1
|
Jeong J, Choe J. Akt, IL-4, and STAT Proteins Play Distinct Roles in Prostaglandin Production in Human Follicular Dendritic Cell-like Cells. Int J Mol Sci 2023; 24:16692. [PMID: 38069015 PMCID: PMC10706142 DOI: 10.3390/ijms242316692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
This study aimed to explore the role of Akt protein in the induction and inhibition of prostaglandin (PG) in human follicular dendritic cell (FDC)-like cells. FDC-like cells and B cells were isolated from human tonsils. PG production was assessed using enzyme immunoassay, while the upstream cyclooxygenase-2 (COX-2) protein levels were measured using immunoblotting with FDC-like cells transfected with Akt siRNA to analyze the impact of Akt knockdown. The COX-2 expression and PG production induced with IL-1β were significantly increased by Akt knockdown. However, IL-1β did not significantly alter either total or phosphorylated Akt protein levels. Akt knockdown resulted in the augmentation of COX-2 expression induced by B cells, although the addition of B cells did not significantly modulate both total and phosphorylated Akt proteins. In contrast, IL-4 specifically exhibited a potent inhibitory effect on COX-2 protein induction and PG production via STAT6. The inhibitory activity of IL-4 was not hampered by Akt knockdown. Interestingly, COX-2 expression levels induced with IL-1β were markedly modulated with STAT1 and STAT3 knockdown. STAT1 silencing resulted in further augmentation of COX-2, whereas STAT3 silencing prohibited IL-1β from stimulating COX-2 expression. The current results suggest that Akt, IL-4, and STAT1 play inhibitory roles in PG production in FDC-like cells and expand our knowledge of the immune inflammatory milieu.
Collapse
Affiliation(s)
| | - Jongseon Choe
- Interdisciplinary Graduate Program in BIT Medical Convergence, Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
2
|
Abd El-Aleem SA, Saber EA, Aziz NM, El-Sherif H, Abdelraof AM, Djouhri L. Follicular dendritic cells. J Cell Physiol 2021; 237:2019-2033. [PMID: 34918359 DOI: 10.1002/jcp.30662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/08/2022]
Abstract
Follicular dendritic cells (FDCs) are unique accessory immune cells that contribute to the regulation of humoral immunity. They are multitasker cells essential for the organization and maintenance of the lymphoid architecture, induction of germinal center reaction, production of B memory cells, and protection from autoimmune disorders. They perform their activities through both antigen-driven and chemical signaling to B cells. FDCs play a crucial role in the physiological regulation of the immune response. Dis-regulation of this immune response results when FDCs retain antigens for years. This provides a constant antigenic stimulation for B cells resulting in the development of immune disorders. Antigen trapped on FDCs is resistant to therapeutic intervention causing chronicity and recurrences. Beyond their physiological immunoregulatory functions, FDCs are involved in the pathogenesis of several immune-related disorders including HIV/AIDS, prion diseases, chronic inflammatory, and autoimmune disorders. FDCs have also been recently implicated in rare neoplasms of lymphoid and hematopoietic tissues. Understanding FDC biology is essential for better control of humoral immunity and opens the gate for therapeutic management of FDC-mediated immune disorders. Thus, the biology of FDCs has become a hot research area in the last couple of decades. In this review, we aim to provide a comprehensive overview of FDCs and their role in physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Minia University, Minya, Egypt.,Department of Pharmacy, Deraya University, New Minia City, Egypt
| | - Neven M Aziz
- Department of Pharmacy, Deraya University, New Minia City, Egypt.,Department of Physiology, Minia Faculty of Medicine, Minia, Egypt
| | - Hani El-Sherif
- Department of Pharmacy, Deraya University, New Minia City, Egypt
| | - Asmaa M Abdelraof
- Public Health, Community, Environmental and Occupational Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Laiche Djouhri
- Department of Physiology, College of Medicine (QU Health), Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Myers RC, King RG, Carter RH, Justement LB. Lymphotoxin α1β2 expression on B cells is required for follicular dendritic cell activation during the germinal center response. Eur J Immunol 2013; 43:348-59. [PMID: 23112125 PMCID: PMC3753018 DOI: 10.1002/eji.201242471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 09/26/2012] [Accepted: 10/23/2012] [Indexed: 11/10/2022]
Abstract
CD19-deficient mice were used as a model to study follicular dendritic cell (FDC) activation because these mice have normal numbers of FDC-containing primary follicles, but lack the ability to activate FDCs or form GCs. It was hypothesized that CD19 expression is necessary for B-cell activation and upregulation of membrane lymphotoxin (mLT) expression, which promotes FDC activation. Using VCAM-1 and FcγRII/III as FDC activation markers, it was determined that the adoptive transfer of CD19(+) wild-type B cells into CD19-deficient hosts rescued GC formation and FDC activation, demonstrating that CD19 expression on B cells is required for FDC activation. In contrast, CD19(+) donor B cells lacking mLT were unable to induce VCAM-1 expression on FDCs, furthermore FcγRII/III upregulation was impaired in FDCs stimulated with mLT-deficient B cells. VCAM-1 expression on FDCs, but not FcγRII/III, was rescued when CD19-deficient B cells expressing transgenic mLT were cotransferred into recipient mice with CD19(+) , mLT-deficient B cells, suggesting that FDC activation requires the CD19-dependent upregulation of mLT on activated B cells. Collectively, these data demonstrate that activated B cells are responsible for the initiation of FDC activation resulting in a microenvironment supportive of GC development and maintenance.
Collapse
MESH Headings
- Animals
- Antigens, CD19/biosynthesis
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Dendritic Cells, Follicular/immunology
- Dendritic Cells, Follicular/metabolism
- Germinal Center/immunology
- Germinal Center/metabolism
- Lymphocyte Activation
- Lymphotoxin alpha1, beta2 Heterotrimer/biosynthesis
- Lymphotoxin alpha1, beta2 Heterotrimer/genetics
- Lymphotoxin alpha1, beta2 Heterotrimer/immunology
- Mice
- Mice, Inbred C57BL
- Receptors, IgG/biosynthesis
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Up-Regulation
- Vascular Cell Adhesion Molecule-1/biosynthesis
- Vascular Cell Adhesion Molecule-1/genetics
- Vascular Cell Adhesion Molecule-1/immunology
Collapse
Affiliation(s)
- Riley C. Myers
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - R. Glenn King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Robert H. Carter
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892
| | - Louis B. Justement
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
4
|
El Shikh MEM, Pitzalis C. Follicular dendritic cells in health and disease. Front Immunol 2012; 3:292. [PMID: 23049531 PMCID: PMC3448061 DOI: 10.3389/fimmu.2012.00292] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/31/2012] [Indexed: 12/17/2022] Open
Abstract
Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B-cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerize Ags and present them polyvalently to B-cells in periodically arranged arrays that extensively crosslink the B-cell receptors for Ag (BCRs). FDC-FcγRIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6, and -C4bBP, are essential for the induction of the germinal center (GC) reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T-cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases, and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses.
Collapse
Affiliation(s)
- Mohey Eldin M El Shikh
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | | |
Collapse
|
5
|
El Shikh MEM, El Sayed RM, Sukumar S, Szakal AK, Tew JG. Activation of B cells by antigens on follicular dendritic cells. Trends Immunol 2010; 31:205-11. [PMID: 20418164 DOI: 10.1016/j.it.2010.03.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/01/2010] [Accepted: 03/25/2010] [Indexed: 12/13/2022]
Abstract
A need for antigen-processing and presentation to B cells is not widely appreciated. However, cross-linking of multiple B cell receptors (BCRs) by T-independent antigens delivers a potent signal that induces antibody responses. Such BCR cross-linking also occurs in germinal centers where follicular dendritic cells (FDCs) present multimerized antigens as periodically arranged antigen-antibody complexes (ICs). Unlike T cells that recognize antigens as peptide-MHC complexes, optimal B cell-responses are induced by multimerized FDC-ICs that simultaneously engage multiple BCRs. FDC-FcgammaRIIB mediates IC-periodicity and FDC-BAFF, FDC-IL-6 and FDC-C4bBP are co-stimulators. Remarkably, specific antibody responses can be induced by FDC-ICs in the absence of T cells, opening up the exciting possibility that people with T cell insufficiencies may be immunized with T-dependent vaccines via FDC-ICs.
Collapse
Affiliation(s)
- Mohey Eldin M El Shikh
- Department of Microbiology and Immunology, Virginia Commonwealth University, PO Box 980678, Richmond, VA 23298-0678, USA
| | | | | | | | | |
Collapse
|
6
|
Fulton RB, Varga SM. Effects of aging on the adaptive immune response to respiratory virus infections. ACTA ACUST UNITED AC 2009; 5:775. [PMID: 20174457 DOI: 10.2217/ahe.09.69] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Severe acute respiratory disease caused by respiratory virus infections in individuals aged 65 years and older and in high-risk adults, such as those with chronic cardiopulmonary disorders, is associated with increased hospitalization and mortality rates. Epidemiological studies have identified influenza virus and respiratory syncytial virus as the most frequent causes of virus-induced respiratory disease in elderly and high-risk adults. Studies in both humans and animal models have established fundamental defects in cell-mediated and humoral immune responses in aged individuals. However, it is not well understood how age specifically alters the immune response to respiratory pathogens. In this review, we will focus our discussion on the major causative agents of severe respiratory virus infections in elderly and high-risk adults and the age-associated defects in the immune response that probably contribute to the increased disease severity observed in these populations.
Collapse
Affiliation(s)
- Ross B Fulton
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA, Tel.: +1 319 335 8433
| | | |
Collapse
|
7
|
El Shikh MEM, El Sayed RM, Szakal AK, Tew JG. T-independent antibody responses to T-dependent antigens: a novel follicular dendritic cell-dependent activity. THE JOURNAL OF IMMUNOLOGY 2009; 182:3482-91. [PMID: 19265126 DOI: 10.4049/jimmunol.0802317] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Follicular dendritic cells (FDCs) periodically arrange membrane-bound immune complexes (ICs) of T-dependent Ags 200-500A apart, and in addition to Ag, they provide B cells with costimulatory signals. This prompted the hypothesis that Ag in FDC-ICs can simultaneously cross-link multiple BCRs and induce T cell-independent (TI) B cell activation. TI responses are characterized by rapid IgM production. OVA-IC-bearing FDCs induced OVA-specific IgM in anti-Thy-1-pretreated nude mice and by purified murine and human B cells in vitro within just 48 h. Moreover, nude mice immunized with OVA-ICs exhibited well-developed GL-7(+) germinal centers with IC-retaining FDC-reticula and Blimp-1(+) plasmablasts within 48 h. In contrast, FDCs with unbound-OVA, which would have free access to BCRs, induced no germinal centers, plasmablasts, or IgM. Engagement of BCRs with rat-anti-mouse IgD (clone 11-26) does not activate B cells even when cross-linked. However, B cells were activated when anti-IgD-ICs, formed with Fc-specific rabbit anti-rat IgG, were loaded on FDCs. B cell activation was indicated by high phosphotyrosine levels in caps and patches, expression of GL-7 and Blimp-1, and B cell proliferation within 48 h after stimulation with IC-bearing FDCs. Moreover, anti-IgD-IC-loaded FDCs induced strong polyclonal IgM responses within 48 h. Blockade of FDC-FcgammaRIIB inhibited the ability of FDC-ICs to induce T-independent IgM responses. Similarly, neutralizing FDC-C4BP or -BAFF, to minimize these FDC-costimulatory signals, also inhibited this FDC-dependent IgM response. This is the first report of FDC-dependent but TI responses to T cell-dependent Ags.
Collapse
Affiliation(s)
- Mohey Eldin M El Shikh
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
8
|
Siegrist CA, Aspinall R. B-cell responses to vaccination at the extremes of age. Nat Rev Immunol 2009; 9:185-94. [PMID: 19240757 DOI: 10.1038/nri2508] [Citation(s) in RCA: 430] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Infants and the elderly share a high vulnerability to infections and therefore have specific immunization requirements. Inducing potent and sustained B-cell responses is as challenging in infants as it is in older subjects. Several mechanisms to explain the decreased B-cell responses at the extremes of age apply to both infants and the elderly. These include intrinsic B-cell limitations as well as numerous microenvironmental factors in lymphoid organs and the bone marrow. This Review describes the mechanisms that shape B-cell responses at the extremes of age and how they could be taken into account to design more effective immunization strategies for these high-risk age groups.
Collapse
Affiliation(s)
- Claire-Anne Siegrist
- Departments of Pathology-Immunology and Pediatrics, WHO Collaborative Center for Neonatal Vaccinology, Medical Faculty of University of Geneva, Centre Medical Universitaire, Geneva 4, Switzerland.
| | | |
Collapse
|
9
|
Chen JY, Wang CM, Ma CC, Hsu LA, Ho HH, Wu YJJ, Kuo SN, Wu J. A transmembrane polymorphism in FcgammaRIIb (FCGR2B) is associated with the production of anti-cyclic citrullinated peptide autoantibodies in Taiwanese RA. Genes Immun 2008; 9:680-8. [PMID: 18633424 DOI: 10.1038/gene.2008.56] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the current study was to determine whether the FcgammaRIIb 187-Ile/Thr polymorphism is a predisposition factor for subtypes of RA defined by disease severity and production of autoantibodies against cyclic citrullinated peptides (anti-CCPs) in Taiwanese RA patients. Genotype distributions and allele frequencies of FcgammaRIIb 187-Ile/Thr were compared between 562 normal healthy controls and 640 RA patients as stratified by clinical parameters and autoantibodies. Significant enrichment of 187-Ile allele was observed in RA patients positive for anti-CCP antibodies as compared with the anti-CCP negative RA patients (P=0.001, OR 1.652 (95% CI 1.210-2.257)) or as compared with the normal controls (P=0.005, OR 1.348 (95% CI 1.092-1.664)). In addition, 187-Ile allele was found to be enriched in RA patients positive for rheumatoid factor (RF) compared to the RF negative RA patients (P=0.024, OR 1.562 (95% CI 1.059-2.303)). Furthermore, the homozygotes were enriched in destructive male RA patients (P=0.035; OR 2.038 (95% CI 1.046-3.973)) and the 187-Ile allele was associated with early-onset of RA in Taiwanese patients (P=0.045, OR 1.548 (95% CI 1.007-2.379)). Thus, FcgammaRIIb SNP 187-Ile/Thr may influence the RA phenotypes in Taiwanese RA.
Collapse
Affiliation(s)
- J-Y Chen
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Tarasenko T, Dean JA, Bolland S. FcgammaRIIB as a modulator of autoimmune disease susceptibility. Autoimmunity 2007; 40:409-17. [PMID: 17729034 DOI: 10.1080/08916930701464665] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antibodies are secreted to recognize and in some cases directly neutralize pathogens. Another important means by which they are essential components of the immune system is through binding to Fc receptors. Effector responses triggered by antibody binding of Fc receptors affect a host of important cellular responses such as phagocytosis, inflammatory cytokine release, antigen presentation, and regulation of humoral responses. A crucial check on this antibody-mediated signal is through the inhibitory receptor, FcgammaRIIB. In this review we discuss how dysregulation of FcgammaRIIB can result in a lowered threshold for autoimmunity in mice and humans. We close with a discussion of the potential for applying these findings to immunotherapy.
Collapse
Affiliation(s)
- Tatyana Tarasenko
- Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, Rockville, MD 20852, USA
| | | | | |
Collapse
|
11
|
Schenkein HA, Barbour SE, Tew JG. Cytokines and inflammatory factors regulating immunoglobulin production in aggressive periodontitis. Periodontol 2000 2007; 45:113-27. [PMID: 17850452 DOI: 10.1111/j.1600-0757.2007.00214.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Harvey A Schenkein
- Department of Periodontics, Virginia Commonwealth University, School of Dentistry, Richmond, VA, USA
| | | | | |
Collapse
|
12
|
El Shikh MEM, El Sayed RM, Wu Y, Szakal AK, Tew JG. TLR4 on Follicular Dendritic Cells: An Activation Pathway That Promotes Accessory Activity. THE JOURNAL OF IMMUNOLOGY 2007; 179:4444-50. [PMID: 17878340 DOI: 10.4049/jimmunol.179.7.4444] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microbial molecular patterns engage TLRs and activate dendritic cells and other accessory cells. Follicular dendritic cells (FDCs) exist in resting and activated states, but are activated in germinal centers, where they provide accessory function. We reasoned that FDCs might express TLRs and that engagement might activate FDCs by up-regulating molecules important for accessory activity. To test this hypothesis, TLR4 expression on FDCs was studied in situ with immunohistochemistry, followed by flow cytometry and RT-PCR analysis. TLR4 was expressed on FDC reticula in situ, and flow cytometry indicated that TLR4 was expressed on surface membranes and TLR4 message was readily apparent in FDCs by RT-PCR. Injecting mice or treating purified FDCs with LPS up-regulated molecules important for accessory activity including, FDC-Fc gammaRIIB, FDC-ICAM-1, and FDC-VCAM-1. Treatment of purified FDCs with LPS also induced intracellular phospho-IkappaB-alpha, indicating NF-kappaB activation, and that correlated with increased Fc gammaRIIB, ICAM-1, and VCAM-1. FDCs in C3H/HeJ mice were not activated with LPS even when mice were reconstituted with C3H/HeN leukocytes, suggesting that engagement of FDC-TLR4 is necessary for activation. Moreover, activated FDCs exhibited increased accessory activity in anti-OVA recall responses in vitro, and the FDC number could be reduced 4-fold if they were activated. In short, we report expression of TLR4 on FDCs for the first time and that engagement of FDC-TLR4 activated NF-kappaB, up-regulated expression of molecules important in FDC accessory function, including Fc gammaRIIB, ICAM-1, and VCAM-1, as well as FDC accessory activity in promoting recall IgG responses.
Collapse
|
13
|
Bu X, Zheng Z, Wang C, Yu Y. Significance of C4d deposition in the follicular lymphoma and MALT lymphoma and their relationship with follicular dendritic cells. Pathol Res Pract 2007; 203:163-7. [PMID: 17307308 DOI: 10.1016/j.prp.2006.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
We evaluated the deposition of C4d in follicular lymphomas (FL) and extranodal marginal zone B-cell lymphomas of mucosa-associated lymphoid tissue (MALT lymphoma). Deposition of C4d was detected in 118 lymphoma tissues from patients with lymphoma and in 20 reactive hyperplasia lymphadens (RHL) using immunohistochemistical methods. FL, MALT lymphoma, and RHL were studied using double staining for CD35/C4d and Bcl-2/C4d. We studied 26 FL tissues, 19 of which showed C4d deposition. C4d deposition was detected around the follicular dendritic cells (FDCs) in the neoplastic follicles. There was no significant difference between the positive ratio of C4d and the grades of FL. We studied 12 MALT lymphoma tissues, six of which displayed C4d deposition. In these tissues, C4d deposition was detected in the peripheral region of partially colonized follicles in the form of an irregular ring, but was not found in the central region. C4d deposition was negative in completely colonized follicles. There was no C4d deposition in diffuse large B-cell lymphomas, mantle cell lymphomas, B-small lymphocytic lymphomas, T-lymphoblastic lymphomas, peripheral T-cell lymphomas, and anaplastic large cell lymphomas. C4d around the FDCs in the neoplastic follicles was a specific indicator for FL. C4d deposition in partially colonized follicles of MALT lymphoma was completely different from that in neoplastic follicles of FL, forming a key point for differential diagnosis.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Complement C4b/analysis
- Dendritic Cells, Follicular/immunology
- Dendritic Cells, Follicular/pathology
- Diagnosis, Differential
- Female
- Humans
- Immunohistochemistry/methods
- Lymphoma, B-Cell, Marginal Zone/diagnosis
- Lymphoma, B-Cell, Marginal Zone/immunology
- Lymphoma, B-Cell, Marginal Zone/pathology
- Lymphoma, Follicular/diagnosis
- Lymphoma, Follicular/immunology
- Lymphoma, Follicular/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Peptide Fragments/analysis
- Proto-Oncogene Proteins c-bcl-2/analysis
- Pseudolymphoma/immunology
- Pseudolymphoma/pathology
- Receptors, Complement 3b/analysis
Collapse
Affiliation(s)
- Xianmin Bu
- Department of Pathology, Dongfang Hospital, 156 North Xihuan Road, Fuzhou, Fujian 350025, China
| | | | | | | |
Collapse
|
14
|
El Shikh ME, El Sayed R, Szakal AK, Tew JG. Follicular dendritic cell (FDC)-FcgammaRIIB engagement via immune complexes induces the activated FDC phenotype associated with secondary follicle development. Eur J Immunol 2006; 36:2715-24. [PMID: 17013985 DOI: 10.1002/eji.200636122] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Follicular dendritic cell (FDC)-FcgammaRIIB levels are up-regulated 1-3 days after challenge of actively immunized mice with Ag. This kinetics suggested that memory cells are not driving this response, prompting the hypothesis that immune complex (IC)-FDC interactions lead to FDC activation. To test this, mice passively immunized with anti-OVA Ab were OVA challenged to produce IC. After 3 days, levels of IC, FcgammaRIIB, ICAM-1, and VCAM-1 on FDC were analyzed. FDC were also stimulated with IC in vitro, and mRNA for FcgammaRIIB, ICAM-1, and VCAM-1 was quantified by quantitative RT-PCR. IC labeling in passively immunized WT and FcgammaRIIB-/- mice revealed five to six FDC-reticula per LN midsagittal section. In WT mice, these IC-bearing FDC-reticula corresponded with FDC-reticula labeling for FcgammaRIIB, ICAM-1, and VCAM-1. Increases in these molecules on IC-stimulated FDC were confirmed by flow cytometry. In marked contrast, in FcgammaRIIB-/- mice, no increased VCAM-1 or ICAM-1 was seen on IC-bearing FDC-reticula or on purified FDC. Addition of IC in vitro resulted in dramatic increases in mRNA for FcgammaRIIB, ICAM-1 and VCAM-1 in WT FDC, but not in FDC from FcgammaRIIB-/- mice, 2.4G2-pretreated WT FDC, B cells, or macrophages. Thus, although FDC-FcgammaRIIB was not essential for IC trapping, engagement of FDC-FcgammaRIIB with IC initiated an FDC activation pathway.
Collapse
Affiliation(s)
- Mohey Eldin El Shikh
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| | | | | | | |
Collapse
|
15
|
Leopold PL, Wendland RL, Vincent T, Crystal RG. Neutralized adenovirus-immune complexes can mediate effective gene transfer via an Fc receptor-dependent infection pathway. J Virol 2006; 80:10237-47. [PMID: 17005701 PMCID: PMC1617312 DOI: 10.1128/jvi.00512-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neutralization of adenovirus (Ad) by anti-Ad neutralizing antibodies in serum involves formation of Ad-immune complexes that prevent the virus from interacting with target cells. We hypothesized that Ad-immune complexes likely contain viable Ad vectors which, although no longer capable of gaining access to receptors on target cells, may be able to express transgenes in cells bearing Fc receptors for immunoglobulins, i.e., that antibody-based "neutralization" of Ad vectors may be circumvented by the Fc receptor pathway. To test this hypothesis, we expressed the Fcgamma receptor IIA (FcgammaR) in A549 lung epithelial cells or human dermal fibroblasts and evaluated gene transfer in the presence of human neutralizing anti-Ad serum. FcgammaR-expressing cells bound and internalized copious amounts of Ad, with a distinct population of internalized Ad trafficking to the nucleus. The dose-response curves for inhibition of gene transfer revealed that FcgammaR-expressing cells required a more-than-10-fold higher concentration of anti-Ad serum to achieve 50% inhibition of Ad-encoded beta-galactosidase expression compared with non-FcgammaR-expressing cells. The discrepancy between neutralization of Ad during infection of FcgammaR-expressing cells and neutralization of Ad during infection of non-FcgammaR-expressing cells occurred with either heat-inactivated or non-heat-inactivated sera, was blocked by addition of purified Fc domain protein, and did not require the cytoplasmic domain of FcgammaR, suggesting that immune complex internalization proceeded via endocytosis rather than phagocytosis. FcgammaR-mediated infection by Ad-immune complexes did not require expression of the coxsackie virus-Ad receptor (CAR) since similar data were obtained when CAR-deficient human dermal fibroblasts were engineered to express FcgammaR. However, interaction of the Ad penton base with cell surface integrins contributed to the difference in neutralization between FcgammaR-expressing and non-FcgammaR-expressing cells. The data indicate that complexes formed from Ad and anti-Ad neutralizing antibodies, while compromised with respect to infection of non-FcgammaR-expressing target cells, maintain the potential to transfer genes to FcgammaR-expressing cells, with consequent expression of the transgene. The formation of Ad-immune complexes that can target viable virus to antigen-presenting cells may account for the success of Ad-based vaccines administered in the presence of low levels of neutralizing anti-Ad antibody.
Collapse
Affiliation(s)
- Philip L Leopold
- Weill Medical College of Cornell University, Department of Genetic Medicine, 1300 York Avenue, W401, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
16
|
Sukumar S, Szakal AK, Tew JG. Isolation of functionally active murine follicular dendritic cells. J Immunol Methods 2006; 313:81-95. [PMID: 16824539 DOI: 10.1016/j.jim.2006.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 01/31/2006] [Accepted: 03/29/2006] [Indexed: 11/22/2022]
Abstract
Biochemical, genetic, and immunological studies of follicular dendritic cells (FDCs) have been hampered by difficulty in obtaining adequate numbers of purified cells in a functional state. To address this obstacle, we enriched FDCs by irradiating mice to destroy most lymphocytes, excised the lymph nodes, and gently digested the nodes with an enzyme cocktail to form single cell suspensions. The FDCs in suspension were selected using the specific mAb FDC-M1 with magnetic cell separation technology. We were able to get nearly a million viable lymph node FDCs per mouse at about 90% purity. When examined under light and transmission electron microscopy, the cytological features were characteristic of FDCs. Furthermore, the cells were able to trap and retain immune complexes and were positive for important phenotypic markers including FDC-M1, CD21/35, CD32, CD40, and CD54. Moreover, the purified FDCs exhibited classical FDC accessory activities including: the ability to co-stimulate B cell proliferation, augment antibody responses induced by mitogens or antigens, maintain B cell viability for weeks, and protect B lymphocytes from anti-FAS induced apoptosis. In short, this combination of methods made it possible to obtain a substantial number of highly enriched functional murine FDCs.
Collapse
Affiliation(s)
- Selvakumar Sukumar
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, 23298-0678, USA
| | | | | |
Collapse
|
17
|
Abstract
The activation threshold of cells in the immune system is often tuned by cell surface molecules. The Fc receptors expressed on various hematopoietic cells constitute critical elements for activating or downmodulating immune responses and combines humoral and cell-mediated immunity. Thus, Fc receptors are the intelligent sensors of the immune status in the individual. However, impaired regulation by Fc receptors will lead to unresponsiveness or hyperreactivity to foreign as well as self-antigens. Murine models for autoimmune disease indicate the indispensable roles of the inhibitory Fc receptor in the suppression of such disorders, whereas activating-type FcRs are crucial for the onset and exacerbation of the disease. The development of many autoimmune diseases in humans may be caused by impairment of the human Fc receptor regulatory system. This review is aimed at providing a current overview of the mechanism of Fc receptor-based immune regulation and the possible scenario of how autoimmune disease might result from their dysfunction.
Collapse
Affiliation(s)
- Toshiyuki Takai
- Department of Experimental Immunology and CREST Program of Japan Science and Technology Agency, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
18
|
Sadighi Akha AA, Miller RA. Signal transduction in the aging immune system. Curr Opin Immunol 2005; 17:486-91. [PMID: 16061371 DOI: 10.1016/j.coi.2005.07.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 07/19/2005] [Indexed: 01/08/2023]
Abstract
T cells from aged mice show defects in the early stages of the activation process, including alterations in cytoskeletal reorganization that precede discrimination, by the T cell receptor, of agonist from antagonist peptides. Aging also modifies the pattern of glycosylation of T cell surface macromolecules, and enzymatic cleavage of these modified glycoproteins can restore high level responses to T cells from aged mice. Alterations in plasma membrane lipids and cholesterol-rich microdomains might also contribute to age-related deficits in T cell signaling. Evidence for intrinsic signal defects in aged B cells is more limited, but might involve pathways that activate the transcription factor E47, which has been implicated in somatic hypermutation and class-switch recombination.
Collapse
Affiliation(s)
- Amir A Sadighi Akha
- Department of Veterans Affairs Medical Center, Ann Arbor, Michigan 48109-0940, USA
| | | |
Collapse
|
19
|
Abstract
The germinal center (GC) is an important anatomical site for the development of high affinity antibodies during T-cell dependent B cell responses. Although the importance of the GC response to humoral immunity is well known, much remains to be elucidated about GC induction, maintenance and regulation. Recent studies examining the GC response in mice have identified key molecules expressed on follicular dendritic cells that support the differentiation of GC B cells, revealed essential chemokines that direct the organization of light and dark zones, and demonstrated potentially novel roles for TNF family members in the differentiation of GC B cells.
Collapse
Affiliation(s)
- Cassy L Cozine
- Department of Pathology, Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52246, USA
| | | | | |
Collapse
|
20
|
Aydar Y, Sukumar S, Szakal AK, Tew JG. The influence of immune complex-bearing follicular dendritic cells on the IgM response, Ig class switching, and production of high affinity IgG. THE JOURNAL OF IMMUNOLOGY 2005; 174:5358-66. [PMID: 15843533 DOI: 10.4049/jimmunol.174.9.5358] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is believed that Ag in immune complexes (ICs) on follicular dendritic cells (FDCs) selects high affinity B cells and promotes affinity maturation. However, selection has been documented in the absence of readily detectable ICs on FDCs, suggesting that FDC-ICs may not be important. These results prompted experiments to test the hypothesis that IC-bearing murine FDCs can promote high affinity IgG responses by selecting B cells after stimulating naive IgM(+) cells to mature and class switch. Coculturing naive lambda(+) B cells, FDCs, (4-hydroxy-3-nitrophenyl)acetyl-chicken gamma-globulin (CGG) + anti-CGG ICs, and CGG-primed T cells resulted in FDC-lymphocyte clusters and production of anti-4-hydroxy-5-iodo-3-nitrophenyl acetyl. Class switching was indicated by a shift from IgM to IgG, and affinity maturation was indicated by a change from mostly low affinity IgM and IgG in the first week to virtually all high affinity IgG anti-4-hydroxy-5-iodo-3-nitrophenyl acetyl in the second week. Class switching and affinity maturation were easily detectable in the presence of FDCs bearing appropriate ICs, but not in the absence of FDCs. Free Ag plus FDCs resulted in low affinity IgG, but affinity maturation was only apparent when FDCs bore ICs. Class switching is activation-induced cytidine deaminase (AID) dependent, and blocking FDC-CD21 ligand-B cell CD21 interactions inhibited FDC-IC-mediated enhancement of AID production and the IgG response. In short, these data support the concept that ICs on FDCs can promote AID production, class switching, and maturation of naive IgM(+) B cells, and further suggest that the IC-bearing FDCs help select high affinity B cells that produce high affinity IgG.
Collapse
Affiliation(s)
- Yüksel Aydar
- Department of Microbiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
21
|
Leslie RGQ, Marquart HV, Nielsen CH. The Role of Complement in Immune and Autoimmune Responses. Transfus Med Hemother 2005. [DOI: 10.1159/000083356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|