1
|
Du F, Ye Z, He A, Yuan J, Su M, Jia Q, Wang H, Yang P, Yang Z, Ning P, Wang Z. An engineered α1β1 integrin-mediated FcγRI signaling component to control enhanced CAR macrophage activation and phagocytosis. J Control Release 2025; 377:689-703. [PMID: 39617174 DOI: 10.1016/j.jconrel.2024.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Treatment of solid tumors remains difficult, and therefore there has been increased focus on chimeric antigen receptor macrophages (CAR-M) to challenge solid tumors. However, CAR domain design of of adoptive cell therapy, which leads to differences in antitumor activity and triggered antitumor potential, remains poorly understood for macrophages. We developed an α1β1 integrin-mediated Fc-gamma receptor I (FcγRI) signaling component for CAR-M specific activation and its antitumor potential. We evaluated CAR-M effects with α1β1 integrin-mediated FcγRI signaling (ACT CAR-M) on the activation and antitumor phagocytic response of macrophages in vitro. Subcutaneous tumor model in BALB/c mice and carcinomatosis model in immunodeficient mice were used to test the antitumor effect of ACT CAR-M compared with CD3ζ CAR-M. The α1β1 integrin-mediated FcγRI signaling engagement of CAR-M was associated with enhanced macrophage activation and specific phagocytosis in primary human macrophages, and significantly improved tumor control and survival in multiple cancer models when compared to CD3ζ CAR-M. RNA-sequencing suggested that α1β1 integrin-mediated FcγRI engagement increased antitumor immunity by enhancing pro-inflammatory M1 phenotype-associated pathways, such as Toll-like receptor signaling, tumor necrosis factor signaling, and IL-17 signaling. α1β1 integrin-mediated FcγRI signaling engagement markedly enhanced antitumor effects of CAR-M immunotherapy, which is proposed as an advanced engineering CAR domain material to expand the clinical application of CAR-M.
Collapse
Affiliation(s)
- Fuyu Du
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Zixuan Ye
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Anna He
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Jingtong Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Maozhi Su
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Qingan Jia
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710038, China
| | - Huaiyu Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Peng Yang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Zuo Yang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| | - Zhongliang Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| |
Collapse
|
2
|
Grenier C, Lin IH, Peters D, Pozzi A, Lennon R, Naylor RW. Integrin alpha1 beta1 promotes interstitial fibrosis in a mouse model of polycystic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619080. [PMID: 39484448 PMCID: PMC11526950 DOI: 10.1101/2024.10.18.619080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Fibrosis is the cause of end-stage kidney failure in patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD). The molecular and cellular mechanisms involved in fibrosis are complex and anti-fibrotic therapies have so far failed to make an impact on patient welfare. Using unbiased proteomics analysis on the Pkd1 nl/nl mouse, we found that expression of the integrin α1 subunit is increased in this model of ADPKD. In human ADPKD tissue and two single cell RNA kidney disease datasets, ITGA1 was also upregulated. To investigate the functional role of this integrin subunit in ADPKD, we generated a Pkd1 nl/nl Itga1 -/- mouse. We observed a significant reduction in kidney volume and kidney dysfunction in mice lacking the integrin α1 subunit. Kidneys from Pkd1 nl/nl Itga1 -/- mice had smaller cysts and reduced interstitial expansion and tubular atrophy. Picrosirius red staining identified a restriction in collagen staining in the interstitium and the myofibroblast marker α smooth muscle actin was also downregulated. Myofibroblast cell proliferation was reduced in Pkd1 nl/nl Itga1 -/- mice and primary fibroblast cultures demonstrated an abrogated fibrogenic phenotype in integrin α1-depleted fibroblasts. These results highlight a previously unrecognised role for the integrin α1 subunit in kidney fibrosis.
Collapse
Affiliation(s)
- C Grenier
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - I-H Lin
- Bioinformatics Core Facility, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Djm Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - A Pozzi
- Department of Medicine, Division of Nephrology and Hypertension
- Department of Veterans Affairs, Nashville, Tennessee, USA
| | - R Lennon
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - R W Naylor
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Zhou Y, Wu Y. Substrate Viscoelasticity Amplifies Distinctions between Transient and Persistent LPS-Induced Signals. Adv Healthc Mater 2022; 11:e2102271. [PMID: 34855279 DOI: 10.1002/adhm.202102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/22/2021] [Indexed: 01/18/2023]
Abstract
Macrophages settle in heterogeneous microenvironments rendered by other cells and extracellular matrices. It is well known that chemical stimuli direct macrophage behavior; however, the contributions of viscosity, which increases in inflammatory tissues but not in tumors, are ignored in immune responses including effective activation and timely attenuation. This paper demonstrates that transient lipopolysaccharide (LPS)-treated macrophages benefit from elastic substrates, whereas viscoelastic substrates with similar storage moduli support the inflammatory responses of macrophages under persistent stimulations and consequently amplify the distinctions between the transient and persistent LPS-induced transcriptional programs. Actin filaments (F-actin) fluctuate in line with transcriptional profiles and can be mathematically predicted by a clutch-like model. Moreover, viscosity modifies immune responses through transcription factors NF-κB and C/EBPδ, which act as switches discriminating transient and persistent infections. Interestingly, enhanced immune responses, consistent with the lower activated states, are attenuated promptly by the actin nucleation-related translocation of ATF3 to nuclei. These findings suggest that the substrate viscoelasticity induces more intense inflammation only in the case of persistent infection and promotes more sensitively perceiving the duration of infection through the F-actin correlated transcription factors. In addition, it may facilitate the cognition of immune response in inflammatory and cancerous microenvironments and have a wide range of applications in inflammatory regulations.
Collapse
Affiliation(s)
- Yu‐Wei Zhou
- Department of Engineering Mechanics School of Aeronautics and Astronautics Zhejiang University Hangzhou Zhejiang 310027 China
| | - Yu Wu
- Department of Engineering Mechanics School of Aeronautics and Astronautics Zhejiang University Hangzhou Zhejiang 310027 China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province Zhejiang University Hangzhou Zhejiang 310027 China
- Soft Matter Research Center Zhejiang University Hangzhou Zhejiang 310027 China
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
4
|
Banerjee S, Nara R, Chakraborty S, Chowdhury D, Haldar S. Integrin Regulated Autoimmune Disorders: Understanding the Role of Mechanical Force in Autoimmunity. Front Cell Dev Biol 2022; 10:852878. [PMID: 35372360 PMCID: PMC8971850 DOI: 10.3389/fcell.2022.852878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of autoimmune disorders is multifactorial, where immune cell migration, adhesion, and lymphocyte activation play crucial roles in its progression. These immune processes are majorly regulated by adhesion molecules at cell–extracellular matrix (ECM) and cell–cell junctions. Integrin, a transmembrane focal adhesion protein, plays an indispensable role in these immune cell mechanisms. Notably, integrin is regulated by mechanical force and exhibit bidirectional force transmission from both the ECM and cytosol, regulating the immune processes. Recently, integrin mechanosensitivity has been reported in different immune cell processes; however, the underlying mechanics of these integrin-mediated mechanical processes in autoimmunity still remains elusive. In this review, we have discussed how integrin-mediated mechanotransduction could be a linchpin factor in the causation and progression of autoimmune disorders. We have provided an insight into how tissue stiffness exhibits a positive correlation with the autoimmune diseases’ prevalence. This provides a plausible connection between mechanical load and autoimmunity. Overall, gaining insight into the role of mechanical force in diverse immune cell processes and their dysregulation during autoimmune disorders will open a new horizon to understand this physiological anomaly.
Collapse
|
5
|
Eckert IN, Ribechini E, Jarick KJ, Strozniak S, Potter SJ, Beilhack A, Lutz MB. VLA-1 Binding to Collagen IV Controls Effector T Cell Suppression by Myeloid-Derived Suppressor Cells in the Splenic Red Pulp. Front Immunol 2021; 11:616531. [PMID: 33584706 PMCID: PMC7873891 DOI: 10.3389/fimmu.2020.616531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a major population controlling T cell immune responses. However, little is known about their molecular requirements for homing and T cell interaction to mediate suppression. Here, we investigated the functional role of the homing and collagen IV receptor VLA-1 (α1β1-integrin) on in vitro GM-CSF generated murine MDSCs from wild-type (WT) and CD49a/α1-integrin (Itga1−/−) gene-deficient mice. Here, we found that effector (Teff) but not naive (Tn) CD4+ T cells express VLA-1 and monocytes further up-regulated their expression after culture in GM-CSF when they differentiated into the monocytic subset of resting MDSCs (R-MDSCs). Subsequent activation of R-MDSCs by LPS+IFN-γ (A-MDSCs) showed increased in vitro suppressor potential, which was independent of VLA-1. Surprisingly, VLA-1 deficiency did not influence A-MDSC motility or migration on collagen IV in vitro. However, interaction times of Itga1−/− A-MDSCs with Teff were shorter than with WT A-MDSCs on collagen IV but not on fibronectin substrate in vitro. After injection, A-MDSCs homed to the splenic red pulp where they co-localized with Teff and showed immediate suppression already after 6 h as shown by inhibition of T cell proliferation and induction of apoptosis. Injection of A-MDSCs from Itga1−/− mice showed equivalent homing into the spleen but a reduced suppressive effect. Interaction studies of A-MDSCs with Teff in the subcapsular red pulp with intravital two-photon microscopy revealed also here that MDSC motility and migration parameters were not altered by VLA-1 deficiency, but the interaction times with Teff were reduced. Together, our data point to a new role of VLA-1 adhesion to collagen IV as a prerequisite for extended contact times with Teff required for suppression.
Collapse
Affiliation(s)
- Ina N Eckert
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Eliana Ribechini
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Katja J Jarick
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Sandra Strozniak
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Sarah J Potter
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Kong BS, Kim Y, Kim GY, Hyun JW, Kim SH, Jeong A, Kim HJ. Increased frequency of IL-6-producing non-classical monocytes in neuromyelitis optica spectrum disorder. J Neuroinflammation 2017; 14:191. [PMID: 28946890 PMCID: PMC5613387 DOI: 10.1186/s12974-017-0961-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory disease of the central nervous system that preferentially affects the optic nerves, spinal cord, and area postrema. A series of evidence suggested that B cells play a fundamental role in the pathogenesis of NMOSD. However, there are still gaps left to be answered in NMOSD pathogenesis suggesting the roles of other immune cells. This study aimed to investigate the monocyte inflammatory characteristics, monocyte subset frequency and cytokine production, and cell-surface molecule expression in NMOSD, multiple sclerosis (MS), and healthy controls (HC). METHODS Peripheral blood mononuclear cells of 20 aquaporin 4IgG-positive NMOSD patients, 20 MS patients, and 20 healthy controls were collected to analyze the monocyte subsets and to purify monocytes. To mimic the adaptive immunity, we have activated the monocytes using CD40L and IFN-γ to observe the production of cytokines and expression of cell-surface molecules. RESULTS NMOSD monocytes showed a remarkable increase in the production of pro-inflammatory cytokines (IL-6, IL-1β) and increased expression of cell-surface molecules (CD80, HLA, ICAM-1, CD16), as well as a decrease in the levels of anti-inflammatory cytokine IL-10, compared to healthy control (HC) monocytes. As expected, MS monocytes also exhibit increased inflammatory cytokine production and increased cell-surface molecule expression compared to HC monocytes. Further analysis of monocyte subsets revealed that NMOSD monocytes have an increased frequency of the non-classical monocyte subset (CD14+CD16++) and a decreased frequency of the classical monocyte subset (CD14++CD16+) compared to HC monocytes. This finding was distinctly different from that of MS monocytes, which had an increased intermediate monocyte (CD14+CD16+) subset. In addition, these NMOSD non-classical monocyte subsets were highly dedicated, IL-6-producing monocytes. CONCLUSIONS Increased expression of cell-surface molecules and a reciprocal dysregulation of inflammatory and anti-inflammatory cytokines in NMOSD monocytes suggest an altered monocyte inflammatory response. CD14+CD16++ non-classical monocyte subset was more abundant in NMOSD monocytes than in HC or MS monocytes, and NMOSD non-classical monocyte subset had dysregulated IL-6 production, a phenotype which has been reported to be highly associated with NMOSD pathogenesis.
Collapse
Affiliation(s)
- Byung Soo Kong
- Division of Clinical Research, Research Institute and Hospital of the National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, 10408, South Korea
| | - Yeseul Kim
- Division of Clinical Research, Research Institute and Hospital of the National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, 10408, South Korea
| | - Ga Young Kim
- Division of Clinical Research, Research Institute and Hospital of the National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, 10408, South Korea
| | - Jae-Won Hyun
- Department of Neurology, Research Institute and Hospital of the National Cancer Center, Goyang, South Korea
| | - Su-Hyun Kim
- Department of Neurology, Research Institute and Hospital of the National Cancer Center, Goyang, South Korea
| | - Aeran Jeong
- Department of Neurology, Research Institute and Hospital of the National Cancer Center, Goyang, South Korea
| | - Ho Jin Kim
- Division of Clinical Research, Research Institute and Hospital of the National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, 10408, South Korea. .,Department of Neurology, Research Institute and Hospital of the National Cancer Center, Goyang, South Korea.
| |
Collapse
|
7
|
Ghatak S, Niland S, Schulz JN, Wang F, Eble JA, Leitges M, Mauch C, Krieg T, Zigrino P, Eckes B. Role of Integrins α1β1 and α2β1 in Wound and Tumor Angiogenesis in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3011-3027. [DOI: 10.1016/j.ajpath.2016.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/01/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022]
|
8
|
Lee KJ, Lim D, Yoo YH, Park EJ, Lee SH, Yadav BK, Lee YK, Park JH, Kim D, Park KH, Hahn JH. Paired Ig-Like Type 2 Receptor-Derived Agonist Ligands Ameliorate Inflammatory Reactions by Downregulating β1 Integrin Activity. Mol Cells 2016; 39:557-65. [PMID: 27306643 PMCID: PMC4959021 DOI: 10.14348/molcells.2016.0079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 11/27/2022] Open
Abstract
The paired immunoglobulin-like type 2 receptor (PILR) family consists of two functionally opposite members, inhibitory PILRα and activating PILRβ receptors. PILRs are widely expressed in various immune cells and interact with their ligands, especially CD99 expressed on activated T cells, to participate in immune responses. Here we investigated whether PILR-derived agonists inhibit β1 integrin activity as ligands for CD99. PILR-derived peptides as well as PILR-Fc fusion proteins prevented cell adhesion to fibronectin through the regulation of β1 integrin activity. Especially, PILRpep3, a representative 3-mer peptide covering the conserved motifs of the PILR extracellular domain, prevented the clustering and activation of β1 integrin by dephosphorylating FAK and vinculin, which are major components of focal adhesion. In addition, PILRpep3 inhibited transendothelial migration of monocytes as well as endothelial cell tube formation. Furthermore, upon intraperitoneal injection of PILRpep3 into mice with collagen-induced arthritis, the inflammatory response of rheumatoid arthritis was strongly suppressed. Taken together, these results suggest that PILR-derived agonist ligands may prevent the inflammatory reactions of rheumatoid arthritis by activating CD99.
Collapse
Affiliation(s)
- Kyoung-Jin Lee
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Dongyoung Lim
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Yeon Ho Yoo
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Eun-Ji Park
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Sun-Hee Lee
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Birendra Kumar Yadav
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Yong-Ki Lee
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Jeong Hyun Park
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Daejoong Kim
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Kyeong Han Park
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Jang-Hee Hahn
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| |
Collapse
|
9
|
Abstract
Integrins play an important role in cell adhesion to the extracellular matrix and other cells. Upon ligand binding, signaling is initiated and several intracellular pathways are activated. This leads to a wide variety of effects, depending on cell type. Integrin activation has been linked to proliferation, secretion of matrix-degrading enzymes, cytokine production, migration, and invasion. Dysregulated integrin expression is often found in malignant disease. Tumors use integrins to evade apoptosis or metastasize, indicating that integrin signaling has to be tightly controlled. During the course of rheumatoid arthritis, the synovial tissue is infiltrated by immune cells that secrete large amounts of cytokines. This pro-inflammatory milieu leads to an upregulation of integrin receptors and their ligands in the synovial tissue. As a consequence, integrin signaling is enhanced, leading to enhanced production of matrix-degrading enzymes and cytokines. Furthermore, in analogy to invading tumors, synovial fibroblasts start invading and degrading cartilage, thereby generating extracellular matrix debris that can further activate integrins.
Collapse
Affiliation(s)
- Torsten Lowin
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Franz-Josef Strauß Allee 11, 93053 Regensburg, Germany.
| | | |
Collapse
|
10
|
Kavanagh OV, Ajami NJ, Cheng E, Ciarlet M, Guerrero RA, Zeng CQY, Crawford SE, Estes MK. Rotavirus enterotoxin NSP4 has mucosal adjuvant properties. Vaccine 2010; 28:3106-11. [PMID: 20197138 DOI: 10.1016/j.vaccine.2010.02.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 02/08/2010] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
Abstract
Rotavirus nonstructural protein 4 (NSP4) is a protein with pleiotropic properties. It functions in rotavirus morphogenesis, pathogenesis, and is the first described viral enterotoxin. Since many bacterial toxins function as potent mucosal adjuvants, we evaluated whether baculovirus-expressed recombinant simian rotavirus SA11 NSP4 possesses adjuvant activity by co-administering NSP4 with keyhole limpet hemocyanin (KLH), tetanus toxoid (TT) or ovalbumin (OVA) as model antigens in mice. Following intranasal immunization, NSP4 significantly enhanced both systemic and mucosal immune responses to model immunogens, as compared to the control group, in an antigen-specific manner. Both full-length and a cleavage product of SA11 NSP4 had adjuvant activity, localizing this activity to the C-terminus of the protein. NSP4 forms from virulent and avirulent porcine rotavirus OSU strain, and SA11 NSP4 localized within a 2/6-virus-like particle (VLP) also exhibited adjuvant effects. These studies suggest that the rotavirus enterotoxin NSP4 can function as an adjuvant to enhance immune responses for a co-administered antigen.
Collapse
Affiliation(s)
- Owen V Kavanagh
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Adiguzel E, Ahmad PJ, Franco C, Bendeck MP. Collagens in the progression and complications of atherosclerosis. Vasc Med 2009; 14:73-89. [PMID: 19144782 DOI: 10.1177/1358863x08094801] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Collagens constitute a major portion of the extracellular matrix in the atherosclerotic plaque, where they contribute to the strength and integrity of the fibrous cap, and also modulate cellular responses via specific receptors and signaling pathways. This review focuses on the diverse roles that collagens play in atherosclerosis; regulating the infiltration and differentiation of smooth muscle cells and macrophages; controlling matrix remodeling through feedback signaling to proteinases; and influencing the development of atherosclerotic complications such as plaque rupture, aneurysm formation and calcification. Expanding our understanding of the pathways involved in cell-matrix interactions will provide new therapeutic targets and strategies for the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Eser Adiguzel
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
12
|
Heron M, Grutters JC, van Velzen-Blad H, Veltkamp M, Claessen AM, van den Bosch JM. Increased Expression of CD16, CD69, and Very Late Antigen-1 on Blood Monocytes in Active Sarcoidosis. Chest 2008; 134:1001-1008. [DOI: 10.1378/chest.08-0443] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
13
|
Taylor JL, Bielefeldt-Ohmann H, Pozzi A, Izzo AA. Lack of alpha-1 integrin alters lesion morphology during pulmonary Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2008; 88:444-52. [PMID: 18639492 PMCID: PMC2613756 DOI: 10.1016/j.tube.2008.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 05/01/2008] [Accepted: 05/19/2008] [Indexed: 11/16/2022]
Abstract
The hallmark of Mycobacterium tuberculosis infection is the granuloma, a highly dynamic immune structure that contains the bacilli during chronic infection. Here, we examined if alpha1beta1 integrin is required in the development and maintenance of the granulomatous structure during pulmonary infection using the alpha1 integrin knockout (alpha1-null) mouse. The alpha1beta1 integrin is expressed on activated macrophages and T cells, and interacts with collagen molecules in the extracellular matrix (ECM), and thus may play a role in the granulomatous process. Following pulmonary infection with virulent M. tuberculosis, lungs of alpha1-null infected mice had striking differences in granuloma structure, as well as distinct and markedly thickened alveolar septae. By day 180, there were regions of cell death within granulomatous lesions, characterized by cellular debris in these mice. To determine if this molecule was necessary for T cell trafficking within the lungs, the expression of CD4, CD44 and CD62L was monitored. The number of activated and IFN-gamma-producing CD4+ T cells increased in the lungs of alpha1-null mice during the chronic phase of infection, although they had decreased concentrations of TNF-alpha and MMP-9. These results suggest that while alpha1beta1 integrin is not required for trafficking or maintenance of T cells in M. tuberculosis infected lungs, it does play a role in granuloma structure and integrity during the chronic phase of infection.
Collapse
Affiliation(s)
- Jennifer L Taylor
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | |
Collapse
|
14
|
Woodside DG, Vanderslice P. Cell adhesion antagonists: therapeutic potential in asthma and chronic obstructive pulmonary disease. BioDrugs 2008; 22:85-100. [PMID: 18345706 DOI: 10.2165/00063030-200822020-00002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are inflammatory diseases of the lung where a hallmark feature is excessive leukocyte infiltration that leads to tissue injury. Cell adhesion molecules (e.g. selectins and integrins) play a key role in cell trafficking, and in the lung they regulate leukocyte extravasation, migration within the interstitium, cellular activation, and tissue retention. All selectin family members (including L-selectin, P-selectin, and E-selectin) and many of the beta1 and beta2 integrins appear to be important therapeutic targets, as numerous animal studies have demonstrated essential roles for these cell adhesion molecules in lung inflammation. Not surprisingly, these families of adhesion molecules have been under intense investigation by the pharmaceutical industry for the development of novel therapeutics. Integrins are validated drug targets, as drugs that antagonize integrin alphaIIbbeta3 (e.g. abciximab), integrin alphaLbeta2 (efalizumab), and integrin alpha4beta1 (natalizumab) are currently US FDA-approved for acute coronary syndromes, psoriasis, and multiple sclerosis, respectively. However, none has been approved for indications related to asthma or COPD. Here, we provide an overview of roles played by selectins and integrins in lung inflammation. We also describe recent clinical results (both failures and successes) in developing adhesion molecule antagonists, with specific emphasis on those targets that may have potential benefit in asthma and COPD. Early clinical trials using selectin and integrin antagonists have met with limited success. However, recent positive phase II clinical trials with a small-molecule selectin antagonist (bimosiamose) and a small-molecule integrin alpha4beta1 antagonist (valategrast [R411]), have generated enthusiastic anticipation that novel strategies to treat asthma and COPD may be forthcoming.
Collapse
Affiliation(s)
- Darren G Woodside
- Department of Drug Discovery, Biological Sciences, Encysive Pharmaceuticals Inc., Houston, Texas, USA.
| | | |
Collapse
|
15
|
Bolduc GR, Madoff LC. The group B streptococcal alpha C protein binds alpha1beta1-integrin through a novel KTD motif that promotes internalization of GBS within human epithelial cells. MICROBIOLOGY-SGM 2008; 153:4039-4049. [PMID: 18048918 DOI: 10.1099/mic.0.2007/009134-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis and meningitis among neonates and a cause of morbidity among pregnant women and immunocompromised adults. GBS epithelial cell invasion is associated with expression of alpha C protein (ACP). Loss of ACP expression results in a decrease in GBS internalization and translocation across human cervical epithelial cells (ME180). Soluble ACP and its 170 amino acid N-terminal region (NtACP), but not the repeat protein RR', bind to ME180 cells and reduce internalization of wild-type GBS to levels obtained with an ACP-deficient isogenic mutant. In the current study, ACP colocalized with alpha(1)beta(1)-integrin, resulting in integrin clustering as determined by laser scanning confocal microscopy. NtACP contains two structural domains, D1 and D2. D1 is structurally similar to fibronectin's integrin-binding region (FnIII10). D1's (KT)D146 motif is structurally similar to the FnIII10 (RG)D1495 integrin-binding motif, suggesting that ACP binds alpha(1)beta(1)-integrin via the D1 domain. The (KT)D146A mutation within soluble NtACP reduced its ability to bind alpha(1)beta(1)-integrin and inhibit GBS internalization within ME180 cells. Thus ACP binding to human epithelial cell integrins appears to contribute to GBS internalization within epithelial cells.
Collapse
Affiliation(s)
- Gilles R Bolduc
- Department of Medicine, Brigham and Women's Hospital, 75 Fransis Street, Boston, MA 02115, USA.,Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Lawrence C Madoff
- Department of Medicine, Brigham and Women's Hospital, 75 Fransis Street, Boston, MA 02115, USA.,Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
16
|
Abstract
The collagen family of extracellular matrix proteins has played a fundamental role in the evolution of multicellular animals. At the present, 28 triple helical proteins have been named as collagens and they can be divided into several subgroups based on their structural and functional properties. In tissues, the cells are anchored to collagenous structures. Often the interaction is indirect and mediated by matrix glycoproteins, but cells also express receptors, which have the ability to directly bind to the triple helical domains in collagens. Some receptors bind to sites that are abundant in all collagens. However, increasing evidence indicates that the coevolution of collagens and cell adhesion mechanisms has given rise to receptors that bind to specific motifs in collagens. These receptors may also recognize the different members of the large collagen family in a selective manner. This review summarizes the present knowledge about the properties of collagen subtypes as cell adhesion proteins.
Collapse
Affiliation(s)
- Jyrki Heino
- Department of Biochemistry and Food Chemistry, University of Turku, Arcanum, Vatselankatu 2, FI-20014 Turku, Finland.
| |
Collapse
|
17
|
Bazan-Socha S, Bukiej A, Pulka G, Marcinkiewicz C, Musial J. Increased expression of collagen receptors: alpha1beta1 and alpha2beta1 integrins on blood eosinophils in bronchial asthma. Clin Exp Allergy 2007; 36:1184-91. [PMID: 16961719 DOI: 10.1111/j.1365-2222.2006.02540.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Eosinophils are one of the major effector cells in bronchial asthma. Their infiltration of airways correlates with the asthma severity. Recruitment and activation of eosinophils are partially mediated by integrins alpha4beta1 and alpha4beta7. Collagens type I and IV constitute important components of extracellular matrix and vascular basement membrane, respectively. Therefore, collagen-binding integrins (alpha1beta1 and alpha2beta1) may also play a role in eosinophil lung infiltration. OBJECTIVE To evaluate the possible presence of alpha1beta1 and alpha2beta1 integrins on peripheral blood eosinophils from asthmatic subjects. METHODS Collagen receptors were studied on eosinophils separated by immunomagnetic CD16-negative method from healthy donors (n=13) and patients with moderate persistent atopic bronchial asthma (n=15). Surface receptor identification was performed by flow cytometry and cell adhesion assay. RESULTS Eosinophils isolated from the patients showed increased expression of both alpha1beta1 and alpha2beta1 integrins as compared with healthy controls. Moreover, adhesive function of eosinophils to collagen type IV was inhibited by snake venom disintegrins: viperistatin and obtustatin. These disintegrins contain KTS active motif and are specific inhibitors of alpha1beta1 integrin. CONCLUSION We demonstrated for the first time that collagen receptors: alpha1beta1 and alpha2beta1 integrins are overexpressed on the surface of peripheral blood eosinophils of asthmatic subjects. Further studies may reveal potential application of KTS-disintegrins or their structural analogs for therapy of bronchial asthma.
Collapse
Affiliation(s)
- S Bazan-Socha
- Department of Medicine, Jagiellonian University School of Medicine, Krakow, Poland
| | | | | | | | | |
Collapse
|
18
|
Zweers MC, Siewe L, Wickenhauser C, Krieg T, Roers A, Eckes B. Integrin alpha2beta1 deficiency does not affect contact hypersensitivity. Arch Dermatol Res 2006; 298:201-5. [PMID: 16897075 DOI: 10.1007/s00403-006-0688-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 07/07/2006] [Accepted: 07/11/2006] [Indexed: 12/18/2022]
Abstract
Collagens in the extracellular matrix are thought to play an important role in regulating inflammatory responses by affecting cell adhesion and migration. The contact between collagens and cells is established mainly by alpha1beta1, alpha2beta1 and alpha11beta1integrin receptors. Here, we analyzed the contact hypersensitivity (CHS) reaction in mice that were genetically deficient in the collagen receptor alpha2beta1. Integrin alpha2beta1 is widely expressed and has been suggested to play an important role in mediating inflammatory responses. CHS was induced by applying dinitrofluorobenzene to abdominal skin and challenging with the same reagent on ear skin. Macroscopically and histologically, ear swelling in alpha2beta1-deficient mice did not differ from that in wild-type control mice. Immunohistological detection of infiltrated T lymphocytes, neutrophils and mast cells in inflamed ear skin revealed similar numbers in controls and integrin alpha2beta1-deficient animals. Our results suggest that the adhesive functions of integrin alpha2beta1 are dispensable for the CHS response; they may be compensated for by the collagen receptor alpha1beta1 or other collagen receptors.
Collapse
Affiliation(s)
- Manon C Zweers
- Department of Dermatology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Schapira K, Lutgens E, de Fougerolles A, Sprague A, Roemen A, Gardner H, Koteliansky V, Daemen M, Heeneman S. Genetic Deletion or Antibody Blockade of α1β1 Integrin Induces a Stable Plaque Phenotype in ApoE−/− Mice. Arterioscler Thromb Vasc Biol 2005; 25:1917-24. [PMID: 15976328 DOI: 10.1161/01.atv.0000174807.90292.2f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Adhesive interactions between cells and the extracellular matrix play an important role in inflammatory diseases like atherosclerosis. We investigated the role of the collagen-binding integrin α1β1 in atherosclerosis.
Methods and Results—
ApoE−/− mice were α1-deficient or received early or delayed anti-α1 antibody treatment. Deficiency in α1 integrin reduced the area of atherosclerotic plaques and altered plaque composition by reducing inflammation and increasing extracellular matrix. In advanced plaques, α1-deficient mice had a reduced macrophage and CD3+ cell content, collagen and smooth muscle cell content increased, lipid core sizes decreased, and cartilaginous metaplasia occurred. Anti-α1 antibody treatment reduced the macrophage content in initial plaques after early and delayed treatment, decreased the CD3+ cell content in advanced plaques after delayed treatment, and increased the collagen content in initial and advanced plaques after delayed treatment. Migration assays performed on α1-deficient macrophages on collagen I and IV substrata revealed that α1-deficient cells can migrate on collagen I, but not IV. Anti-α1 antibody treatment of ApoE−/− macrophages also inhibited migration of cells on collagen IV.
Conclusions—
Our results suggest that α1β1 integrin is involved in atherosclerosis by mediating the migration of leukocytes to lesions by adhesion to collagen IV. Blocking this integrin reduces atherosclerosis and induces a stable plaque phenotype.
Collapse
Affiliation(s)
- Kitty Schapira
- Department of Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
La Linn M, Eble JA, Lübken C, Slade RW, Heino J, Davies J, Suhrbier A. An arthritogenic alphavirus uses the α1β1 integrin collagen receptor. Virology 2005; 336:229-39. [PMID: 15892964 DOI: 10.1016/j.virol.2005.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 01/03/2005] [Accepted: 03/15/2005] [Indexed: 01/23/2023]
Abstract
Ross River (RR) virus is an alphavirus endemic to Australia and New Guinea and is the aetiological agent of epidemic polyarthritis or RR virus disease. Here we provide evidence that RR virus uses the collagen-binding alpha1beta1 integrin as a cellular receptor. Infection could be inhibited by collagen IV and antibodies specific for the beta1 and alpha1 integrin proteins, and fibroblasts from alpha1-integrin-/- mice were less efficiently infected than wild-type fibroblasts. Soluble alpha1beta1 integrin bound immobilized RR virus, and peptides representing the alpha1beta1 integrin binding-site on collagen IV inhibited virus binding to cells. We speculate that two highly conserved regions within the cell-receptor binding domain of E2 mimic collagen and provide access to cellular collagen-binding receptors.
Collapse
Affiliation(s)
- May La Linn
- The Australian Centre for International and Tropical Health and Nutrition, Brisbane, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
21
|
Ben-Horin S, Bank I. The role of very late antigen-1 in immune-mediated inflammation. Clin Immunol 2004; 113:119-29. [PMID: 15451466 DOI: 10.1016/j.clim.2004.06.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 06/21/2004] [Indexed: 12/26/2022]
Abstract
The alpha1beta1 integrin, also known as "very late antigen" (VLA)-1, is normally expressed on mesenchymal cells, some epithelial cells, activated T cells, and macrophages, and interacts, via the I-domain of the extracellular domain of the alpha1 subunit, with collagen molecules in the extracellular matrix (ECM). By "outside-in" transmembranal signaling to the interior of the cell, it mediates adhesion, migration, proliferation, remodeling of the ECM, and cytokine secretion by endothelial cells, mesangial cells, fibroblasts, and immunocytes. Importantly, its expressions and functions are enhanced by inflammatory cytokines including interferon (IFN)gamma and tumor necrosis factor (TNF)alpha, thus augmenting angiogenesis and fibrosis linked, in particular, to inflammation. Moreover, within the immune system, VLA-1 marks effector memory CD4+ and CD8+ T cells that are retained in extralymphatic tissues by interactions of the integrin with collagen and produce high levels of IFNgamma. Thus, immune-mediated inflammation in vivo is inhibited by blockade of the VLA-1-collagen interaction in experimental animal models of arthritis, colitis, nephritis, and graft versus host disease (GVHD), suggesting that inhibiting the interaction of the alpha1 I-domain with its ligands or modulating "outside-in" signaling by VLA-1 would be a useful approach in the human diseases simulated by these experimental models.
Collapse
Affiliation(s)
- Shomron Ben-Horin
- Laboratory for Immunoregulation, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | | |
Collapse
|
22
|
Bank I, Kapyla J, Grinbaum A, Doolman R, Bank J, Sela BA. Analysis of cell-free human alpha1 integrin with a monoclonal antibody to the I-domain: detection in ocular fluid and function as an adhesion substrate. CELL COMMUNICATION & ADHESION 2004; 8:113-23. [PMID: 11936186 DOI: 10.3109/15419060109080711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The alpha1 beta1 integrin, an inserted (1) domain containing collagen receptor, is expressed in the cell surface membrane of normal and malignant cells, and may play a role in their migration through tissues or in metastatic spread. Here we report that a functional anti-human alpha1beta1 integrin monoclonal antibody (mAb) (1B3.1) directly and specifically binds plastic bound recombinant human alpha1 I-domain protein containing the collagen binding site. Detection was diminished by acidification of the I-domain protein but was enhanced by increasing concentrations of Mg2+ cation. Furthermore, we detected binding of the mAb to proteins from the ocular fluids of 6 patients, with the highest concentration, corresponding to 22.1 ng/ml of I-domain, found in a sample from the eye of a patient with metastatic lung adenocarcinoma. Interestingly, we found that both SKNSH neuroblastoma cells and virally transformed human T cells adhered specifically to plastic wells coated with either immobilized collagen IV or alpha1 I-domain. MAb I B3.1 inhibited adhesion to collagen IV but not to immobilized I-domain. These results suggest a novel function for cell free alpha1 I-domain as a substrate for cellular adhesion, which may have relevance in tumor spread in vivo.
Collapse
Affiliation(s)
- I Bank
- Department of Medicine, Chaim Sheba Medical Center, Tel Hashomer, Israel.
| | | | | | | | | | | |
Collapse
|
23
|
Abraham WM, Ahmed A, Serebriakov I, Carmillo AN, Ferrant J, de Fougerolles AR, Garber EA, Gotwals PJ, Koteliansky VE, Taylor F, Lobb RR. A Monoclonal Antibody to α1β1 Blocks Antigen-induced Airway Responses in Sheep. Am J Respir Crit Care Med 2004; 169:97-104. [PMID: 14578216 DOI: 10.1164/rccm.200304-543oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The integrin alpha1beta1 (very late antigen-1; CD49a/CD29) is a major adhesion receptor for collagen I, IV, and VI, and its induced expression on activated monocytes and lymphocytes plays a central role in their retention and activation at inflammatory sites in autoimmune pathologies. However, the role of alpha1beta1 in allergic settings has not been explored. In this study, we show that a single 45-mg dose of aerosolized monoclonal antibody AQC2 to the alpha1 chain of human and sheep very late antigen-1, given 30 minutes before challenge, blocks both the allergen-induced late response and the associated airway hyperresponsiveness, functional indicators of allergen-induced inflammation, in sheep. AQC2 does not affect the early response. Consistent with these effects, AQC2 tended to reduce the cell response associated with local antigen instillation. An isotype-matched control antibody had no protective effects. Two humanized versions of AQC2, a wild-type IgG1 and an aglycosyl form of the same monoclonal antibody, which has reduced Fc receptor-mediated effector functions, are equally effective in blocking the antigen-induced late response and airway hyperresponsiveness in the sheep model. These data suggest that mononuclear leukocyte adhesion-dependent pathologies contribute to allergic lung disease and provide proof-of-concept that antagonists of alpha1 integrins may be useful in preventing these events.
Collapse
Affiliation(s)
- William M Abraham
- Division of Pulmonary Disease and Critical Care Medicine, University of Miami at Mount Sinai Medical Center, Miami Beach, Florida 33140, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Krieglstein CF, Cerwinka WH, Sprague AG, Laroux FS, Grisham MB, Koteliansky VE, Senninger N, Granger DN, de Fougerolles AR. Collagen-binding integrin alpha1beta1 regulates intestinal inflammation in experimental colitis. J Clin Invest 2003. [PMID: 12488427 DOI: 10.1172/jci200215256] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Central to inflammatory responses are the integrin-mediated adhesive interactions of cells with their ECM-rich environment. We investigated the role of the collagen-binding integrin alpha(1)beta(1) in intestinal inflammation using the mouse model of colitis induced by dextran sodium sulfate (DSS). mAb's directed against murine alpha(1) were found to significantly attenuate inflammation and injury in DSS-treated wild-type mice; similar protection was seen in mice deficient for alpha(1)beta(1) integrin. Blockade or loss of alpha(1)beta(1) was also associated with decreased mucosal inflammatory cell infiltrate and cytokine production. Importantly, we demonstrated that development and alpha(1)-mediated inhibition of DSS-induced colitis occurred independently of lymphocytes (Rag-2(-/-) mice), and identified the monocyte as a key alpha(1)beta(1)-expressing cell type involved in the development of colitis in this model. In response to DSS, both alpha(1) deficiency and anti-alpha(1) mAb treatment significantly reduced monocyte accumulation and activation within the lamina propria. In summary, the data demonstrate that engagement of leukocyte-associated alpha(1)beta(1) receptors with ECM plays a pivotal role in mediating intestinal inflammation via promotion of monocyte movement and/or activation within the inflamed interstitium. Therapeutic strategies designed to disrupt such interactions may prove beneficial in treating intestinal inflammation.
Collapse
Affiliation(s)
- Christian F Krieglstein
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Krieglstein CF, Cerwinka WH, Sprague AG, Laroux FS, Grisham MB, Koteliansky VE, Senninger N, Granger DN, de Fougerolles AR. Collagen-binding integrin alpha1beta1 regulates intestinal inflammation in experimental colitis. J Clin Invest 2002; 110:1773-82. [PMID: 12488427 PMCID: PMC151649 DOI: 10.1172/jci15256] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Central to inflammatory responses are the integrin-mediated adhesive interactions of cells with their ECM-rich environment. We investigated the role of the collagen-binding integrin alpha(1)beta(1) in intestinal inflammation using the mouse model of colitis induced by dextran sodium sulfate (DSS). mAb's directed against murine alpha(1) were found to significantly attenuate inflammation and injury in DSS-treated wild-type mice; similar protection was seen in mice deficient for alpha(1)beta(1) integrin. Blockade or loss of alpha(1)beta(1) was also associated with decreased mucosal inflammatory cell infiltrate and cytokine production. Importantly, we demonstrated that development and alpha(1)-mediated inhibition of DSS-induced colitis occurred independently of lymphocytes (Rag-2(-/-) mice), and identified the monocyte as a key alpha(1)beta(1)-expressing cell type involved in the development of colitis in this model. In response to DSS, both alpha(1) deficiency and anti-alpha(1) mAb treatment significantly reduced monocyte accumulation and activation within the lamina propria. In summary, the data demonstrate that engagement of leukocyte-associated alpha(1)beta(1) receptors with ECM plays a pivotal role in mediating intestinal inflammation via promotion of monocyte movement and/or activation within the inflamed interstitium. Therapeutic strategies designed to disrupt such interactions may prove beneficial in treating intestinal inflammation.
Collapse
Affiliation(s)
- Christian F Krieglstein
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fiorucci S, Mencarelli A, Palazzetti B, Sprague AG, Distrutti E, Morelli A, Novobrantseva TI, Cirino G, Koteliansky VE, de Fougerolles AR. Importance of innate immunity and collagen binding integrin alpha1beta1 in TNBS-induced colitis. Immunity 2002; 17:769-80. [PMID: 12479823 DOI: 10.1016/s1074-7613(02)00476-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammation occurs in the context of integrin-mediated adhesive interactions of cells with their extracellular matrix environment. We investigated the role of the collagen binding integrin alpha1beta1 in a model of colitis. alpha1beta1 was expressed on lamina propria T cells and monocytes during disease. Both alpha1 deficiency and anti-alpha1 mAb treatment (prophylactic and therapeutic) protected against colitis. In vivo alpha1beta1 blockade improved macroscopic and histologic scores, decreased inflammatory cytokine production, and profoundly affected the ability of lamina propria mononuclear cells to proliferate and produce IFN-gamma in vitro. Development and alpha1-mediated inhibition of colitis can be lymphocyte independent, suggesting that activated monocytes also represent a key alpha1beta1-expressing cell type involved in colitis. These results underscore the importance of innate immunity and, specifically, of leukocyte/matrix interactions in regulating local inflammatory responses.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Clinica di Gastroenterologia ed Endoscopia Digestiva, Dipartimento di Medicina Clinica, Patologia Università di Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
de Fougerolles AR, Koteliansky VE. Regulation of monocyte gene expression by the extracellular matrix and its functional implications. Immunol Rev 2002; 186:208-20. [PMID: 12234373 DOI: 10.1034/j.1600-065x.2002.18617.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
By binding to extracellular matrix (ECM) proteins, integrins integrate signals from outside the cell and transmit them inwards, thereby providing cells with information about location and allowing them to respond to stimuli in a manner appropriate to their environment. This is particularly important for monocytes and macrophages, given their wide distribution throughout the body and the vital role they play in immune and inflammatory responses. Integrin-mediated interaction of monocytes with ECM is a potent regulator of gene expression and is strongly synergized by the presence of growth factors. This synergy between growth factors and integrins is also apparent in the overlap seen in their signaling pathways. Integrin-mediated interaction with ECM results in increased expression of numerous inflammatory and immune response genes, revealing an important role for ECM-integrin interaction in affecting monocyte function and thus impacting on the development of pathologies. This is of particular relevance in the context of immune and inflammatory responses, where integrin-mediated adhesive interactions with the ECM-rich peripheral tissues are central to the localization of both resident and infiltrating monocytes at inflammatory sites. Here, we will review the functional effects of integrin-ECM interactions on monocytes, with particular attention to the regulation of gene expression by ECM and its functional implications.
Collapse
|
28
|
Sampson NS, Ryan ST, Enke DA, Cosgrove D, Koteliansky V, Gotwals P. Global gene expression analysis reveals a role for the alpha 1 integrin in renal pathogenesis. J Biol Chem 2001; 276:34182-8. [PMID: 11447218 DOI: 10.1074/jbc.m102859200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kidney fibrosis is the hallmark of most types of progressive kidney disease, including the genetic disorder Alport's syndrome. We undertook gene expression analysis in Alport's syndrome mouse kidneys using microchip arrays to characterize the development of fibrosis. In addition to matrix and matrix-remodeling genes, consistent with interstitial fibrosis, macrophage-related genes show elevated expression levels in Alport's syndrome kidneys. Immunohistochemical analysis of kidney sections illustrated that macrophages as well as myofibroblasts accumulate in the tubular interstitium. Deletion of alpha(1) integrin results in decreased accumulation of both myofibroblasts and macrophages in the tubular interstitium in Alport's syndrome mice and delays disease progression. Transforming growth factor beta antagonism, although reducing interstitial fibrosis, does not limit macrophage accumulation in the tubular interstitium and disease progression. In this study, we identified previously overlooked inflammatory events that occur in the tubulointerstitial region. We propose that in addition to the previously suggested role for the alpha(1)beta(1) integrin in mesangial expansion and abnormal laminin deposition, this integrin may be critical for monocyte accumulation that, in turn, may lead directly to renal failure. Our gene expression and immunohistochemical data indicate that macrophage accumulation is dependent on alpha(1) integrin expression on the macrophage cell surface and that anti-alpha(1) integrin strategies may be employed as therapeutics in the treatment of chronic inflammatory and fibrotic diseases.
Collapse
Affiliation(s)
- N S Sampson
- Biogen, Inc., Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | |
Collapse
|
29
|
Puig-Kröger A, Sanz-Rodríguez F, Longo N, Sánchez-Mateos P, Botella L, Teixidó J, Bernabéu C, Corbí AL. Maturation-dependent expression and function of the CD49d integrin on monocyte-derived human dendritic cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4338-45. [PMID: 11035069 DOI: 10.4049/jimmunol.165.8.4338] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dendritic cells (DC) are highly specialized APC that are critical for the initiation of T cell-dependent immune responses. DC exert a sentinel function while immature and, after activation by inflammatory stimuli or infectious agents, mature and migrate into lymphoid organs to prime T cells. We have analyzed integrin expression on monocyte-derived DC (MDDC) and found that expression of CD49d integrins (CD49d/CD29 and CD49d/beta7) was induced/up-regulated during TNF-alpha- or LPS-initiated MDDC maturation, reflecting the induction/up-regulation of CD49d and beta7 mRNA. CD49d mRNA steady-state level increased more than 10 times during maturation, with the highest levels observed 24 h after TNF-alpha treatment. CD49d integrin expression conferred mature MDDC with an elevated capacity to adhere to the CS-1 fragment of fibronectin, and also mediated transendothelial migration of mature MDDC. Up-regulation of CD49d integrin expression closely paralleled that of the mature DC marker CD83. CD49d integrin expression was dependent on cell maturation, as its induction was abrogated by N:-acetylcysteine, which inhibits NF-kappaB activation and the functional and phenotypic maturation of MDDC. Moreover, CD49d integrin up-regulation and MDDC maturation were prevented by SB203580, a specific inhibitor of p38 mitogen-activated protein kinase, but were almost unaffected by the mitogen-activated protein/extracellular signal-related kinase kinase 1/2 inhibitor PD98059. Our results support the existence of a link between functional and phenotypic maturation of MDDC and CD49d integrin expression, thus establishing CD49d as a maturation marker for MDDC. The differential expression of CD49d on immature and mature MDDC might contribute to their distinct motility capabilities and mediate mature DC migration into lymphoid organs.
Collapse
Affiliation(s)
- A Puig-Kröger
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain. Servicio de Inmuno-Oncología, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Asimakopoulos G, Kohn A, Stefanou DC, Haskard DO, Landis RC, Taylor KM. Leukocyte integrin expression in patients undergoing cardiopulmonary bypass. Ann Thorac Surg 2000; 69:1192-7. [PMID: 10800818 DOI: 10.1016/s0003-4975(99)01553-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND The recruitment of leukocytes to vascular endothelium is controlled by adhesion events mediated through the beta2 integrins, whereas the response of extravasated leukocytes within the tissues is controlled through the beta1 integrins. Although cardiopulmonary bypass (CPB) has been shown to be associated with a systemic inflammatory response and elevated levels of beta2 integrins on leukocytes, its effect on the beta1 integrins is not known. This study investigated the effect of the protease inhibitor aprotinin on the expression of the beta1 and beta2 integrins on circulating leukocytes in patients undergoing CPB. METHODS Patients undergoing primary elective coronary artery bypass grafting were randomized into full-dose aprotinin or placebo groups. Blood samples were obtained at nine time points preoperatively, intraoperatively, and up to 6 days postoperatively. The surface expression of the beta1 integrins VLA-1, -3, -4, -5, and -6 and of the beta2 integrins CD11a/CD18, CD11b/CD18, and CD11c/CD18 was measured by flow cytometry on gated neutrophil and monocyte subpopulations in whole blood. RESULTS Expression of the beta1 integrins was not significantly altered during the study period and, therefore, aprotinin had no effect on the expression of these molecules. Of the beta2 integrins, CD11b/CD18 expression was significantly increased on neutrophils at 15 minutes after onset of CPB in the placebo group (p < 0.01) but not in the aprotinin group. CONCLUSIONS This study showed that expression of the beta1 integrins on neutrophils and monocytes did not alter during the first 6 days after CPB. Expression of the beta2 integrin CD11b/CD18 increased significantly on neutrophils during CPB in control patients but not in patients treated with full-dose aprotinin.
Collapse
Affiliation(s)
- G Asimakopoulos
- National Heart and Lung Institute, Imperial College School of Medicine, London, England
| | | | | | | | | | | |
Collapse
|
31
|
de Fougerolles AR, Sprague AG, Nickerson-Nutter CL, Chi-Rosso G, Rennert PD, Gardner H, Gotwals PJ, Lobb RR, Koteliansky VE. Regulation of inflammation by collagen-binding integrins alpha1beta1 and alpha2beta1 in models of hypersensitivity and arthritis. J Clin Invest 2000; 105:721-9. [PMID: 10727440 PMCID: PMC377459 DOI: 10.1172/jci7911] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adhesive interactions play an important role in inflammation by promoting leukocyte attachment and extravasation from the vasculature into the peripheral tissues. However, the importance of adhesion molecules within the extracellular matrix-rich environment of peripheral tissues, in which cells must migrate and be activated, has not been well explored. We investigated the role of the major collagen-binding integrins, alpha1beta1 and alpha2beta1, in several in vivo models of inflammation. mAb's against murine alpha1 and alpha2 were found to significantly inhibit effector phase inflammatory responses in animal models of delayed-type hypersensitivity (DTH), contact hypersensitivity (CHS), and arthritis. Mice that were alpha1-deficient also showed decreased inflammatory responses in the CHS and arthritis models when compared with wild-type mice. Decreased leukocyte infiltration and edema formation accompanied inhibition of antigen-specific models of inflammation, as nonspecific inflammation induced by croton oil was not inhibited. This study demonstrates the importance in vivo of alpha1beta1 and alpha2beta1, the collagen-binding integrins, in inflammatory diseases. The study also extends the role of integrins in inflammation beyond leukocyte attachment and extravasation at the vascular endothelial interface, revealing the extracellular matrix environment of peripheral tissues as a new point of intervention for adhesion-based therapies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Arthritis/immunology
- Arthritis/pathology
- Arthritis/prevention & control
- Cell Adhesion/physiology
- Collagen/metabolism
- Collagen/toxicity
- Dermatitis, Allergic Contact/immunology
- Dermatitis, Allergic Contact/pathology
- Dermatitis, Allergic Contact/prevention & control
- Dermatitis, Irritant/immunology
- Dermatitis, Irritant/pathology
- Dermatitis, Irritant/prevention & control
- Edema/etiology
- Edema/prevention & control
- Female
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/pathology
- Hypersensitivity, Delayed/prevention & control
- Integrin alpha1beta1
- Integrins/immunology
- Integrins/physiology
- Leukocytes/pathology
- Lipopolysaccharides/toxicity
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Receptors, Collagen
Collapse
|
32
|
Ianaro A, Cicala C, Calignano A, Koteliansky V, Gotwals P, Bucci M, Gerli R, Santucci L, Fiorucci S, Cirino G. Anti-very late antigen-1 monoclonal antibody modulates the development of secondary lesion and T-cell response in experimental arthritis. J Transl Med 2000; 80:73-80. [PMID: 10653005 DOI: 10.1038/labinvest.3780010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Rats injected in the hind paw with a mixture of Mycobacterium butirricum emulsified in mineral oil (FA) developed a severe polyarthritis that shared some immunological features with human rheumatoid arthritis. After this local administration, rats developed a secondary lesion (edema) in the contralateral paw, which is a hallmark of immune system activation. In vivo intravenous treatment with a monoclonal anti-very late antigen (VLA)-1 antibody (HA31/8) significantly reduced the edema formation in the contralateral paw. T cells isolated from contralateral paw draining lymph nodes of FA rats treated with HA31/8 showed a reduced cell proliferation in vitro, after stimulation with concanavalin A. Furthermore FACS analysis showed that the reduction in proliferation was concomitant to a reduction in the number of T cells positive to surface IL-2 receptor expression. Our data indicate that after in vivo treatment with a monoclonal anti-very late antigen-1 antibody, there is a beneficial effect on the development of the secondary lesion, which correlates to the reduced ability of T cells to proliferate in vitro as well as to a reduced surface expression of IL-2 receptor. The association of this antibody to other drugs interfering at other levels in rheumatoid arthritis may open a new therapeutic window.
Collapse
Affiliation(s)
- A Ianaro
- Dipartimento di Farmacologia Sperimentale, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Daly N, Meleady P, Walsh D, Clynes M. Regulation of keratin and integrin gene expression in cancer and drug resistance. Cytotechnology 1998; 27:321-44. [PMID: 19002802 PMCID: PMC3449561 DOI: 10.1023/a:1008066216490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- N Daly
- National Cell and Tissue Culture Centre, BioResearch Ireland, Dublin City University, Glasnevin, Dublin 9, Ireland.,
| | | | | | | |
Collapse
|