peptide ligands (APLs) with enhanced binding to MHC class I can increase the CD8(+) T cell response to native Ags, including tumor Ags. In this study, we investigate the influence of peptide-MHC (pMHC) stability on recruitment of tumor Ag-specific CD8(+) T cells through cross-priming. Among the four known H-2(b)-restricted CD8(+) T cell determinants within SV40 large tumor Ag (TAg), the site V determinant ((489)QGINNLDNL(497)) forms relatively low-stability pMHC and is characteristically immunorecessive. Absence of detectable site V-specific CD8(+) T cells following immunization with wild-type TAg is due in part to inefficient cross-priming. We mutated nonanchor residues within the TAg site V determinant that increased pMHC stability but preserved recognition by both TCR-transgenic and polyclonal endogenous T cells. Using a novel approach to quantify the fraction of naive T cells triggered through cross-priming in vivo, we show that immunization with TAg variants expressing higher-stability determinants increased the fraction of site V-specific T cells cross-primed and effectively overcame the immunorecessive phenotype. In addition, using MHC class I tetramer-based enrichment, we demonstrate for the first time, to our knowledge, that endogenous site V-specific T cells are primed following wild-type TAg immunization despite their low initial frequency, but that the magnitude of T cell accumulation is enhanced following immunization with a site V variant TAg. Our results demonstrate that site V APLs cross-prime a higher fraction of available T cells, providing a potential mechanism for high-stability APLs to enhance immunogenicity and accumulation of T cells specific for the native determinant.
Collapse
Affiliation(s)
- Alan M Watson
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
23
|
Schweighoffer T. Molecular cancer vaccines: Tumor therapy using antigen-specific immunizations. Pathol Oncol Res 2012; 3:164-76. [PMID: 18470726 DOI: 10.1007/bf02899917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/1997] [Accepted: 08/24/1997] [Indexed: 10/21/2022]
Abstract
Vaccination against tumors promises selective destruction of malignant cells by the host's immune system. Molecular cancer vaccines rely on recently identified tumor antigens as immunogens. Tumor antigens can be applied in many forms, as genes in recombinant vectors, as proteins or peptides representing T cell epitopes.Analysis of various aspects indicates some advantage for peptide-based vaccines over the other modalities. Further refinements and extensively monitored clinical trials are necessary to advance molecular cancer vaccines from concepts into powerful therapy.
Collapse
Affiliation(s)
- T Schweighoffer
- Department Cell Biology, Boehringer Ingelheim Research and Development, Dr. Boehringer-Gasse 5, A-l 120, Wien, Austria,
| |
Collapse
|
24
|
Feng Q, Wei H, Morihara J, Stern J, Yu M, Kiviat N, Hellstrom I, Hellstrom KE. Th2 type inflammation promotes the gradual progression of HPV-infected cervical cells to cervical carcinoma. Gynecol Oncol 2012; 127:412-9. [PMID: 22828962 DOI: 10.1016/j.ygyno.2012.07.098] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/29/2012] [Accepted: 07/09/2012] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To investigate the role of immunological parameters in tumorigenesis of cervical cancer in women infected with high risk human papillomavirus (hr-HPV), and determine whether key findings with human material can be recapitulated in the mouse TC1 carcinoma model which expresses hr-HPV epitopes. METHODS Epithelial and lymphoid cells in cervical tissues were analyzed by immunohistochemistry and serum IL10 levels were determined by ELISA. Tumor draining lymph nodes were analyzed in the mouse TC1 model by flow cytometry. RESULTS The mucosa was infiltrated by CD20+ and CD138+ cells already at cervical intraepithelial neoplasia 1 (CIN1) and infiltration increased in cervical intraepithelial neoplasia 3 (CIN3)/carcinoma in situ (CIS) and invasive cervical cancer (ICC), where it strongly correlated with infiltration by CD32B+ and FoxP3+ lymphocytes. GATA3+ and T-bet+ lymphoid cells were increased in ICC compared to normal, and expression in epithelial cells of the Th2 inflammation-promoting cytokine TSLP and of IDO1 was higher in CIN3/CIS and ICC. As a corollary, serum levels of IL10 were higher in women with CIN3/CIS or ICC than in normals. Finally we demonstrated in the mouse TC1 carcinoma, which expresses hr-HPV epitopes, an increase of cells expressing B cell or plasma cell markers or Fc receptors in tumor-draining than distal lymph nodes or spleen. CONCLUSIONS hr-HPV initiates a local Th2 inflammation at an early stage, involving antibody forming cells, and fosters an immunosuppressive microenvironment that aids tumor progression.
Collapse
Affiliation(s)
- Qinghua Feng
- Department of Pathology, Harborview Medical Center, University of Washington, Seattle, WA 98104, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
van Hall T, van der Burg SH. Mechanisms of peptide vaccination in mouse models: tolerance, immunity, and hyperreactivity. Adv Immunol 2012; 114:51-76. [PMID: 22449778 DOI: 10.1016/b978-0-12-396548-6.00003-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of synthetic peptide vaccines capable of inducing strong and protective T-cell immunity has taken more than 20 years. Peptide vaccines come in many flavors and although their design is simple, their use is more complicated as the success of a particular peptide vaccine is influenced by many parameters. In fact, peptide vaccination may lead to tolerance, immunity or even hyper-reactivity causing death of the animals. Here we systematically dissect the parameters that influence the final outcome of peptide vaccines as examined in mouse models and this will guide the rational design of new vaccines in the future.
Collapse
Affiliation(s)
- Thorbald van Hall
- Department of Clinical Oncology, Experimental Cancer Immunology and Therapy, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
26
|
Tang J, Yin R, Tian Y, Huang Z, Shi J, Fu X, Wang L, Wu Y, Hao F, Ni B. A novel self-assembled nanoparticle vaccine with HIV-1 Tat₄₉₋₅₇/HPV16 E7₄₉₋₅₇ fusion peptide and GM-CSF DNA elicits potent and prolonged CD8⁺ T cell-dependent anti-tumor immunity in mice. Vaccine 2011; 30:1071-82. [PMID: 22178528 DOI: 10.1016/j.vaccine.2011.12.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/11/2011] [Accepted: 12/05/2011] [Indexed: 11/17/2022]
Abstract
Peptide-based vaccines derived from the E7 protein of human papillomavirus (HPV) type 16 were developed to induce effective T cell responses against established cervical cancer, but have met with limited clinical success. It is necessary to develop novel peptide-based strategies to substantially improve the immune response against HPV16-related cancer. In this study, we aimed to design a novel peptide-based self-assembled nanoparticle HPV16 vaccine by combining the cell-penetrating peptide HIV-1 Tat(49-57) that was fused with the HPV16 E7(49-57) cytotoxic T lymphocyte (CTL) epitope and the granulocyte-macrophage colony stimulating factor (GM-CSF) gene, and to investigate how it improves the immune response and the therapeutic outcome ex vivo and in vivo. Nanoparticles were prepared and identified by transmission electron microscopy (TEM), gel retardation and DNase I protection assays. This type of vaccine formulation formed the 20-80 nm nanoparticles, and greatly improved epitope-specific immunity both ex vivo and in vivo. Importantly, this vaccine type was associated with decreased tumor growth and enhanced long-term survival in the prophylactic and therapeutic mouse models. The underlying mechanisms were determined to involve priming of enhanced frequency of CD8(+) memory T subtype cells. These results suggest that the nanoparticle Tat-E7/pGM-CSF represents a promising novel approach to enhance the potency of peptide-based cervical cancer vaccines, and this vaccine design strategy may act as a useful reference for research of virus-associated diseases and specific tumor immunotherapies.
Collapse
Affiliation(s)
- Jun Tang
- Department of Dermatology, Southwestern Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
T-cell response to human papillomavirus type 58 L1, E6, And E7 peptides in women with cleared infection, cervical intraepithelial neoplasia, or invasive cancer. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1315-21. [PMID: 20668141 DOI: 10.1128/cvi.00105-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human papillomavirus type 58 (HPV-58) exists in a relatively high prevalence in certain parts of the world, including East Asia. This study examined the T-cell response to HPV-58 L1, E6, and E7 peptides among women with cleared infection, cervical intraepithelial neoplasia grade 2 (CIN2) or CIN3, or invasive cervical cancer (ICC). Peptides found to be reactive in the in vitro peptide binding assay or mouse-stimulating study were tested with a gamma interferon (IFN-gamma) enzyme-linked immunospot (ELISPOT) assay to detect peptide-specific responses from the peripheral blood mononuclear cells (PBMC) collected from 91 HPV-58-infected women (32 with cleared infection, 16 CIN2, 15 CIN3, and 28 ICC). Four HLA-A11-restricted HPV-58 L1 peptides, located at amino acid positions 296 to 304, 327 to 335, 101 to 109, and 469 to 477, showed positive IFN-gamma ELISPOT results and were mainly from women with cleared infection. Two HLA-A11-restricted E6 peptides (amino acid positions 64 to 72 and 94 to 102) and three HLA-A11-restricted E7 peptides (amino acid positions 78 to 86, 74 to 82, and 88 to 96) showed a positive response. A response to E6 and E7 peptides was mainly observed from subjects with CIN2 or above. One HLA-A2-restricted E6 peptide, located at amino acid position 99 to 107, elicited a positive response in two CIN2 subjects. One HLA-A24-restricted L1 peptide, located at amino acid position 468 to 476, also elicited a positive response in two CIN2 subjects. In summary, this study has identified a few immunogenic epitopes for HPV-58 E6 and E7 proteins. It is worthwhile to further investigate whether responses to these epitopes have a role in clearing an established cervical lesion.
Collapse
|
28
|
Hepatitis B surface antigen fusions delivered by DNA vaccination elicit CTL responses to human papillomavirus oncoproteins associated with tumor protection. Cancer Gene Ther 2010; 17:708-20. [DOI: 10.1038/cgt.2010.27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Stromal issues in cervical cancer: a review of the role and function of basement membrane, stroma, immune response and angiogenesis in cervical cancer development. Eur J Cancer Prev 2010; 19:204-15. [PMID: 20101182 DOI: 10.1097/cej.0b013e32833720de] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The carcinogenesis of cervical carcinoma implies an intricate interplay of neoplastic, human papillomavirus infected epithelial cells and stromal tissue, in which different factors have distinct but interacting influence. Persistent infection with an oncogenic human papillomavirus type may lead to epithelial dysplasia with progressive severity. To access the adjacent stromal tissue, tumour cells have to breach the basement membrane. The stroma partly controls tumour growth, invasion and angiogenesis. Last but not least there is considerable influence of the immune response. In this review we describe the importance of various stromal factors in carcinogenesis of cervical cancer.
Collapse
|
30
|
Kanodia S, Da Silva DM, Karamanukyan T, Bogaert L, Fu YX, Kast WM. Expression of LIGHT/TNFSF14 combined with vaccination against human papillomavirus Type 16 E7 induces significant tumor regression. Cancer Res 2010; 70:3955-64. [PMID: 20460520 DOI: 10.1158/0008-5472.can-09-3773] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
LIGHT, a ligand for the lymphotoxin-beta receptor, establishes lymphoid-like tissues inside tumor sites and recruits naïve T cells into the tumor. However, whether these infiltrating T cells are specific for tumor antigens is not known. We hypothesized that therapy with LIGHT can expand functional tumor-specific CD8(+) T cells that can be boosted using HPV16E6E7-Venezuelan equine encephalitis virus replicon particles (HPV16-VRP) and that this combined therapy can eradicate human papillomavirus 16 (HPV16)-induced tumors. Our data show that forced expression of LIGHT in tumors results in an increase in expression of IFNgamma and chemoattractant cytokines such as interleukin-1a, MIG, and macrophage inflammatory protein-2 within the tumor and that this tumor microenvironment correlates with an increase in frequency of tumor-infiltrating CD8(+) T cells. Forced expression of LIGHT also results in the expansion of functional T cells that recognize multiple tumor antigens, including HPV16 E7, and these T cells prevent the outgrowth of tumors on secondary challenge. Subsequent boosting of E7-specific T cells by vaccination with HPV16-VRP significantly increases their frequency in both the periphery and the tumor and leads to the eradication of large well-established tumors, for which either treatment alone is not successful. These data establish the safety of Ad-LIGHT as a therapeutic intervention in preclinical studies and suggest that patients with HPV16(+) tumors may benefit from combined immunotherapy with LIGHT and antigen-specific vaccination.
Collapse
Affiliation(s)
- Shreya Kanodia
- Department of Molecular Microbiology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
31
|
Cortes-Perez NG, da Costa Medina LF, Lefèvre F, Langella P, Bermúdez-Humarán LG. Production of biologically active CXC chemokines by Lactococcus lactis: evaluation of its potential as a novel mucosal vaccine adjuvant. Vaccine 2008; 26:5778-83. [PMID: 18790708 DOI: 10.1016/j.vaccine.2008.08.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 11/28/2022]
Abstract
Chemokines have been described as essential mediators in leukocytes migration to inflammatory sites and to secondary lymphoid organs. Mig and IP-10 are two CXC chemokines that recruit mononuclear cells in vivo and inhibit angiogenesis. In addition to their chemotactic roles, Mig and IP-10 have also an important role in the adaptative immune response. In this study, we asked whether a food-grade bacterium, Lactococcus lactis, is able to produce a fusion protein comprising Mig and IP-10 (Mig::IP-10). The activity of the recombinant Mig::IP-10 produced by the genetically engineered L. lactis (LL-Mig::IP-10) was confirmed in a murine spleen cells chemotaxis assay. Moreover, the adjuvant properties of LL-Mig::IP-10 strain were evaluated in mice by the co-expression of a model antigen, the human papillomavirus type 16 E7 protein. Our data show that LL-Mig::IP-10 can produce a genetic fusion of Mig::IP-10 biologically active. This recombinant strain represents a potential candidate for the development of new strategies for mucosal vaccination.
Collapse
|
32
|
Wu AA, Niparko KJ, Pai SI. Immunotherapy for head and neck cancer. J Biomed Sci 2008; 15:275-89. [PMID: 18392689 DOI: 10.1007/s11373-008-9247-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Accepted: 11/06/2007] [Indexed: 11/27/2022] Open
Abstract
Head and neck cancer represents a challenging disease. Despite recent treatment advances, which have improved functional outcomes, the long-term survival of head and neck cancer patients has remained unchanged for the past 25 years. One of the goals of adjuvant cancer therapy is to eradicate local regional microscopic and micrometastatic disease with minimal toxicity to surrounding normal cells. In this respect, antigen-specific immunotherapy is an attractive therapeutic approach. With the advances in molecular genetics and fundamental immunology, antigen-specific immunotherapy is being actively explored using DNA, bacterial vector, viral vector, peptide, protein, dendritic cell, and tumor-cell based vaccines. Early phase clinical trials have demonstrated the safety and feasibility of these novel therapies and the emphasis is now shifting towards the development of strategies, which can increase the potency of these vaccines. As the field of immunotherapy matures and as our understanding of the complex interaction between tumor and host develops, we get closer to realizing the potential of immunotherapy as an adjunctive method to control head and neck cancer and improve long-term survival in this patient population.
Collapse
Affiliation(s)
- Annie A Wu
- Department of Otolaryngology/Head and Neck Surgery, The Johns Hopkins Medical Institutions, 601 North Caroline Street, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
33
|
Kanodia S, Da Silva DM, Kast WM. Recent advances in strategies for immunotherapy of human papillomavirus-induced lesions. Int J Cancer 2008; 122:247-59. [PMID: 17973257 PMCID: PMC4943456 DOI: 10.1002/ijc.23252] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human papillomavirus (HPV)-induced lesions are distinct in that they have targetable foreign antigens, the expression of which is necessary to maintain the cancerous phenotype. Hence, they pose as a very attractive target for "proof of concept" studies in the development of therapeutic vaccines. This review will focus on the most recent clinical trials for the immunotherapy of mucosal and cutaneous HPV-induced lesions as well as emerging therapeutic strategies that have been tested in preclinical models for HPV-induced lesions. Progress in peptide-based vaccines, DNA-based vaccines, viral/bacterial vector-based vaccines, immune response modifiers, photodynamic therapy and T cell receptor based therapy for HPV will be discussed.
Collapse
Affiliation(s)
- Shreya Kanodia
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
34
|
Bijker MS, van den Eeden SJF, Franken KL, Melief CJM, Offringa R, van der Burg SH. CD8+ CTL priming by exact peptide epitopes in incomplete Freund's adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. THE JOURNAL OF IMMUNOLOGY 2007; 179:5033-40. [PMID: 17911588 DOI: 10.4049/jimmunol.179.8.5033] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Therapeutic vaccination trials, in which patients with cancer were vaccinated with minimal CTL peptide in oil-in-water formulations, have met with limited success. Many of these studies were based on the promising data of mice studies, showing that vaccination with a short synthetic peptide in IFA results in protective CD8(+) T cell immunity. By use of the highly immunogenic OVA CTL peptide in IFA as a model peptide-based vaccine, we investigated why minimal CTL peptide vaccines in IFA performed so inadequately to allow full optimization of peptide vaccination. Injection of the minimal MHC class I-binding OVA(257-264) peptide in IFA transiently activated CD8(+) effector T cells, which eventually failed to undergo secondary expansion or to kill target cells, as a result of a sustained and systemic presentation of the CTL peptides gradually leaking out of the IFA depot without systemic danger signals. Complementation of this vaccine with the MHC class II-binding Th peptide (OVA(323-339)) restored both secondary expansion and in vivo effector functions of CD8(+) T cells. Simply extending the CTL peptide to a length of 30 aa also preserved these CD8(+) T cell functions, independent of T cell help, because the longer CTL peptide was predominantly presented in the locally inflamed draining lymph node. Importantly, these functional differences were reproduced in two additional model Ag systems. Our data clearly show why priming of CTL with minimal peptide epitopes in IFA is suboptimal, and demonstrate that the use of longer versions of these CTL peptide epitopes ensures the induction of sustained effector CD8(+) T cell reactivity in vivo.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Freund's Adjuvant/administration & dosage
- Freund's Adjuvant/immunology
- Freund's Adjuvant/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Ovalbumin/administration & dosage
- Ovalbumin/immunology
- Ovalbumin/metabolism
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Time Factors
- Vaccination
Collapse
Affiliation(s)
- Martijn S Bijker
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Heiny AT, Miotto O, Srinivasan KN, Khan AM, Zhang GL, Brusic V, Tan TW, August JT. Evolutionarily conserved protein sequences of influenza a viruses, avian and human, as vaccine targets. PLoS One 2007; 2:e1190. [PMID: 18030326 PMCID: PMC2065905 DOI: 10.1371/journal.pone.0001190] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 10/17/2007] [Indexed: 01/16/2023] Open
Abstract
Background Influenza A viruses generate an extreme genetic diversity through point mutation and gene segment exchange, resulting in many new strains that emerge from the animal reservoirs, among which was the recent highly pathogenic H5N1 virus. This genetic diversity also endows these viruses with a dynamic adaptability to their habitats, one result being the rapid selection of genomic variants that resist the immune responses of infected hosts. With the possibility of an influenza A pandemic, a critical need is a vaccine that will recognize and protect against any influenza A pathogen. One feasible approach is a vaccine containing conserved immunogenic protein sequences that represent the genotypic diversity of all current and future avian and human influenza viruses as an alternative to current vaccines that address only the known circulating virus strains. Methodology/Principal Findings Methodologies for large-scale analysis of the evolutionary variability of the influenza A virus proteins recorded in public databases were developed and used to elucidate the amino acid sequence diversity and conservation of 36,343 sequences of the 11 viral proteins of the recorded virus isolates of the past 30 years. Technologies were also applied to identify the conserved amino acid sequences from isolates of the past decade, and to evaluate the predicted human lymphocyte antigen (HLA) supertype-restricted class I and II T-cell epitopes of the conserved sequences. Fifty-five (55) sequences of 9 or more amino acids of the polymerases (PB2, PB1, and PA), nucleoprotein (NP), and matrix 1 (M1) proteins were completely conserved in at least 80%, many in 95 to 100%, of the avian and human influenza A virus isolates despite the marked evolutionary variability of the viruses. Almost all (50) of these conserved sequences contained putative supertype HLA class I or class II epitopes as predicted by 4 peptide-HLA binding algorithms. Additionally, data of the Immune Epitope Database (IEDB) include 29 experimentally identified HLA class I and II T-cell epitopes present in 14 of the conserved sequences. Conclusions/Significance This study of all reported influenza A virus protein sequences, avian and human, has identified 55 highly conserved sequences, most of which are predicted to have immune relevance as T-cell epitopes. This is a necessary first step in the design and analysis of a polyepitope, pan-influenza A vaccine. In addition to the application described herein, these technologies can be applied to other pathogens and to other therapeutic modalities designed to attack DNA, RNA, or protein sequences critical to pathogen function.
Collapse
Affiliation(s)
- A. T. Heiny
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olivo Miotto
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Systems Science, National University of Singapore, Singapore, Singapore
| | - Kellathur N. Srinivasan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Maryland, United States of America
- Product Evaluation and Registration Division, Centre for Drug Administration, Health Sciences Authority, Singapore, Singapore
| | - Asif M. Khan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - G. L. Zhang
- Institute for Infocomm Research, Singapore, Singapore
| | - Vladimir Brusic
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Tin Wee Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - J. Thomas August
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Thorn M, Tang S, Therrien D, Kløverpris H, Vinner L, Kronborg G, Gerstoft J, Corbet S, Fomsgaard A. Sequence conservation of subdominant HLA-A2-binding CTL epitopes in HIV-1 clinical isolates and CD8+T-lymphocyte cross-recognition may explain the immune reaction in infected individuals. APMIS 2007; 115:757-68. [PMID: 17550385 DOI: 10.1111/j.1600-0463.2007.apm_595.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cytotoxic T-lymphocytes (CTL) are critical for immune control of infection with human immunodeficiency virus type-1 (HIV-1) and searches for relevant CTL epitopes for immune therapy are ongoing. Recently, we identified 28 HLA-A2-binding HIV-1 CTL epitopes (1). In this follow-up study we fully genome sequenced HIV-1 from 11 HLA-A2(+) patients to examine the sequence variation of these natural epitopes and compared them with the patient's CD8(+) T-cell recall response. Often the epitope was conserved but only a few patients showed a CD8(+) T-cell recall response. This infrequent targeting may be explained by immune subdominance. CD8(+) T-cell recall response to a natural epitope could be measured despite sequence differences in the patient's virus. T-cell cross-reaction between such variants could be demonstrated in HLA-A2 transgenic mice. Nine infrequently targeted but conserved or cross-reacting epitopes were identified in seven HIV-1 proteins. More immunogenic anchor amino acid optimized immunogens were designed that induced T-cell cross-reaction with these natural epitopes. It is concluded that most of the new CTL epitopes are conserved but subdominant during the infection. It is suggested that T-cell promiscuity may explain the observed CD8(+) T-cell reaction to epitope variants and it may be possible to use the selected immune optimized epitope peptides for therapeutic vaccination.
Collapse
Affiliation(s)
- Mette Thorn
- Department of Virology, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nakagawa M, Kim KH, Gillam TM, Moscicki AB. HLA class I binding promiscuity of the CD8 T-cell epitopes of human papillomavirus type 16 E6 protein. J Virol 2006; 81:1412-23. [PMID: 17108051 PMCID: PMC1797519 DOI: 10.1128/jvi.01768-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the critical steps in the progression to cervical cancer appears to be the establishment of persistent human papillomavirus (HPV) infection. We have demonstrated that the lack of cytotoxic T-lymphocyte response to HPV type 16 (HPV 16) E6 protein was associated with persistence and that the potential presence of dominant CD8 T-cell epitopes was most frequently found (n = 4 of 23) in the E6 16-40 region by examining the pattern of CD8 T-cell epitopes within the E6 protein in women who had cleared their HPV 16 infections. The goal of this study was to define the minimal/optimal amino acid sequences and the HLA restricting molecules of these dominant CD8 T-cell epitopes as well as those of subdominant ones if present. Three dominant epitopes, E6 29-38 (TIHDIILECV; restricted by the HLA-A0201 molecule), E6 29-37 (TIHDIILEC; restricted by B48), and E6 31-38 (HDIILECV; restricted by B4002), and one subdominant epitope, E6 52-61 (FAFRDLCIVY; restricted by B35) were characterized. Taken together with a previously described dominant epitope, E6 52-61 (FAFRDLCIVY; restricted by B57), the CD8 T-cell epitopes demonstrated striking HLA class I binding promiscuity. All of these epitopes were endogenously processed, but the presence of only two of the five epitopes could have been predicted based on the known binding motifs. The HLA class I promiscuity which has been described for human immunodeficiency virus may be more common than previously recognized.
Collapse
Affiliation(s)
- Mayumi Nakagawa
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | | | |
Collapse
|
38
|
Bundell CS, Jackaman C, Suhrbier A, Robinson BWS, Nelson DJ. Functional endogenous cytotoxic T lymphocytes are generated to multiple antigens co-expressed by progressing tumors; after intra-tumoral IL-2 therapy these effector cells eradicate established tumors. Cancer Immunol Immunother 2006; 55:933-47. [PMID: 16283304 PMCID: PMC11030810 DOI: 10.1007/s00262-005-0086-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 09/14/2005] [Indexed: 11/24/2022]
Abstract
Tumors contain many antigens that may be recognized by the immune system. It is not known whether these antigens, and the epitopes within these antigens, can all be recognized by the anti-tumor immune response or if such responses are restricted to a few dominant epitopes. Effector function of endogenous cytotoxic T lymphocytes (CTL) generated during tumor progression has previously been assessed by indirect, ex vivo assays, which often focused on a single antigen. Therefore, we evaluated the endogenous in vivo CTL response to multiple neo tumor antigens using murine Lewis lung carcinoma tumor cells transfected with ovalbumin or a polyepitope construct. Both express multiple MHC class I-restricted epitopes. Ovalbumin contains a known hierarchy of epitopes for given MHC molecules, whilst the polyepitope expresses a number of dominant epitopes. We show that as tumors progress, potent effector CTL are generated in vivo that are restricted to dominant epitopes; we did not see the responses to subdominant or cryptic epitopes. Our data show that the CTL recognizing tumor antigens vary in their lytic capacity, as the CTL responding to two of the four epitopes were particularly potent killers. The presence of these effector CTLs did not prevent tumor growth. However, intra-tumoral IL-2 treatment altered the potency, but not the hierarchy, of these CTL such that they mediated tumor regression. These results have implications for immunotherapy protocols.
Collapse
Affiliation(s)
- Christine S. Bundell
- School of Medicine and Pharmacology, University of Western Australia, 4th Floor, G Block, Queen Elizabeth II Medical Centre, Perth, WA 6009 Australia
| | - Connie Jackaman
- School of Medicine and Pharmacology, University of Western Australia, 4th Floor, G Block, Queen Elizabeth II Medical Centre, Perth, WA 6009 Australia
| | - Andreas Suhrbier
- Queensland Institute of Medical Research, Post Office Royal Brisbane Hospital, Brisbane, QLD 4029 Australia
| | - Bruce W. S. Robinson
- School of Medicine and Pharmacology, University of Western Australia, 4th Floor, G Block, Queen Elizabeth II Medical Centre, Perth, WA 6009 Australia
- West Australian Institute for Medical Research, Queen Elizabeth II Medical Centre, Perth, WA 6009 Australia
| | - Delia J. Nelson
- School of Medicine and Pharmacology, University of Western Australia, 4th Floor, G Block, Queen Elizabeth II Medical Centre, Perth, WA 6009 Australia
- Western Australian Biomedical Research Institute, Kent St., Curtin University, Bentley, WA 6102 Australia
- School of Biomedical Sciences, Kent St., Curtin University, Bentley, WA 6102 Australia
| |
Collapse
|
39
|
Ryan CM, Schell TD. Accumulation of CD8+T Cells in Advanced-Stage Tumors and Delay of Disease Progression following Secondary Immunization against an Immunorecessive Epitope. THE JOURNAL OF IMMUNOLOGY 2006; 177:255-67. [PMID: 16785521 DOI: 10.4049/jimmunol.177.1.255] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-reactive T cells that survive the process of positive and negative selection during thymocyte development represent potential effector cells against tumors that express these same self-Ags. We have previously shown that CD8+ T lymphocytes (T(CD8)) specific for an immunorecessive epitope, designated epitope V, from the SV40 large T Ag (Tag) escape thymic deletion in line SV11 Tag-transgenic mice. In contrast, these mice are tolerant to the three most dominant Tag epitopes. The majority of the residual epitope V-specific T(CD8) have a low avidity for the target epitope, but a prime/boost regimen can expand higher avidity clones in vivo. Whether higher avidity T(CD8) targeting this epitope are affected by Tag-expressing tumors in the periphery or can be recruited for control of tumor progression remains unknown. In the current study, we determined the fate of naive TCR-transgenic T(CD8) specific for Tag epitope V (TCR-V cells) following transfer into SV11 mice bearing advanced-stage choroid plexus tumors. The results indicate that TCR-V cells are rapidly triggered by the endogenous Tag and acquire effector function, but fail to accumulate within the tumors. Primary immunization enhanced TCR-V cell frequency in the periphery and promoted entry into the brain, but a subsequent booster immunization caused a dramatic accumulation of TCR-V T cells within the tumors and inhibited tumor progression. These results indicate that epitope V provides a target for CD8+ T cells against spontaneous tumors in vivo, and suggests that epitopes with similar properties can be harnessed for tumor immunotherapy.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Polyomavirus Transforming/administration & dosage
- Antigens, Polyomavirus Transforming/biosynthesis
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/immunology
- Brain Neoplasms/immunology
- Brain Neoplasms/mortality
- Brain Neoplasms/pathology
- Brain Neoplasms/prevention & control
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/transplantation
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Movement/immunology
- Choroid Plexus/immunology
- Choroid Plexus/pathology
- Cytotoxicity Tests, Immunologic
- Disease Progression
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Genes, Recessive/immunology
- Immunization, Secondary/methods
- Lymphocyte Activation/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Staging
- Polyomavirus Infections/immunology
- Polyomavirus Infections/mortality
- Polyomavirus Infections/pathology
- Polyomavirus Infections/prevention & control
- Protein Structure, Tertiary/genetics
- Receptors, Antigen, T-Cell/genetics
- Survival Analysis
- Tumor Virus Infections/immunology
- Tumor Virus Infections/mortality
- Tumor Virus Infections/pathology
- Tumor Virus Infections/prevention & control
Collapse
Affiliation(s)
- Christina M Ryan
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
40
|
Remoli A, Marsili G, Perrotti E, Gallerani E, Ilari R, Nappi F, Cafaro A, Ensoli B, Gavioli R, Battistini A. Intracellular HIV-1 Tat protein represses constitutive LMP2 transcription increasing proteasome activity by interfering with the binding of IRF-1 to STAT1. Biochem J 2006; 396:371-80. [PMID: 16512786 PMCID: PMC1462712 DOI: 10.1042/bj20051570] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Tat protein is the transcriptional activator of HIV-1 gene expression, which is not only essential for viral replication, but also important in the complex HIV-induced pathogenesis of AIDS, as both an intracellular and an extracellular released protein. Accordingly, Tat is able to profoundly affect cellular gene expression, regulating several cellular functions, also in non-infected cells. We showed recently that Tat induces modification of immunoproteasomes in that it up-regulates LMP7 (low-molecular-mass polypeptide 7) and MECL1 (multicatalytic endopeptidase complex-like 1) subunits and down-modulates the LMP2 subunit, resulting in a change in the generation and presentation of epitopes in the context of MHC class I. In particular, Tat increases presentation of subdominant and cryptic epitopes. In the present study, we investigated the molecular mechanism responsible for the Tat-induced LMP2 down-regulation and show that intracellular Tat represses transcription of the LMP2 gene by competing with STAT1 (signal transducer and activator of transcription 1) for binding to IRF-1 (interferon-regulatory factor-1) on the overlapping ICS-2 (interferon consensus sequence-2)-GAS (gamma-interferon-activated sequence) present in the LMP2 promoter. This element is constitutively occupied in vivo by the unphosphorylated STAT1-IRF-1 complex, which is responsible for the basal transcription of the gene. Sequestration of IRF-1 by intracellular Tat impairs the formation of the complex resulting in lower LMP2 gene transcription and LMP2 protein expression, which is associated with increased proteolytic activity. On the other hand, extracellular Tat induces the expression of LMP2. These effects of Tat provide another effective mechanism by which HIV-1 affects antigen presentation in the context of the MHC class I complex and may have important implications in the use of Tat for vaccination strategies.
Collapse
Affiliation(s)
- Anna L. Remoli
- *Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299 – Rome 00161, Italy
| | - Giulia Marsili
- *Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299 – Rome 00161, Italy
| | - Edvige Perrotti
- *Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299 – Rome 00161, Italy
| | - Eleonora Gallerani
- †Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Ramona Ilari
- *Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299 – Rome 00161, Italy
| | - Filomena Nappi
- *Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299 – Rome 00161, Italy
| | - Aurelio Cafaro
- *Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299 – Rome 00161, Italy
| | - Barbara Ensoli
- *Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299 – Rome 00161, Italy
| | - Riccardo Gavioli
- †Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Angela Battistini
- *Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299 – Rome 00161, Italy
- To whom correspondence should be addressed (email )
| |
Collapse
|
41
|
Buchli R, VanGundy RS, Hickman-Miller HD, Giberson CF, Bardet W, Hildebrand WH. Development and validation of a fluorescence polarization-based competitive peptide-binding assay for HLA-A*0201--a new tool for epitope discovery. Biochemistry 2005; 44:12491-507. [PMID: 16156661 DOI: 10.1021/bi050255v] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Various approaches are currently proposed to successfully develop therapies for the prevention and treatment of infectious diseases and cancer. One of the most promising approaches is the development of vaccines that elicit cytotoxic T lymphocyte (CTL) responses. Consequently, identification and exact definition of molecular parameters involved in peptide-MHC class-I interactions of putative CTL epitopes are of prime importance for the development of immunomodulating compounds. To better facilitate epitope discovery, we developed and validated a novel state-of-the-art biochemical HLA-A0201 assay, which is comprised of technologically advanced cutting edge reagents. The technique is based on competition and uses a FITC-labeled reference peptide and highly purified soluble HLA-A0201 molecules to quantitatively measure the binding capacity of nonlabeled peptide candidates. Detection by fluorescence polarization allows real-time measurement of binding ratios without separation steps. During standardization, the problem of assay parameter variation is discussed, showing the dramatic influence of HLA and reference peptide concentrations as well as the choice of the reference peptide itself on IC(50) determinations. For validation, a panel of 15 well-defined HLA-A0201 ligands from various sources covering a broad range of binding affinities was tested. Binding data were used to compare against pre-existing quantitative assay systems. The results obtained demonstrated significant correlation among assay procedures, suggesting that the application of fluorescence polarization in combination with recombinant sHLA molecules is highly advantageous for the accurate assessment of peptide binding. Furthermore, the assay also features high-throughput screening capacity, providing uniquely efficient means of identifying and evaluating immune target molecules.
Collapse
Affiliation(s)
- Rico Buchli
- Pure Protein L.L.C., Oklahoma City, Oklahoma 73104-3698, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Lin W, Zhang X, Chen Z, Borson N, Voss S, Sanderson S, Murphy L, Wettstein P, Strome SE. Development and immunophenotyping of squamous cell carcinoma xenografts: tools for translational immunology. Laryngoscope 2005; 115:1154-62. [PMID: 15995500 DOI: 10.1097/01.mlg.0000165368.81032.e2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES/HYPOTHESIS The objectives of this study were to delineate methods for the development of primary squamous cell carcinoma (SCCHN) xenografts and to define human leukocyte antigen (HLA), melanoma-associated antigen (MAGE)-A3, and human papilloma virus (HPV) 16 antigenic expression in resultant cellular products. STUDY DESIGN Prospective experimental model. METHODS Freshly isolated SCCHN xenografts were established in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice using a variety of methods. Resultant tumors were analyzed for expression patterns of HLA-A, MAGE-A3, and HPV 16. Appropriate controls were included to ensure the presence of human RNA. RESULTS Three xenografts were successfully established and passaged in vivo. Characterization of the resultant products revealed that one was positive for HLA-A2 at both the DNA and protein levels. One of the tumor lines expressed MAGE-A3, whereas none expressed HPV 16. CONCLUSIONS Freshly isolated SCCHN can be used to generate primary xenografts. Characterization of select patterns of protein expression in established xenografts is a precursor to the development of a mouse model for SCCHN using tumor bearing animals reconstituted with autologous patient leukocytes.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor/immunology
- Cell Line, Tumor/pathology
- DNA, Neoplasm/genetics
- DNA, Neoplasm/immunology
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- Immunohistochemistry
- Immunophenotyping/methods
- Mice
- Mice, Inbred NOD
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Transplantation/immunology
- Neoplasm Transplantation/pathology
- Papillomaviridae/genetics
- Papillomaviridae/immunology
- Prospective Studies
- RNA
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- RNA, Neoplasm/genetics
- RNA, Neoplasm/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Wei Lin
- Department of Otorhinolaryngology--Head and Neck Surgery, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Globally, carcinomas of the anogenital tract, in particular cervical cancer, remain some of the most common cancers in women, cervical cancer represents the second most frequent gynecological malignancy and the third leading cause of cancer-related death in women worldwide. The causal relationship between human papilomavirus (HPV) infection and anogenital cancer has prompted substantial interest in the development of both preventive and therapeutic vaccines against high-risk HPV types. In the past decade, several groups have shown encouraging results using experimental vaccination systems in animal models and these results have led to several current prophylactic and therapeutic vaccine clinical trials in humans. Prophylactic vaccination focuses on the induction of high titer neutralizing antibodies that are potentially protective against incident and persistent HPV infection. Two major phase II clinical trials conducted by pharmaceutical companies have demonstrated that their vaccines have 100% efficacy in preventing persistent viral DNA and its associated cellular abnormalities; however, whether they induce long-lasting protective immunity is yet to be determined. At least one US FDA approved prophylactic vaccine targeting the two most common high-risk HPVs is expected to be on the market within the next 2-3 years. Nevertheless, significant reductions in the frequency and onset of cytologic screening and incidences of HPV-related lesions are not expected to become apparent for decades due to the fact that there will be women who are already infected with HPV, the long latency period between infection and development of high-grade lesions, and lesions associated with other high-risk HPV types not being included in the vaccines. Therapeutic vaccines aim to control HPV-associated malignancies by stimulating cellular immune responses that target established HPV infections via viral proteins. Progress in the field of HPV immunotherapy has remained elusive, with clinical trials being limited to small numbers of patients. Potential treatment of precancerous lesions is unique to HPV-associated infection and cancer because of cytologic monitoring and HPV typing. Unlike more common surgical treatments for cervical lesions, active immunotherapy has the potential to address HPV persistence as the cause of lesion development in addition to leaving the patient with long-term immunity that can be reactivated if and when the patient becomes reinfected.
Collapse
Affiliation(s)
- Diane M Da Silva
- Norris Comprehensive Cancer Center and Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, USA
| | - W Martin Kast
- Norris Comprehensive Cancer Center and Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
44
|
Abstract
Human papillomavirus (HPV) infections are a leading cause of virus-associated cancers of the anogenital, oropharyneal and cutaneous epithelium. The most prevalent of these is cervical cancer, which is responsible for approximately 500,000 deaths annually worldwide. A group of about 15 serologically unrelated 'high-risk' HPV types are responsible for almost all HPV-associated cancers. Prevention of papillomavirus infection can be achieved by induction of capsid-specific neutralising antibodies in preclinical animal papillomavirus models and in recent human clinical trials. High titres of conformationally-dependent, type-specific HPV-neutralising antibodies are triggered by HPV virus-like particle (VLP) vaccines. Overcoming the problems of type-specificity of the responses to these VLP vaccines is a potentially important area of current HPV vaccine research, with an emphasis on induction of more broadly cross-protective neutralising responses. Viral oncogenes E6 and E7 are continuously present in HPV-associated cancers and are prime targets for HPV therapeutic vaccines. A variety of approaches are being tested in therapeutic vaccine clinical trials and in various preclinical animal papillomavirus models for efficacy. Approaches include genetic vaccines, recombinant virus vaccines, dendritic cell-based strategies, immunomodulatory strategies and various combination strategies to maximise cell-mediated immunity to papillomavirus proteins present in HPV infections and cancers. The success of preventive HPV VLP vaccines in clinical trials is clear. However, current therapeutic vaccine trials are less effective with respect to disease clearance. Nevertheless, a series of combination approaches have shown significant therapeutic enhancement in preclinical papillomavirus models and await testing in patient populations to determine the most effective strategy. There is much encouragement that HPV vaccines will be the most effective approach to prevention and cure of infections caused by this group of viruses, which re-present a significant human pathogen.
Collapse
Affiliation(s)
- Neil D Christensen
- The Pennsylvania State University College of Medicine, The Department of Microbiology and Immunology, Hershey, PA 17033, USA.
| |
Collapse
|
45
|
Padilla-Paz LA. Human Papillomavirus Vaccine: History, Immunology, Current Status, and Future Prospects. Clin Obstet Gynecol 2005; 48:226-40. [PMID: 15725875 DOI: 10.1097/01.grf.0000151585.16357.e6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Doan T, Herd K, Ramshaw I, Thomson S, Tindle RW. A polytope DNA vaccine elicits multiple effector and memory CTL responses and protects against human papillomavirus 16 E7-expressing tumour. Cancer Immunol Immunother 2005; 54:157-71. [PMID: 15480657 PMCID: PMC11034317 DOI: 10.1007/s00262-004-0544-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 03/22/2004] [Indexed: 11/27/2022]
Abstract
Vaccine-induced CD8 T cells directed to tumour-specific antigens are recognised as important components of protective and therapeutic immunity against tumours. Where tumour antigens have pathogenic potential or where immunogenic epitopes are lost from tumours, development of subunit vaccines consisting of multiple individual epitopes is an attractive alternative to immunising with whole tumour antigen. In the present study we investigate the efficacy of two DNA-based multiepitope ('polytope') vaccines containing murine (H-2b) and human (HLA-A*0201)-restricted epitopes of the E7 oncoprotein of human papillomavirus type 16, in eliciting tumour-protective cytotoxic T-lymphocyte (CTL) responses. We show that the first of these polytopes elicited powerful effector CTL responses (measured by IFN-gamma ELISpot) and long-lived memory CTL responses (measured by functional CTL assay and tetramers) in immunised mice. The responses could be boosted by immunisation with a recombinant vaccinia virus expressing the polytope. Responses induced by immunisation with polytope DNA alone partially protected against infection with recombinant vaccinia virus expressing the polytope. Complete protection was afforded against challenge with an E7-expressing tumour, and reduced growth of nascent tumours was observed. A second polytope differing in the exact composition and order of CTL epitopes, and lacking an inserted endoplasmic reticulum targeting sequence and T-helper epitope, induced much poorer CTL responses and failed to protect against tumour challenge. These observations indicate the validity of a DNA polytope vaccine approach to human papillomavirus E7-associated carcinoma, and underscore the importance of design in polytope vaccine construction.
Collapse
Affiliation(s)
- Tracy Doan
- Sir Albert Sakzewski Virus Research Centre, Clinical Medical Virology Centre, Royal Children’s Hospital, University of Queensland, Herston Road, Herston, Brisbane, QLD 4029 Australia
| | - Karen Herd
- Sir Albert Sakzewski Virus Research Centre, Clinical Medical Virology Centre, Royal Children’s Hospital, University of Queensland, Herston Road, Herston, Brisbane, QLD 4029 Australia
| | - Ian Ramshaw
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Scott Thomson
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Robert W. Tindle
- Sir Albert Sakzewski Virus Research Centre, Clinical Medical Virology Centre, Royal Children’s Hospital, University of Queensland, Herston Road, Herston, Brisbane, QLD 4029 Australia
| |
Collapse
|
47
|
|
48
|
Routes JM, Morris K, Ellison MC, Ryan S. Macrophages kill human papillomavirus type 16 E6-expressing tumor cells by tumor necrosis factor alpha- and nitric oxide-dependent mechanisms. J Virol 2005; 79:116-23. [PMID: 15596807 PMCID: PMC538740 DOI: 10.1128/jvi.79.1.116-123.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 08/20/2004] [Indexed: 12/25/2022] Open
Abstract
The expression of adenovirus serotype 2 or 5 (Ad2/5) E1A sensitizes cells to killing by NK cells and activated macrophages, a property that correlates with the ability of E1A to bind the transcriptional coadaptor proteins p300-CBP. The E6 oncoproteins derived from the high-risk human papillomaviruses (HPV) interact with p300 and can complement mutant forms of E1A that cannot interact with p300 to induce cellular immortalization. Therefore, we determined if HPV type 16 (HPV16) E6 could sensitize cells to killing by macrophages and NK cells. HPV16 E6 expression sensitized human (H4 and C33A) and murine (MCA-102) cell lines to lysis by macrophages but not by NK cells. The lysis of cells that expressed E6 by macrophages was p53 independent but dependent on the production of tumor necrosis factor alpha (TNF-alpha) or nitric oxide (NO) by macrophages. Unlike cytolysis assays with macrophages, E6 expression did not significantly sensitize cells to lysis by the direct addition of NO or TNF-alpha. Like E1A, E6 has been reported to sensitize cells to lysis by TNF-alpha by inhibiting the TNF-alpha-induced activation of NF-kappaB. We found that E1A, but not E6, blocked the TNF-alpha-induced activation of NF-kappaB, an activity that correlated with E1A-p300 binding. In summary, Ad5 E1A and HPV16 E6 sensitized cells to lysis by macrophages. Unlike E1A, E6 did not block the ability of TNF-alpha to activate NF-kappaB or sensitize cells to lysis by NK cells, TNF-alpha, or NO. Thus, there appears to be a spectrum of common and unique biological activities that result as a consequence of the interaction of E6 or E1A with p300-CBP.
Collapse
Affiliation(s)
- John M Routes
- Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
| | | | | | | |
Collapse
|
49
|
Bendle GM, Holler A, Pang LK, Hsu S, Krampera M, Simpson E, Stauss HJ. Induction of Unresponsiveness Limits Tumor Protection by Adoptively Transferred MDM2-Specific Cytotoxic T Lymphocytes. Cancer Res 2004; 64:8052-6. [PMID: 15520215 DOI: 10.1158/0008-5472.can-04-0630] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There is evidence showing that high avidity CTLs can be more effective than low avidity CTLs for adoptive tumor immunotherapy. Because many T cell-recognized tumor antigens are nonmutated self-proteins, tolerance mechanisms are likely to render high avidity T cells unresponsive or cause T cell elimination by clonal deletion. We recently used the allo-restricted strategy to circumvent immunologic tolerance to a ubiquitously expressed tumor-associated protein, MDM2, and raised high avidity CTLs in humans and in mice. In this study, we investigated whether high avidity MDM2-specific CTLs can mediate tumor protection without causing damage to normal tissues in mice. Although the CTLs prolonged survival of tumor-bearing mice without causing damage to normal tissues, tumor protection was incomplete. We show that tumor growth occurred despite the continued presence of MDM2-specific CTLs and the continued susceptibility of tumor cells to CTL killing. However, analysis of the CTLs revealed that they had been rendered unresponsive in vivo because they did not produce interferon gamma in response to antigen-specific stimulation. These experiments suggest that induction of unresponsiveness may be an important mechanism limiting the efficacy of adoptive CTL therapy.
Collapse
Affiliation(s)
- Gavin M Bendle
- Department of Immunology, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
50
|
Gavioli R, Gallerani E, Fortini C, Fabris M, Bottoni A, Canella A, Bonaccorsi A, Marastoni M, Micheletti F, Cafaro A, Rimessi P, Caputo A, Ensoli B. HIV-1 tat protein modulates the generation of cytotoxic T cell epitopes by modifying proteasome composition and enzymatic activity. THE JOURNAL OF IMMUNOLOGY 2004; 173:3838-43. [PMID: 15356131 DOI: 10.4049/jimmunol.173.6.3838] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tat, the trans activation protein of HIV, is produced early upon infection to promote and expand HIV replication and transmission. However, Tat appears to also have effects on target cells, which may affect Ag recognition both during infection and after vaccination. In particular, Tat targets dendritic cells and induces their maturation and Ag-presenting functions, increasing Th1 T cell responses. We show in this work that Tat modifies the catalytic subunit composition of immunoproteasomes in B and T cells either expressing Tat or treated with exogenous biological active Tat protein. In particular, Tat up-regulates latent membrane protein 7 and multicatalytic endopeptidase complex like-1 subunits and down-modulates the latent membrane protein 2 subunit. These changes correlate with the increase of all three major proteolytic activities of the proteasome and result in a more efficient generation and presentation of subdominant MHC-I-binding CTL epitopes of heterologous Ags. Thus, Tat modifies the Ag processing and modulates the generation of CTL epitopes. This may have an impact on both the control of virally infected cells during HIV-1 infection and the use of Tat for vaccination strategies.
Collapse
MESH Headings
- Antigen Presentation/immunology
- Catalytic Domain
- Cell Line, Transformed
- Cysteine Endopeptidases/isolation & purification
- Cysteine Endopeptidases/metabolism
- Cytotoxicity Tests, Immunologic
- Enzyme Activation/immunology
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Epstein-Barr Virus Nuclear Antigens/biosynthesis
- Epstein-Barr Virus Nuclear Antigens/immunology
- Epstein-Barr Virus Nuclear Antigens/metabolism
- Gene Products, tat/biosynthesis
- Gene Products, tat/genetics
- Gene Products, tat/physiology
- Genetic Vectors
- HIV-1/immunology
- Humans
- Hydrolysis
- Immunodominant Epitopes/biosynthesis
- Immunodominant Epitopes/immunology
- Immunodominant Epitopes/metabolism
- Jurkat Cells
- Lymphocyte Activation/immunology
- Multienzyme Complexes/isolation & purification
- Multienzyme Complexes/metabolism
- Peptide Fragments/biosynthesis
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Proteasome Endopeptidase Complex
- Protein Subunits/isolation & purification
- Protein Subunits/metabolism
- T-Lymphocytes, Cytotoxic/enzymology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
- tat Gene Products, Human Immunodeficiency Virus
Collapse
|