1
|
Rao M, Peachman KK, Alving CR. Liposome Formulations as Adjuvants for Vaccines. Curr Top Microbiol Immunol 2021; 433:1-28. [PMID: 33165871 DOI: 10.1007/82_2020_227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development of liposome-based formulations as vaccine adjuvants has been intimately associated with, and dependent on, and informed by, a fundamental understanding of biochemical and biophysical properties of liposomes themselves. The Walter Reed Army Institute of Research (WRAIR) has a fifty-year history of experience of basic research on liposomes; and development of liposomes as drug carriers; and development of liposomes as adjuvant formulations for vaccines. Uptake of liposomes by phagocytic cells in vitro has served as an excellent model for studying the intracellular trafficking patterns of liposomal antigen. Differential fluorescent labeling of proteins and liposomal lipids, together with the use of inhibitors, has enabled the visualization of physical locations of antigens, peptides, and lipids to elucidate mechanisms underlying the MHC class I and class II pathways in phagocytic APCs. Army Liposome Formulation (ALF) family of vaccine adjuvants, which have been developed and improved since 1986, and which range from nanosize to microsize, are currently being employed in phase 1 studies with different types of candidate vaccines.
Collapse
Affiliation(s)
- Mangala Rao
- Chief, Laboratory of Adjuvant & Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| | - Kristina K Peachman
- Laboratory of Adjuvant & Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Carl R Alving
- Laboratory of Adjuvant & Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| |
Collapse
|
2
|
van Kempen TS, Leijten EFA, Lindenbergh MFS, Nordkamp MO, Driessen C, Lebbink RJ, Baerlecken N, Witte T, Radstake TRDJ, Boes M. Impaired proteolysis by SPPL2a causes CD74 fragment accumulation that can be recognized by anti-CD74 autoantibodies in human ankylosing spondylitis. Eur J Immunol 2020; 50:1209-1219. [PMID: 32198923 PMCID: PMC7496470 DOI: 10.1002/eji.201948502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/10/2020] [Indexed: 12/14/2022]
Abstract
Ankylosing spondylitis (AS) is associated with autoantibody production to class II MHC‐associated invariant chain peptide, CD74/CLIP. In this study, we considered that anti‐CD74/CLIP autoantibodies present in sera from AS might recognize CD74 degradation products that accumulate upon deficiency of the enzyme signal peptide peptidase‐like 2A (SPPL2a). We analyzed monocytes from healthy controls (n = 42), psoriatic arthritis (n = 25), rheumatoid arthritis (n = 16), and AS patients (n = 15) for SPPL2a enzyme activity and complemented the experiments using SPPL2a‐sufficient and ‐deficient THP‐1 cells. We found defects in SPPL2a function and CD74 processing in a subset of AS patients, which culminated in CD74 and HLA class II display at the cell surface. These findings were verified in SPPL2a‐deficient THP‐1 cells, which showed expedited expression of MHC class II, total CD74 and CD74 N‐terminal degradation products at the plasma membrane upon receipt of an inflammatory trigger. Furthermore, we observed that IgG anti‐CD74/CLIP autoantibodies recognize CD74 N‐terminal degradation products that accumulate upon SPPL2a defect. In conclusion, reduced activity of SPPL2a protease in monocytes from AS predisposes to endosomal accumulation of CD74 and CD74 N‐terminal fragments, which, upon IFN‐γ‐exposure, is deposited at the plasma membrane and can be recognized by anti‐CD74/CLIP autoantibodies.
Collapse
Affiliation(s)
- Tessa S van Kempen
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmerik F A Leijten
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marthe F S Lindenbergh
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Michel Olde Nordkamp
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christoph Driessen
- Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Robert-Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Niklas Baerlecken
- Department of Clinical Immunology and Rheumatology, Medical University Hannover, Hannover, Germany
| | - Torsten Witte
- Department of Clinical Immunology and Rheumatology, Medical University Hannover, Hannover, Germany
| | - Timothy R D J Radstake
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Pediatrics, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
3
|
de Mingo Pulido Á, de Gregorio E, Chandra S, Colell A, Morales A, Kronenberg M, Marí M. Differential Role of Cathepsins S and B In Hepatic APC-Mediated NKT Cell Activation and Cytokine Secretion. Front Immunol 2018. [PMID: 29541077 PMCID: PMC5836516 DOI: 10.3389/fimmu.2018.00391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Natural killer T (NKT) cells exhibit a specific tissue distribution, displaying the liver the highest NKT/conventional T cell ratio. Upon antigen stimulation, NKT cells secrete Th1 cytokines, including interferon γ (IFNγ), and Th2 cytokines, including IL-4 that recruit and activate other innate immune cells to exacerbate inflammatory responses in the liver. Cysteine cathepsins control hepatic inflammation by regulating κB-dependent gene expression. However, the contribution of cysteine cathepsins other than Cathepsin S to NKT cell activation has remained largely unexplored. Here we report that cysteine cathepsins, cathepsin B (CTSB) and cathepsin S (CTSS), regulate different aspects of NKT cell activation. Inhibition of CTSB or CTSS reduced hepatic NKT cell expansion in a mouse model after LPS challenge. By contrast, only CTSS inhibition reduced IFNγ and IL-4 secretion after in vivo α-GalCer administration. Accordingly, in vitro studies reveal that only CTSS was able to control α-GalCer-dependent loading in antigen-presenting cells (APCs), probably due to altered endolysosomal protein degradation. In summary, our study discloses the participation of cysteine cathepsins, CTSB and CTSS, in the activation of NKT cells in vivo and in vitro.
Collapse
Affiliation(s)
- Álvaro de Mingo Pulido
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Shilpi Chandra
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Anna Colell
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Montserrat Marí
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
4
|
Schneppenheim J, Loock AC, Hüttl S, Schweizer M, Lüllmann-Rauch R, Oberg HH, Arnold P, Lehmann CHK, Dudziak D, Kabelitz D, Lucius R, Lennon-Duménil AM, Saftig P, Schröder B. The Influence of MHC Class II on B Cell Defects Induced by Invariant Chain/CD74 N-Terminal Fragments. THE JOURNAL OF IMMUNOLOGY 2017; 199:172-185. [DOI: 10.4049/jimmunol.1601533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/01/2017] [Indexed: 01/24/2023]
|
5
|
Schröder B. The multifaceted roles of the invariant chain CD74--More than just a chaperone. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1269-81. [PMID: 27033518 DOI: 10.1016/j.bbamcr.2016.03.026] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/13/2023]
Abstract
The invariant chain (CD74) is well known for its essential role in antigen presentation by mediating assembly and subcellular trafficking of the MHCII complex. Beyond this, CD74 has also been implicated in a number of processes independent of MHCII. These include the regulation of endosomal trafficking, cell migration and cellular signalling as surface receptor of the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF). In several forms of cancer, CD74 is up-regulated and associated with enhanced proliferation and metastatic potential. In this review, an overview of the diverse biological functions of the CD74 protein is provided with a particular focus on how these may be regulated. In particular, proteolysis of CD74 will be discussed as a central mechanism to control the actions of this important protein at different levels.
Collapse
Affiliation(s)
- Bernd Schröder
- Biochemical Institute, Christian Albrechts University of Kiel, Otto-Hahn-Platz 9, D-24118 Kiel, Germany.
| |
Collapse
|
6
|
ten Broeke T, Wubbolts R, Stoorvogel W. MHC class II antigen presentation by dendritic cells regulated through endosomal sorting. Cold Spring Harb Perspect Biol 2013; 5:a016873. [PMID: 24296169 DOI: 10.1101/cshperspect.a016873] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For the initiation of adaptive immune responses, dendritic cells present antigenic peptides in association with major histocompatibility complex class II (MHCII) to naïve CD4(+) T lymphocytes. In this review, we discuss how antigen presentation is regulated through intracellular processing and trafficking of MHCII. Newly synthesized MHCII is chaperoned by the invariant chain to endosomes, where peptides from endocytosed pathogens can bind. In nonactivated dendritic cells, peptide-loaded MHCII is ubiquitinated and consequently sorted by the ESCRT machinery to intraluminal vesicles of multivesicular bodies, ultimately leading to lysosomal degradation. Ubiquitination of newly synthesized MHCII is blocked when dendritic cells are activated, now allowing its transfer to the cell surface. This mode of regulation for MHCII is a prime example of how molecular processing and sorting at multivesicular bodies can determine the expression of signaling receptors at the plasma membrane.
Collapse
Affiliation(s)
- Toine ten Broeke
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | | | | |
Collapse
|
7
|
Schneppenheim J, Dressel R, Hüttl S, Lüllmann-Rauch R, Engelke M, Dittmann K, Wienands J, Eskelinen EL, Hermans-Borgmeyer I, Fluhrer R, Saftig P, Schröder B. The intramembrane protease SPPL2a promotes B cell development and controls endosomal traffic by cleavage of the invariant chain. ACTA ACUST UNITED AC 2012; 210:41-58. [PMID: 23267015 PMCID: PMC3549707 DOI: 10.1084/jem.20121069] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The intramembrane protease SPPL2a cleaves the NTF of invariant chain (CD74), which is essential for normal trafficking of MHC class II–containing endosomes and thus for B cell development and function. Regulated intramembrane proteolysis is a central cellular process involved in signal transduction and membrane protein turnover. The presenilin homologue signal-peptide-peptidase-like 2a (SPPL2a) has been implicated in the cleavage of type 2 transmembrane proteins. We show that the invariant chain (li, CD74) of the major histocompatability class II complex (MHCII) undergoes intramembrane proteolysis mediated by SPPL2a. B lymphocytes of SPPL2a−/− mice accumulate an N-terminal fragment (NTF) of CD74, which severely impairs membrane traffic within the endocytic system and leads to an altered response to B cell receptor stimulation, reduced BAFF-R surface expression, and accumulation of MHCII in transitional developmental stage T1 B cells. This results in significant loss of B cell subsets beyond the T1 stage and disrupted humoral immune responses, which can be recovered by additional ablation of CD74. Hence, we provide evidence that regulation of CD74-NTF levels by SPPL2a is indispensable for B cell development and function by maintaining trafficking and integrity of MHCII-containing endosomes, highlighting SPPL2a as a promising pharmacological target for depleting and/or modulating B cells.
Collapse
Affiliation(s)
- Janna Schneppenheim
- Biochemical Institute, Christian Albrechts University of Kiel, D-24118 Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Horst D, Geerdink RJ, Gram AM, Stoppelenburg AJ, Ressing ME. Hiding lipid presentation: viral interference with CD1d-restricted invariant natural killer T (iNKT) cell activation. Viruses 2012. [PMID: 23202469 PMCID: PMC3497057 DOI: 10.3390/v4102379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The immune system plays a major role in protecting the host against viral infection. Rapid initial protection is conveyed by innate immune cells, while adaptive immunity (including T lymphocytes) requires several days to develop, yet provides high specificity and long-lasting memory. Invariant natural killer T (iNKT) cells are an unusual subset of T lymphocytes, expressing a semi-invariant T cell receptor together with markers of the innate NK cell lineage. Activated iNKT cells can exert direct cytolysis and can rapidly release a variety of immune-polarizing cytokines, thereby regulating the ensuing adaptive immune response. iNKT cells recognize lipids in the context of the antigen-presenting molecule CD1d. Intriguingly, CD1d-restricted iNKT cells appear to play a critical role in anti-viral defense: increased susceptibility to disseminated viral infections is observed both in patients with iNKT cell deficiency as well as in CD1d- and iNKT cell-deficient mice. Moreover, viruses have recently been found to use sophisticated strategies to withstand iNKT cell-mediated elimination. This review focuses on CD1d-restricted lipid presentation and the strategies viruses deploy to subvert this pathway.
Collapse
Affiliation(s)
- Daniëlle Horst
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (D.H.); (R.J.G.);
| | - Ruben J. Geerdink
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (D.H.); (R.J.G.);
| | - Anna M. Gram
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (D.H.); (R.J.G.);
| | - Arie J. Stoppelenburg
- Department of Pediatric Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (A.J.S.)
| | - Maaike E. Ressing
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (D.H.); (R.J.G.);
- Author to whom correspondence should be addressed; ; Tel.: +31 88-7550603
| |
Collapse
|
9
|
Steers NJ, Ratto-Kim S, de Souza MS, Currier JR, Kim JH, Michael NL, Alving CR, Rao M. HIV-1 envelope resistance to proteasomal cleavage: implications for vaccine induced immune responses. PLoS One 2012; 7:e42579. [PMID: 22880042 PMCID: PMC3412807 DOI: 10.1371/journal.pone.0042579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/09/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Antigen processing involves many proteolytic enzymes such as proteasomes and cathepsins. The processed antigen is then presented on the cell surface bound to either MHC class I or class II molecules and induces/interacts with antigen-specific CD8+ and CD4+ T-cells, respectively. Preliminary immunological data from the RV144 phase III trial indicated that the immune responses were biased towards the Env antigen with a dominant CD4+ T-cell response. METHODS In this study, we examined the susceptibility of HIV-1 Env-A244 gp120 protein, one of the protein boost subunits of the RV144 Phase III vaccine trial, to proteasomes and cathepsins and identified the generated peptide epitope repertoire by mass spectrometry. The peptide fragments were tested for cytokine production in CD4(+) T-cell lines derived from RV144 volunteers. RESULTS Env-A244 was resistant to proteasomes, thus diminishing the possibility of the generation of class I epitopes by the classical MHC class I pathway. However, Env-A244 was efficiently cleaved by cathepsins generating peptide arrays identified by mass spectrometry that contained both MHC class I and class II epitopes as reported in the Los Alamos database. Each of the cathepsins generated distinct degradation patterns containing regions of light and dense epitope clusters. The sequence DKKQKVHALF that is part of the V2 loop of gp120 produced by cathepsins induced a polyfunctional cytokine response including the generation of IFN-γ from CD4(+) T-cell lines-derived from RV144 vaccinees. This sequence is significant since antibodies to the V1/V2-loop region correlated inversely with HIV-1 infection in the RV144 trial. CONCLUSIONS Based on our results, the susceptibility of Env-A244 to cathepsins and not to proteasomes suggests a possible mechanism for the generation of Env-specific CD4(+)T cell and antibody responses in the RV144 vaccinees.
Collapse
Affiliation(s)
- Nicholas J. Steers
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Silvia Ratto-Kim
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Mark S. de Souza
- Armed Forces Research Institute for Medical Sciences, Bangkok, Thailand
| | - Jeffrey R. Currier
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Jerome H. Kim
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Carl R. Alving
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Mangala Rao
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| |
Collapse
|
10
|
Requirement for invariant chain in macrophages for Mycobacterium tuberculosis replication and CD1d antigen presentation. Infect Immun 2011; 79:3053-63. [PMID: 21576321 DOI: 10.1128/iai.01108-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium tuberculosis is an intracellular bacterium that persists in phagosomes of myeloid cells. M. tuberculosis-encoded factors support pathogen survival and reduce fusion of phagosomes with bactericidal lysosomal compartments. It is, however, not entirely understood if host factors that mediate endosomal fusion affect M. tuberculosis intracellular localization and survival. Neither is it known if endosomal fusion influences induction of host immune reactivity by M. tuberculosis-infected cells. Lysosomal degradation of M. tuberculosis appears to be pivotal for making available lipid substrates for assembly into lipid-CD1d complexes to allow activation of CD1d-restricted invariant natural killer T (iNKT) cells. To clarify the role for endosomal fusion in M. tuberculosis survival and induction of host CD1d-mediated immune defense, we focused our studies on the invariant chain (Ii). Ii regulates endosome docking and fusion and thereby controls endosomal transport. Through direct binding, Ii also directs intracellular transport of the class II major histocompatibility complex and CD1d. Our findings demonstrate that upon infection of Ii-knockout (Ii(-/-)) macrophages, M. tuberculosis is initially retained in early endosomal antigen 1-positive lysosomal-associated membrane protein 1-negative phagosomes, which results in slightly impaired pathogen replication. The absence of Ii did not affect the ability of uninfected and infected macrophages to produce nitric oxide, tumor necrosis factor alpha, or interleukin-12. However, induction of cell surface CD1d was impaired in infected Ii(-/-) macrophages, and CD1d-restricted iNKT cells were unable to suppress bacterial replication when they were cocultured with M. tuberculosis-infected Ii(-/-) macrophages. Thus, while the host factor Ii is not essential for the formation of the M. tuberculosis-containing vacuole, its presence is crucial for iNKT cell recognition of infected macrophages.
Collapse
|
11
|
ten Broeke T, van Niel G, Wauben MHM, Wubbolts R, Stoorvogel W. Endosomally stored MHC class II does not contribute to antigen presentation by dendritic cells at inflammatory conditions. Traffic 2011; 12:1025-36. [PMID: 21518167 DOI: 10.1111/j.1600-0854.2011.01212.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Major histocompatibility complex (MHC) class II (MHCII) is constitutively expressed by immature dendritic cells (DC), but has a short half-life as a consequence of its transport to and degradation in lysosomes. For its transfer to lysosomes, MHCII is actively sorted to the intraluminal vesicles (ILV) of multivesicular bodies (MVB), a process driven by its ubiquitination. ILV have, besides their role as an intermediate compartment in lysosomal transfer, also been proposed to function as a site for MHCII antigen loading and temporal storage. In that scenario, DC would recruit antigen-loaded MHCII to the cell surface in response to a maturation stimulus by allowing ILV to fuse back with the MVB delimiting membrane. Other studies, however, explained the increase in cell surface expression during DC maturation by transient upregulation of MHCII synthesis and reduced sorting of newly synthesized MHCII to lysosomes. Here, we have characterized the relative contributions from the biosynthetic and endocytic pathways and found that the vast majority of antigen-loaded MHCII that is stably expressed at the plasma membrane by mature DC is synthesized after exposure to inflammatory stimuli. Pre-existing endosomal MHCII contributed only when it was not yet sorted to ILV at the moment of DC activation. Together with previous records, our current data are consistent with a model in which passage of MHCII through ILV is not required for antigen loading in maturing DC and in which sorting to ILV in immature DC provides a one-way ticket for lysosomal degradation.
Collapse
Affiliation(s)
- Toine ten Broeke
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Sillé FCM, Martin C, Jayaraman P, Rothchild A, Besra GS, Behar SM, Boes M. Critical role for invariant chain in CD1d-mediated selection and maturation of Vα14-invariant NKT cells. Immunol Lett 2011; 139:33-41. [PMID: 21565221 DOI: 10.1016/j.imlet.2011.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/20/2011] [Accepted: 04/26/2011] [Indexed: 11/29/2022]
Abstract
The development and maturation of Vα14 invariant (i)NKT cells in mice requires CD1d-mediated lipid antigen presentation in the thymus and the periphery. Cortical thymocytes mediate positive selection, while professional APCs are involved in thymic negative selection and in terminal maturation of iNKT cells in the periphery. CD1d requires entry in the endosomal pathway to allow antigen acquisition for assembly as lipid/CD1d complexes for display to iNKT cells. This process involves tyrosine-based sorting motifs in the CD1d cytoplasmic tail and invariant chain (Ii) that CD1d associates with in the endoplasmic reticulum. The function of Ii in iNKT cell thymic development and peripheral maturation had not been fully understood. Using mice deficient in Ii and the Ii-processing enzyme cathepsin S (catS), we addressed this question. Ii(-/-) mice but not catS(-/-) mice developed significantly fewer iNKT cells in thymus, that were less mature as measured by CD44 and NK1.1 expression. Ii(-/-) mice but not catS(-/-) mice developed fewer Vβ7(+) cells in their iNKT TCR repertoire than WT counterparts, indicative of a change in endogenous glycolipid antigen/CD1d-mediated iNKT cell selection. Finally, using a Mycobacterium tuberculosis infection model in macrophages, we show that iNKT developed in Ii(-/-) but not catS(-/-) mice have defective effector function. Our data support a role for professional APCs expressing Ii, but no role for catS in the thymic development and peripheral terminal maturation of iNKT cells.
Collapse
Affiliation(s)
- Fenna C M Sillé
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Clark MR, Tanaka A, Powers SE, Veselits M. Receptors, subcellular compartments and the regulation of peripheral B cell responses: the illuminating state of anergy. Mol Immunol 2010; 48:1281-6. [PMID: 21144589 DOI: 10.1016/j.molimm.2010.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/13/2010] [Accepted: 10/26/2010] [Indexed: 12/22/2022]
Abstract
Signals through the B cell antigen receptor (BCR) are necessary but not sufficient for cellular activation. Co-stimulatory signals must be provided through other immune recognition receptor systems, such as MHC class II/CD40 and the toll-like receptor (TLR) 9 that can only productively acquire their ligands in the processive environment of specialized late endosomes (MHC class II containing compartment or MIIC). It has long been appreciated that the BCR, by effectively capturing complex antigens and delivering them to late endosomes, is the link between activation events on the cell surface and those dependent on late endosomes. However, it has become increasingly apparent that the BCR also directs the translocation of MHC class II and TLR9 into the MIIC and that the endocytic flow of these receptors coincides with that of the BCR. This likely ensures close apposition of receptor complexes within the MIIC and the efficient transfer of ligands from the BCR to MHC class II and TLR9. This complex orchestration of receptor endocytic movement is dependent upon the quality of signals elicited through the BCR. Failure to activate specific signaling pathways, such as occurs in anergic B cells, prevents the entry of the BCR and TLR9 into the MIIC and abrogates TLR9 activation. Like anergy, this block in endocytic trafficking is rapidly reversible. These findings indicate that cellular responsiveness can be determined by mechanisms that control the subcellular location of important immune recognition receptors.
Collapse
Affiliation(s)
- Marcus R Clark
- Section of Rheumatology, Department of Medicine and Knapp Center for Lupus and Immunological Research, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
14
|
Creasy BM, McCoy KL. Cytokines regulate cysteine cathepsins during TLR responses. Cell Immunol 2010; 267:56-66. [PMID: 21145045 DOI: 10.1016/j.cellimm.2010.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/30/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
TLR activation is an important component of innate immunity but also contributes to the severity of inflammatory diseases. Cysteine cathepsins (Cat) B, L and S, which are endosomal and lysosomal proteases, participate in numerous physiological systems and are upregulated during various inflammatory disorders and cancers. Macrophages have the highest cathepsin expression and are major contributors to inflammation and tissue damage during chronic inflammatory diseases. We investigated the impact of TLR activation on macrophage Cat B, L and S activities using live-cell enzymatic assays. TLR2, TLR3 and TLR4 ligands increased intracellular activities of these cathepsins in a differential manner. TLR4-induced cytokines increased proteolytic activities without changing mRNA expression of cathepsins or their endogenous inhibitors. Neutralizing antibodies recognizing TNF-α, IL-1β and IFN-β differentially eliminated cathepsin upregulation. These findings indicate cytokines induced by MyD88-dependent and -independent signaling cascades regulate cathepsin activities during macrophage responses to TLR stimulation.
Collapse
Affiliation(s)
- Blaine M Creasy
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | |
Collapse
|
15
|
Park SK, Kim K, Page GP, Allison DB, Weindruch R, Prolla TA. Gene expression profiling of aging in multiple mouse strains: identification of aging biomarkers and impact of dietary antioxidants. Aging Cell 2009; 8:484-95. [PMID: 19555370 DOI: 10.1111/j.1474-9726.2009.00496.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We used DNA microarrays to identify panels of transcriptional markers of aging that are differentially expressed in young (5 month) and old (25 month) mice of multiple inbred strains (129sv, BALB/c, CBA, DBA, B6, C3H and B6C3F(1)). In the heart, age-related changes of five genes were studied throughout the mouse lifespan: complement component 4, chemokine ligand 14, component of Sp100-rs, phenylalanine hydroxylase and src family associated phosphoprotein 2. A similar analysis in the brain (cerebellum) involved complement component 1q (alpha polypeptide), complement component 4, P lysozyme structural, glial fibrillary acidic protein and cathepsin S. Caloric restriction (CR) inhibited age-related expression of these genes in both tissues. Parametric analysis of gene set enrichment identified several biological processes that are induced with aging in multiple mouse strains. We also tested the ability of dietary antioxidants to oppose these transcriptional markers of aging. Lycopene, resveratrol, acetyl-l-carnitine and tempol were as effective as CR in the heart, and alpha-lipoic acid and coenzyme Q(10) were as effective as CR in the cerebellum. These findings suggest that transcriptional biomarkers of aging in mice can be used to estimate the efficacy of aging interventions on a tissue-specific basis.
Collapse
Affiliation(s)
- Sang-Kyu Park
- Department of Genetics and Medical Genetics, University of Wisconsin, Madison, 53706, USA
| | | | | | | | | | | |
Collapse
|
16
|
Faure-André G, Vargas P, Yuseff MI, Heuzé M, Diaz J, Lankar D, Steri V, Manry J, Hugues S, Vascotto F, Boulanger J, Raposo G, Bono MR, Rosemblatt M, Piel M, Lennon-Duménil AM. Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain. Science 2009; 322:1705-10. [PMID: 19074353 DOI: 10.1126/science.1159894] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) sample peripheral tissues of the body in search of antigens to present to T cells. This requires two processes, antigen processing and cell motility, originally thought to occur independently. We found that the major histocompatibility complex II-associated invariant chain (Ii or CD74), a known regulator of antigen processing, negatively regulates DC motility in vivo. By using microfabricated channels to mimic the confined environment of peripheral tissues, we found that wild-type DCs alternate between high and low motility, whereas Ii-deficient cells moved in a faster and more uniform manner. The regulation of cell motility by Ii depended on the actin-based motor protein myosin II. Coupling antigen processing and cell motility may enable DCs to more efficiently detect and process antigens within a defined space.
Collapse
|
17
|
Mihelic M, Dobersek A, Guncar G, Turk D. Inhibitory fragment from the p41 form of invariant chain can regulate activity of cysteine cathepsins in antigen presentation. J Biol Chem 2008; 283:14453-60. [PMID: 18362148 DOI: 10.1074/jbc.m801283200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine cathepsins play an indispensable role in proteolytic processing of the major histocompatibility complex class II-associated invariant chain (Ii) and foreign antigens in a number of antigen presenting cells. Previously it was shown that a fragment of 64 residues present in the p41 form of the Ii (p41 fragment) selectively inhibits the endopeptidase cathepsin L, whereas the activity of cathepsin S remains unaffected. Comparison of structures indicated that the selectivity of interactions between cysteine cathepsins and the p41 fragment is far from being understood and requires further investigation. The p41 fragment has now been shown also to inhibit human cathepsins V, K, and F (also, presumably, O) and mouse cathepsin L with K(i) values in the low nanomolar range. These K(i) values are sufficiently low to ensure complex formation at physiological concentrations. In addition we have found that the p41 fragment can inhibit cathepsin S too. These findings suggest that regulation of the proteolytic activity of most of the cysteine cathepsins by the p41 fragment is an important and widespread control mechanism of antigen presentation.
Collapse
Affiliation(s)
- Marko Mihelic
- Department of Biochemistry and Molecular and Structural Biology, J Stefan Institute, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
18
|
The cell biology of cross‐presentation and the role of dendritic cell subsets. Immunol Cell Biol 2008; 86:353-62. [DOI: 10.1038/icb.2008.3] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Vyas JM, Kim YM, Artavanis-Tsakonas K, Love JC, Van der Veen AG, Ploegh HL. Tubulation of class II MHC compartments is microtubule dependent and involves multiple endolysosomal membrane proteins in primary dendritic cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:7199-210. [PMID: 17513769 PMCID: PMC2806821 DOI: 10.4049/jimmunol.178.11.7199] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Immature dendritic cells (DCs) capture exogenous Ags in the periphery for eventual processing in endolysosomes. Upon maturation by TLR agonists, DCs deliver peptide-loaded class II MHC molecules from these compartments to the cell surface via long tubular structures (endolysosomal tubules). The nature and rules that govern the movement of these DC compartments are unknown. In this study, we demonstrate that the tubules contain multiple proteins including the class II MHC molecules and LAMP1, a lysosomal resident protein, as well as CD63 and CD82, members of the tetraspanin family. Endolysosomal tubules can be stained with acidotropic dyes, indicating that they are extensions of lysosomes. However, the proper trafficking of class II MHC molecules themselves is not necessary for endolysosomal tubule formation. DCs lacking MyD88 can also form endolysosomal tubules, demonstrating that MyD88-dependent TLR activation is not necessary for the formation of this compartment. Endolysosomal tubules in DCs exhibit dynamic and saltatory movement, including bidirectional travel. Measured velocities are consistent with motor-based movement along microtubules. Indeed, nocodazole causes the collapse of endolysosomal tubules. In addition to its association with microtubules, endolysosomal tubules follow the plus ends of microtubules as visualized in primary DCs expressing end binding protein 1 (EB1)-enhanced GFP.
Collapse
Affiliation(s)
- Jatin M. Vyas
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Medicine, Harvard Medical School, Boston, MA 02115
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - You-Me Kim
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | | | - J. Christopher Love
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- CBR Institute for Biomedical Research, Boston, MA 02115
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
20
|
Vascotto F, Le Roux D, Lankar D, Faure-André G, Vargas P, Guermonprez P, Lennon-Duménil AM. Antigen presentation by B lymphocytes: how receptor signaling directs membrane trafficking. Curr Opin Immunol 2006; 19:93-8. [PMID: 17140785 DOI: 10.1016/j.coi.2006.11.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 11/21/2006] [Indexed: 12/16/2022]
Abstract
Antigen capture and presentation onto MHC class II molecules by B lymphocytes is mediated by their surface antigen receptor - the B-cell receptor (BCR). The BCR must therefore coordinate the transport of MHC class II- and antigen-containing vesicles for them to converge and ensure efficient processing. Recently, progress has been made in understanding which and how these vesicular transport events are molecularly linked to BCR signaling. In particular, recent studies have emphasized the key roles of membrane microdomains and the actin cytoskeleton in regulation of membrane trafficking upon BCR engagement.
Collapse
Affiliation(s)
- Fulvia Vascotto
- Unité Inserm 653, Institut Curie, 12 rue Lhomond, 75005, Paris, France
| | | | | | | | | | | | | |
Collapse
|