1
|
Konduri V, Oyewole-Said D, Vazquez-Perez J, Weldon SA, Halpert MM, Levitt JM, Decker WK. CD8 +CD161 + T-Cells: Cytotoxic Memory Cells With High Therapeutic Potential. Front Immunol 2021; 11:613204. [PMID: 33597948 PMCID: PMC7882609 DOI: 10.3389/fimmu.2020.613204] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
NK1.1 and its human homolog CD161 are expressed on NK cells, subsets of CD4+ and CD8+ T cells, and NKT cells. While the expression of NK1.1 is thought to be inhibitory to NK cell function, it is reported to play both costimulatory and coinhibitory roles in T-cells. CD161 has been extensively studied and characterized on subsets of T-cells that are MR1-restricted, IL-17 producing CD4+ (TH17 MAIT cells) and CD8+ T cells (Tc17 cells). Non-MAIT, MR1-independent CD161-expressing T-cells also exist and are characterized as generally effector memory cells with a stem cell like phenotype. Gene expression analysis of this enigmatic subset indicates a significant enhancement in the expression of cytotoxic granzyme molecules and innate like stress receptors in CD8+NK1.1+/CD8+CD161+ cells in comparison to CD8+ cells that do not express NK1.1 or CD161. First identified and studied in the context of viral infection, the role of CD8+CD161+ T-cells, especially in the context of tumor immunology, is still poorly understood. In this review, the functional characteristics of the CD161-expressing CD8+ T cell subset with respect to gene expression profile, cytotoxicity, and tissue homing properties are discussed, and application of this subset to immune responses against infectious disease and cancer is considered.
Collapse
Affiliation(s)
- Vanaja Konduri
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Damilola Oyewole-Said
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jonathan Vazquez-Perez
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Scott A Weldon
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Matthew M Halpert
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jonathan M Levitt
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Scott Department of Urology, Baylor College of Medicine, Houston, TX, United States
| | - William K Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Kwesi-Maliepaard EM, Aslam MA, Alemdehy MF, van den Brand T, McLean C, Vlaming H, van Welsem T, Korthout T, Lancini C, Hendriks S, Ahrends T, van Dinther D, den Haan JMM, Borst J, de Wit E, van Leeuwen F, Jacobs H. The histone methyltransferase DOT1L prevents antigen-independent differentiation and safeguards epigenetic identity of CD8 + T cells. Proc Natl Acad Sci U S A 2020; 117:20706-20716. [PMID: 32764145 PMCID: PMC7456197 DOI: 10.1073/pnas.1920372117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytotoxic T cell differentiation is guided by epigenome adaptations, but how epigenetic mechanisms control lymphocyte development has not been well defined. Here we show that the histone methyltransferase DOT1L, which marks the nucleosome core on active genes, safeguards normal differentiation of CD8+ T cells. T cell-specific ablation of Dot1L resulted in loss of naïve CD8+ T cells and premature differentiation toward a memory-like state, independent of antigen exposure and in a cell-intrinsic manner. Mechanistically, DOT1L controlled CD8+ T cell differentiation by ensuring normal T cell receptor density and signaling. DOT1L also maintained epigenetic identity, in part by indirectly supporting the repression of developmentally regulated genes. Finally, deletion of Dot1L in T cells resulted in an impaired immune response. Through our study, DOT1L is emerging as a central player in physiology of CD8+ T cells, acting as a barrier to prevent premature differentiation and controlling epigenetic integrity.
Collapse
Affiliation(s)
| | - Muhammad Assad Aslam
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Mir Farshid Alemdehy
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Teun van den Brand
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Chelsea McLean
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Hanneke Vlaming
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Tessy Korthout
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Cesare Lancini
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Sjoerd Hendriks
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Tomasz Ahrends
- Division of Tumor Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Dieke van Dinther
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands
| | - Jannie Borst
- Division of Tumor Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands;
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands;
| |
Collapse
|
3
|
Li Z, Wu Y, Wang C, Zhang M. Mouse CD8 +NKT-like cells exert dual cytotoxicity against mouse tumor cells and myeloid-derived suppressor cells. Cancer Immunol Immunother 2019; 68:1303-1315. [PMID: 31278476 PMCID: PMC6682577 DOI: 10.1007/s00262-019-02363-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Our previous work has demonstrated the high efficiency of CD8+ natural killer T (NKT)-like cells in killing antigen-bearing dendritic cells. To evaluate their role in the tumor microenvironment, we performed in vitro and in vivo antitumor experiments to investigate whether CD8+NKT-like cells could kill Yac-1 and B16 cells like NK cells and kill EL4-OVA8 cells in an antigen-specific manner like cytotoxic T lymphocytes (CTLs). Unlike NK1.1−CTLs, CD8+NKT-like cells also exhibit the capability to kill myeloid-derived suppressor cells (MDSCs) in an antigen-specific manner, indicative of their potential role in clearing tumor antigen-bearing MDSCs to improve the antitumor microenvironment. In vitro blocking experiments showed that granzyme B inhibitor efficiently suppressed the cytotoxicity of CD8+NKT-like cells against tumor cells and MDSCs, while Fas ligand (FasL) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) inhibition failed to produce similar effects. Transcriptomic and phenotypic analyses of CD8+NKT-like cells, NK cells, and NK1.1−CTLs indicated that CD8+NKT-like cells expressed both T-cell activation markers and NK cell markers, thus bearing features of both the activated T cells and NK cells. Taken together, CD8+NKT-like cells could exert NK- and CTL-like antitumor effects through the elimination of both tumor cells and MDSCs in a granzyme B-dependent manner.
Collapse
Affiliation(s)
- Zhengyuan Li
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yiqing Wu
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Chao Wang
- School of Medicine, Tsinghua University, Room B343, Haidian District, Beijing, 100084, China.
| | - Minghui Zhang
- School of Medicine, Tsinghua University, Room B343, Haidian District, Beijing, 100084, China.
| |
Collapse
|
4
|
CD8(+)NKT-like cells regulate the immune response by killing antigen-bearing DCs. Sci Rep 2015; 5:14124. [PMID: 26369936 PMCID: PMC4569892 DOI: 10.1038/srep14124] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/13/2015] [Indexed: 01/31/2023] Open
Abstract
CD1d-dependent NKT cells have been extensively studied; however, the function of CD8(+)NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8(+)NKT-like cells, which express both T cell markers (TCRβ and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8(+)NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8(+)NKT-like cell development is normal in CD1d(-/-) mice, which suggests that CD8(+)NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8(+)NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8(+)NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8(+)NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens.
Collapse
|
5
|
Sha LK, Sha W, Kuchler L, Daiber A, Giegerich AK, Weigert A, Knape T, Snodgrass R, Schröder K, Brandes RP, Brüne B, von Knethen A. Loss of Nrf2 in bone marrow-derived macrophages impairs antigen-driven CD8(+) T cell function by limiting GSH and Cys availability. Free Radic Biol Med 2015; 83:77-88. [PMID: 25687825 DOI: 10.1016/j.freeradbiomed.2015.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 01/01/2023]
Abstract
NF-E2-related factor 2 (Nrf2), known to protect against reactive oxygen species, has recently been reported to resolve acute inflammatory responses in activated macrophages. Consequently, disruption of Nrf2 promotes a proinflammatory macrophage phenotype. In the current study, we addressed the impact of this macrophage phenotype on CD8(+) T cell activation by using an antigen-driven coculture model consisting of Nrf2(-/-) and Nrf2(+/+) bone marrow-derived macrophages (BMDMΦ) and transgenic OT-1 CD8(+) T cells. OT-1 CD8(+) T cells encode a T cell receptor that specifically recognizes MHC class I-presented ovalbumin OVA(257-264) peptide, thereby causing a downstream T cell activation. Interestingly, coculture of OVA(257-264)-pulsed Nrf2(-/-) BMDMΦ with transgenic OT-1 CD8(+) T cells attenuated CD8(+) T cell activation, proliferation, and cytotoxic function. Since the provision of low-molecular-weight thiols such as glutathione (GSH) or cysteine (Cys) by macrophages limits antigen-driven CD8(+) T cell activation, we quantified the amounts of intracellular and extracellular GSH and Cys in both cocultures. Indeed, GSH levels were strongly decreased in Nrf2(-/-) cocultures compared to wild-type counterparts. Supplementation of thiols in Nrf2(-/-) cocultures via addition of glutathione ester, N-acetylcysteine, β-mercaptoethanol, or cysteine itself restored T cell proliferation as well as cytotoxicity by increasing intracellular GSH. Mechanistically, we identified two potential Nrf2-regulated genes involved in thiol synthesis in BMDMΦ: the cystine transporter subunit xCT and the modulatory subunit of the GSH-synthesizing enzyme γ-GCS (GCLM). Pharmacological inhibition of γ-GCS-dependent GSH synthesis as well as knockdown of the cystine antiporter xCT in Nrf2(+/+) BMDMΦ mimicked the effect of Nrf2(-/-) BMDMΦ on CD8(+) T cell function. Our findings demonstrate that reduced levels of GCLM as well as xCT in Nrf2(-/-) BMDMΦ limit GSH availability, thereby inhibiting antigen-induced CD8(+) T cell function.
Collapse
MESH Headings
- Animals
- Antioxidants/metabolism
- Apoptosis
- Blotting, Western
- Bone Marrow/immunology
- Bone Marrow/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Cells, Cultured
- Cystine/metabolism
- Flow Cytometry
- Glutathione/metabolism
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Immunoenzyme Techniques
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- NF-E2-Related Factor 2/physiology
- Ovalbumin/immunology
- Ovalbumin/metabolism
- Oxidative Stress
- RNA, Messenger/genetics
- Reactive Oxygen Species/metabolism
- Real-Time Polymerase Chain Reaction
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
Collapse
Affiliation(s)
- Lisa K Sha
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Weixiao Sha
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Laura Kuchler
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas Daiber
- Department of Medicine II, University Medical Center, Johannes Gutenberg-University Mainz, 55116 Mainz, Germany
| | - Annika K Giegerich
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Tilo Knape
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, and Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Ryan Snodgrass
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Katrin Schröder
- Institute of Cardiovascular Physiology-Physiology I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute of Cardiovascular Physiology-Physiology I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas von Knethen
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Fujiwara D, Chen L, Wei B, Braun J. Small intestine CD11c+ CD8+ T cells suppress CD4+ T cell-induced immune colitis. Am J Physiol Gastrointest Liver Physiol 2011; 300:G939-47. [PMID: 21436315 PMCID: PMC3119121 DOI: 10.1152/ajpgi.00032.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The large (LI) and small intestine (SI) differ in patterns of susceptibility to chronic mucosal inflammation. In this study, we evaluated whether this might, in part, reflect differences in resident mucosal CD11c(+) T cells. These cells comprised 39-48% (SI) and 12-17% (LI) of the intraepithelial compartment, most of which were T-cell receptor-αβ(+). In the SI, the majority of these cells were CD103(+) CD8(+) NK1.1(-), whereas the opposite phenotype prevailed in the LI. In transfer models of CD4(+) T cell-induced colitis, small numbers (2.5 × 10(5)) of SI CD11c(+) CD8(+) T cells suppressed proinflammatory cytokine-producing CD4(+) T cells in mesenteric lymph nodes and mucosa-associated lymphoid compartments (SI and LI) and protected mice from chronic inflammation. On a per-cell basis, the regulatory function of SI CD11c(+) T cells in CD4(+) T cell colitis was potent compared with other reported regulatory CD4(+) or CD8(+) T cells. In contrast, neither LI CD11c(+) T cells nor SI CD11c(-) T cells were effective in such immunoregulation. SI CD11c(+) CD8(+) T cells were similarly effective in suppressing CD4(+)CD45RB(hi) T cell colitis, as evidenced by inhibition of intracellular proinflammatory cytokine expression and histological inflammation. These findings indicate that SI CD11c(+) CD8(+) T cells are a distinct intestinal T cell population that plays an immunoregulatory role in control of proinflammatory CD4(+) T cells and maintenance of intestinal mucosal homeostasis.
Collapse
Affiliation(s)
- Daisuke Fujiwara
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Ling Chen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Bo Wei
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Jonathan Braun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| |
Collapse
|
7
|
Wingender G, Krebs P, Beutler B, Kronenberg M. Antigen-specific cytotoxicity by invariant NKT cells in vivo is CD95/CD178-dependent and is correlated with antigenic potency. THE JOURNAL OF IMMUNOLOGY 2010; 185:2721-9. [PMID: 20660713 DOI: 10.4049/jimmunol.1001018] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Invariant NKT (iNKT) cells are a unique subset of T lymphocytes that rapidly carry out effector functions following activation with glycolipid Ags, such as the model Ag alpha-galactosylceramide. Numerous studies have investigated the mechanisms leading to Th1 and Th2 cytokine production by iNKT cells, as well as the effects of the copious amounts of cytokines these cells produce. Less is known, however, about the mechanisms of iNKT cell cytotoxicity. In this study, we investigated the effect of Ag availability and strength, as well as the molecules involved in iNKT cytotoxicity. We demonstrate that the iNKT cell cytotoxicity in vivo correlates directly with the amount of CD1d expressed by the targets as well as the TCR affinity for the target glycolipid Ag. iNKT cells from spleen, liver, and thymus were comparable in their cytotoxicity in vitro. Surprisingly, we show that the Ag-specific cytotoxicity of iNKT cells in vivo depended almost exclusively on the interaction of CD95 (Fas) with CD178 (FasL), and that this mechanism can be efficiently used for tumor protection. Therefore, unlike NK cells, which rely mostly on perforin/granzyme-mediated mechanisms, the Ag-specific cytotoxicity of iNKT cells in vivo is largely restricted to the CD95/CD178 pathway.
Collapse
Affiliation(s)
- Gerhard Wingender
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
8
|
Zhou L, Wang H, Zhong X, Jin Y, Mi QS, Sharma A, McIndoe RA, Garge N, Podolsky R, She JX. The IL-10 and IFN-gamma pathways are essential to the potent immunosuppressive activity of cultured CD8+ NKT-like cells. Genome Biol 2008; 9:R119. [PMID: 18664279 PMCID: PMC2530876 DOI: 10.1186/gb-2008-9-7-r119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 07/29/2008] [Indexed: 01/30/2023] Open
Abstract
Global gene expression profiling of in vitro cultured CD8+ T cells that express natural killer cell markers revealed differential expression of about 3,000 genes between these cells and naïve CD8+ T cells. Background CD8+ NKT-like cells are naturally occurring but rare T cells that express both T cell and natural killer cell markers. These cells may play key roles in establishing tolerance to self-antigens; however, their mechanism of action and molecular profiles are poorly characterized due to their low frequencies. We developed an efficient in vitro protocol to produce CD8+ T cells that express natural killer cell markers (CD8+ NKT-like cells) and extensively characterized their functional and molecular phenotypes using a variety of techniques. Results Large numbers of CD8+ NKT-like cells were obtained through culture of naïve CD8+ T cells using anti-CD3/anti-CD28-coated beads and high dose IL-2. These cells possess potent activity in suppressing the proliferation of naïve responder T cells. Gene expression profiling suggests that the cultured CD8+ NKT-like cells and the naïve CD8+ T cells differ by more than 2-fold for about 3,000 genes, among which 314 are upregulated by more than 5-fold and 113 are upregulated by more than 10-fold in the CD8+ NKT-like cells. A large proportion of the highly upregulated genes are soluble factors or surface markers that have previously been implicated in immune suppression or are likely to possess immunosuppressive properties. Many of these genes are regulated by two key cytokines, IL-10 and IFN-γ. The immunosuppressive activities of cells cultured from IL-10-/- and IFN-γ-/- mice are reduced by about 70% and about 50%, respectively, compared to wild-type mice. Conclusion Immunosuppressive CD8+ NKT-like cells can be efficiently produced and their immunosuppressive activity is related to many surface and soluble molecules regulated by IL-10 and IFN-γ.
Collapse
Affiliation(s)
- Li Zhou
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, 15th Street, Augusta, GA 30912, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Riond J, Elhmouzi J, Hudrisier D, Gairin JE. Capture of membrane components via trogocytosis occurs in vivo during both dendritic cells and target cells encounter by CD8(+) T cells. Scand J Immunol 2007; 66:441-50. [PMID: 17850589 DOI: 10.1111/j.1365-3083.2007.01996.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cytotoxic T lymphocytes recently stimulated by antigen-presenting cells (APC) display major histocompatibility class (MHC) I and II molecules inherited from APC. We have previously reported that, in vitro, transfer of MHC molecules and several other proteins occurs through trogocytosis, i.e. the active acquisition of target cell membrane fragments by T lymphocytes. Here, using the model of viral antigen LCMVgp33-41 recognition in transgenic P14 mice, we show that CD8(+) T cells perform trogocytosis in vivo, as detected by the capture of biotin- or fluorescence-labeled components of the APC surface. Trogocytosis occurs during interactions of CD8(+) T cells with at least two kinds of cells: target cells and dendritic cells (DC). In lymph nodes, CD8(+) T cells having performed trogocytosis with DC express the CD69 activation marker indicating that trogocytosis detects recently activated cells. Taken together, our findings suggest that trogocytosis may be a new in vivo marker of the recent interaction between a CD8(+) T cell and its cellular partners or targets.
Collapse
Affiliation(s)
- J Riond
- CRPS, UMR2587 CNRS, Pierre Fabre, Toulouse, France.
| | | | | | | |
Collapse
|
10
|
Abstract
Populations of unconventional T lymphocytes that express alpha beta T cell antigen receptors (TCRs) have been characterized, including T cells reactive to glycolipids presented by CD1 molecules. The CD1 molecules have a structure broadly similar to major histocompatibility complex (MHC) class I and class II proteins, but because the antigens CD 1 presents are so different from peptides, it is possible that glycolipid reactive TCRs have properties that distinguish them from TCRs expressed by conventional T cells. Consistent with this possibility, CD1-reactive T cells have an unrestrained pattern of co-receptor expression, as they include CD4+, CD8+, and double-negative cells. Furthermore, unlike peptide-reactive T cells, there are populations of glycolipid-reactive T cells with invariant alpha chain TCRs that are conserved across species. There are also glycolipid reactive populations with more variable TCRs, however, suggesting that it may be difficult to make categorical generalizations about glycolipid reactive TCRs. Among the glycolipid reactive TCRs, the invariant TCR expressed by CD1d reactive NKT cells has been by far the most thoroughly studied, and in this article we emphasize the unique features of this antigen recognition system, including repertoire formation, fine specificity, TCR affinity, and TCR structure.
Collapse
MESH Headings
- Animals
- Antigens, CD1/chemistry
- Antigens, CD1/metabolism
- Glycolipids/chemistry
- Glycolipids/metabolism
- Humans
- Killer Cells, Natural/immunology
- Mice
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- B A Sullivan
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | |
Collapse
|
11
|
Kosaka A, Lee U, Wakita D, Matsubara N, Togashi Y, Nishimura SI, Kitamura H, Nishimura T. Interleukin-12-responding asialoGM1+CD8+ central memory-type T cells as precursor cells for interferon-gamma-producing killer T cells. Cancer Sci 2006; 97:1236-41. [PMID: 16952305 PMCID: PMC11158305 DOI: 10.1111/j.1349-7006.2006.00306.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While investigating CD8(+) memory T cells in unimmunized C57BL/6 mice, we found that there were unique memory-type CD8(+) T cells expressing asialoGM1 (ASGM1), CD62L and CCR7 cell surface molecules, which occupied approximately 10% of CD8(+) T cells and 35% of CD44(+) memory CD8(+) T cells. Culture of freshly isolated ASGM1(+)CD8(+) T cells with interleukin (IL)-12 plus IL-2 caused the proliferation and generation of killer T cells. Moreover, ASGM1(+)CD8(+) T cells, but not ASGM1(-)CD8(+) T cells, produced high levels of interferon (IFN)-gamma in response to IL-12 plus IL-2. Although ASGM1(+)CD8(+) T cells showed no significant responses to IL-12 alone or IL-2 alone, pulse incubation of ASGM1(+)CD8(+) T cells with IL-12 at an earlier time (0-12 h), and subsequently with IL-2 at a later time (12-24 h), caused the same levels of proliferation, killer cell generation and IFN-gamma production as when they were incubated simultaneously with IL-12 plus IL-2 for 24 h. Thus, ASGM1(+)CD8(+) T cells appeared to respond to IL-12 directly to acquire IL-2 responsiveness and differentiate into IFN-gamma-producing killer T cells. Indeed, freshly isolated ASGM1(+)CD8(+) T cells, but not ASGM1(-)CD8(+) T cells, expressed higher levels of IL-12R beta2 mRNA. The fact that IL-12 administration in vivo caused the generation of ASGM1(+)CD8(+) killer T cells in an IFN-gamma-dependent manner further indicated a physiological significance of ASGM1(+)CD8(+) central memory-type T cells in IL-12-induced immunoregulation for the therapy of tumors and infectious diseases.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Animals
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Survival/drug effects
- Cell Survival/immunology
- Cells, Cultured
- Drug Combinations
- Flow Cytometry
- G(M1) Ganglioside/immunology
- G(M1) Ganglioside/metabolism
- Immunologic Memory/drug effects
- Immunologic Memory/physiology
- Interferon-gamma/metabolism
- Interleukin-12/pharmacology
- Interleukin-2/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mice
- Mice, Inbred C57BL
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-12
- Reverse Transcriptase Polymerase Chain Reaction
- Spleen/drug effects
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Akemi Kosaka
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wingender G, Kronenberg M. Invariant natural killer T cells in the response to bacteria: the advent of specific antigens. Future Microbiol 2006; 1:325-40. [PMID: 17661645 DOI: 10.2217/17460913.1.3.325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique subset of T lymphocytes that have been implicated in diverse immune reactions, ranging from self-tolerance and development of autoimmunity to responses to pathogens and tumors. Although some degree of autoreactivity of iNKT cells has been shown, it remained controversial whether the T-cell antigen receptor expressed by these cells could recognize microbial antigens, hampering the investigation of their physiological role during tolerance and immunity. Several recent publications have now defined natural antigens for the majority of iNKT cells in some Proteobacteria and in Borrelia burgdorferi, demonstrating specificity of these cells for microbes in addition to self-reactivity. The characterization of natural antigens from bacteria, and the iNKT cell response to bacteria containing them, are decisive steps toward the clarification of the natural role of iNKT cells in host defense against pathogens, and will likely spur numerous findings in the near future.
Collapse
MESH Headings
- Animals
- Antigens, CD1/immunology
- Antigens, CD1/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Bacteria/immunology
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/microbiology
- Models, Immunological
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Gerhard Wingender
- La Jolla Institute for Allergy & Immunology (LIAI), Division of Developmental Immunology, San Diego, CA 92037, USA.
| | | |
Collapse
|