1
|
Mehrizi AA, Jafari Zadeh A, Zakeri S, Djadid ND. Population genetic structure analysis of thrombospondin-related adhesive protein (TRAP) as a vaccine candidate antigen in worldwide Plasmodium falciparum isolates. INFECTION GENETICS AND EVOLUTION 2020; 80:104197. [PMID: 31954917 DOI: 10.1016/j.meegid.2020.104197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Antigenic diversity is a major concern in malaria vaccine development that requires to be considered in developing a malaria vaccine. Plasmodium falciparum thrombospondin-related adhesive protein (PfTRAP) is a leading malaria vaccine candidate antigen. In the current study, we investigated the level of genetic diversity and natural selection of pftrap sequences in P. falciparum isolates from Iran (n = 47). The gene diversity of Iranian pftrap sequences was also compared to available global pftrap sequences deposited in the GenBank or PlasmoDB databases (n = 220). Comparison of Iranian PfTRAP sequences with T9/96 reference sequence showed the presence of 35 amino acid changes in 32 positions and a limited variation in repeat sequences, leading to 13 distinct haplotypes. The overall nucleotide diversity (π) for the ectodomain of Iranian pftrap sequences was 0.00444 ± 0.00043, with the highest diversity in Domain IV. Alignment comparison of global PfTRAP sequences with T9/96 reference sequence indicated 96 amino acid replacements as well as extensive variable repeat sequences (9-23 repeats), which led to 192 haplotypes. Among the global isolates, the lowest nucleotide diversity was detected in French Guianan (0.00428 ± 0.00163) and Iranian (0.00444 ± 0.00043) pftrap sequences, and the most variation was observed in domains II and IV in all populations. The dN-dS value displayed the evidence of positive selection due to recombination and immune system pressure. The Fst analysis revealed a gene flow between African populations; however, genetic differentiation observed between Iranian and other populations probably was due to gene flow barriers. Both conserved and variable epitopes were predicted in B- and T-cell epitopes of PfTRAP antigen. The obtained results from this study could be helpful for developing a PfTRAP-based malaria vaccine.
Collapse
Affiliation(s)
- Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O.BOX 1316943551, Tehran, Iran.
| | - Azadeh Jafari Zadeh
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O.BOX 1316943551, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O.BOX 1316943551, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O.BOX 1316943551, Tehran, Iran
| |
Collapse
|
2
|
Hollingdale MR, Sedegah M, Limbach K. Development of replication-deficient adenovirus malaria vaccines. Expert Rev Vaccines 2016; 16:261-271. [PMID: 27606709 DOI: 10.1080/14760584.2016.1228454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.
Collapse
Affiliation(s)
| | - Martha Sedegah
- a Malaria Department , Naval Medical Research Center , Silver Spring , MD , USA
| | - Keith Limbach
- a Malaria Department , Naval Medical Research Center , Silver Spring , MD , USA
| |
Collapse
|
3
|
Translating the immunogenicity of prime-boost immunization with ChAd63 and MVA ME-TRAP from malaria naive to malaria-endemic populations. Mol Ther 2014; 22:1992-2003. [PMID: 24930599 DOI: 10.1038/mt.2014.109] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/08/2014] [Indexed: 01/17/2023] Open
Abstract
To induce a deployable level of efficacy, a successful malaria vaccine would likely benefit from both potent cellular and humoral immunity. These requirements are met by a heterologous prime-boost immunization strategy employing a chimpanzee adenovirus vector followed by modified vaccinia Ankara (MVA), both encoding the pre-erythrocytic malaria antigen ME-thrombospondin-related adhesive protein (TRAP), with high immunogenicity and significant efficacy in UK adults. We undertook two phase 1b open-label studies in adults in Kenya and The Gambia in areas of similar seasonal malaria transmission dynamics and have previously reported safety and basic immunogenicity data. We now report flow cytometry and additional interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) data characterizing pre-existing and induced cellular immunity as well as anti-TRAP IgG responses. T-cell responses induced by vaccination averaged 1,254 spot-forming cells (SFC) per million peripheral blood mononuclear cells (PBMC) across both trials and flow cytometry revealed cytokine production from both CD4(+) and CD8(+) T cells with the frequency of CD8(+) IFN-γ-secreting monofunctional T cells (previously shown to associate with vaccine efficacy) particularly high in Kenyan adults. Immunization with ChAd63 and MVA ME-TRAP induced strong cellular and humoral immune responses in adults living in two malaria-endemic regions of Africa. This prime-boost approach targeting the pre-erythrocytic stage of the malaria life-cycle is now being assessed for efficacy in a target population.
Collapse
|
4
|
Verheust C, Goossens M, Pauwels K, Breyer D. Biosafety aspects of modified vaccinia virus Ankara (MVA)-based vectors used for gene therapy or vaccination. Vaccine 2012; 30:2623-32. [DOI: 10.1016/j.vaccine.2012.02.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/01/2012] [Accepted: 02/05/2012] [Indexed: 11/16/2022]
|
5
|
Schwartz L, Brown GV, Genton B, Moorthy VS. A review of malaria vaccine clinical projects based on the WHO rainbow table. Malar J 2012; 11:11. [PMID: 22230255 PMCID: PMC3286401 DOI: 10.1186/1475-2875-11-11] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/09/2012] [Indexed: 12/14/2022] Open
Abstract
Development and Phase 3 testing of the most advanced malaria vaccine, RTS,S/AS01, indicates that malaria vaccine R&D is moving into a new phase. Field trials of several research malaria vaccines have also confirmed that it is possible to impact the host-parasite relationship through vaccine-induced immune responses to multiple antigenic targets using different platforms. Other approaches have been appropriately tested but turned out to be disappointing after clinical evaluation. As the malaria community considers the potential role of a first-generation malaria vaccine in malaria control efforts, it is an apposite time to carefully document terminated and ongoing malaria vaccine research projects so that lessons learned can be applied to increase the chances of success for second-generation malaria vaccines over the next 10 years. The most comprehensive resource of malaria vaccine projects is a spreadsheet compiled by WHO thanks to the input from funding agencies, sponsors and investigators worldwide. This spreadsheet, available from WHO's website, is known as "the rainbow table". By summarizing the published and some unpublished information available for each project on the rainbow table, the most comprehensive review of malaria vaccine projects to be published in the last several years is provided below.
Collapse
Affiliation(s)
- Lauren Schwartz
- Initiative for Vaccine Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Avenue Appia 20, 1211-CH 27, Geneva, Switzerland
| | | | | | | |
Collapse
|
6
|
Keefer MC, Frey SE, Elizaga M, Metch B, De Rosa SC, Barroso PF, Tomaras G, Cardinali M, Goepfert P, Kalichman A, Philippon V, McElrath MJ, Jin X, Ferrari G, Defawe OD, Mazzara GP, Montefiori D, Pensiero M, Panicali DL, Corey L. A phase I trial of preventive HIV vaccination with heterologous poxviral-vectors containing matching HIV-1 inserts in healthy HIV-uninfected subjects. Vaccine 2011; 29:1948-58. [PMID: 21216311 DOI: 10.1016/j.vaccine.2010.12.104] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/10/2010] [Accepted: 12/20/2010] [Indexed: 11/28/2022]
Abstract
We evaluated replication-defective poxvirus vectors (modified vaccinia Ankara [MVA] and fowlpox [FPV]) in a homologous and heterologous vector prime-boost vaccination regimen containing matching HIV inserts (MVA-HIV and FPV-HIV) given at months 0, 1, 3, 5 and 7 in 150 healthy HIV-negative vaccinia-naïve participants. FPV-HIV alone was poorly immunogenic, while the high dose (10(9)pfu/2 ml) of MVA-HIV alone elicited maximal responses after two injections: CD4+ and CD8+ T-cell responses in 26/55 (47.3%) and 5/60 (8.3%) of participants, respectively, and IFN-γ ELISpot responses in 28/62 (45.2%). The infrequent CD8+ T-cell responses following MVA-HIV priming were boosted only by the heterologous (FPV-HIV) construct in 14/27 (51.9%) of participants post 4th vaccination. Alternatively, HIV envelope-specific binding antibodies were demonstrated in approximately two-thirds of recipients of the homologous boosting regimen, but in less than 20% of subjects after the heterologous vector boost. Thus, a heterologous poxvirus vector prime-boost regimen can induce HIV-specific CD8+ T-cell and CD4+ T-cell responses, which may be an important feature of an optimal regimen for preventive HIV vaccination.
Collapse
Affiliation(s)
- Michael C Keefer
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA. Michael
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Radosević K, Rodriguez A, Lemckert A, Goudsmit J. Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects. Expert Rev Vaccines 2009; 8:577-92. [PMID: 19397415 DOI: 10.1586/erv.09.14] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Classical vaccination approaches, based on a single vaccine administered in a homologous prime-boost schedule and optimized to induce primarily neutralizing antibodies, are unlikely to be sufficiently efficacious to prevent TB, malaria or HIV infections. Novel vaccines, capable of inducing a more powerful immune response, in particular T-cell immunity, are desperately needed. Combining different vaccine modalities that are able to complement each other and induce broad and sustainable immunity is a promising approach. This review provides an overview of heterologous prime-boost vaccination modalities currently in development for the 'big three' poverty-related diseases and emphasizes the need for innovative vaccination approaches.
Collapse
Affiliation(s)
- Katarina Radosević
- Immunology and Proof of Concept, Innovation & Discovery Lab, Crucell Holland BV, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Crager SE, Price M. Prizes and parasites: incentive models for addressing Chagas disease. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2009; 37:292-304. [PMID: 19493074 DOI: 10.1111/j.1748-720x.2009.00373.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recent advances in immunology have provided a foundation of knowledge to understand many of the intricacies involved in manipulating the human response to fight parasitic infections, and a great deal has been learned from malaria vaccine efforts regarding strategies for developing parasite vaccines. There has been some encouraging progress in the development of a Chagas vaccine in animal models. A prize fund for Chagas could be instrumental in ensuring that these efforts are translated into products that benefit patients.
Collapse
|
9
|
Tartz S, Rüssmann H, Kamanova J, Sebo P, Sturm A, Heussler V, Fleischer B, Jacobs T. Complete protection against P. berghei malaria upon heterologous prime/boost immunization against circumsporozoite protein employing Salmonella type III secretion system and Bordetella adenylate cyclase toxoid. Vaccine 2008; 26:5935-43. [PMID: 18804138 DOI: 10.1016/j.vaccine.2008.08.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 08/12/2008] [Accepted: 08/31/2008] [Indexed: 01/13/2023]
Abstract
Sterile immunity against malaria can be achieved by the induction of IFNgamma-producing CD8(+) T cells that target infected hepatocytes presenting epitopes of the circumsporozoite protein (CSP). In the present study we evaluate the protective efficacy of a heterologous prime/boost immunization protocol based on the delivery of the CD8(+) epitope of Plasmodium berghei CSP into the MHC class I presentation pathway, by either a type III secretion system of live recombinant Salmonella and/or by direct translocation of a recombinant Bordetella adenylate cyclase toxoid fusion (ACT-CSP) into the cytosol of professional antigen-presenting cells (APCs). A single intraperitoneal application of the recombinant ACT-CSP toxoid, as well as a single oral immunization with the Salmonella vaccine, induced a specific CD8(+) T cell response, which however conferred only a partial protection on mice against a subsequent sporozoite challenge. In contrast, a heterologous prime/boost vaccination with the live Salmonella followed by ACT-CSP led to a significant enhancement of the CSP-specific T cell response and induced complete protection in all vaccinated mice.
Collapse
Affiliation(s)
- Susanne Tartz
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria. Proc Natl Acad Sci U S A 2008; 105:14017-22. [PMID: 18780790 DOI: 10.1073/pnas.0805452105] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infection of mice with sporozoites of Plasmodium berghei or Plasmodium yoelii has been used extensively to evaluate liver-stage protection by candidate preerythrocytic malaria vaccines. Unfortunately, repeated success of such vaccines in mice has not translated readily to effective malaria vaccines in humans. Thus, mice may be used better as models to dissect basic parameters required for immunity to Plasmodium-infection than as preclinical vaccine models. In turn, this basic information may aid in the rational design of malaria vaccines. Here, we describe a model of circumsporozoite-specific memory CD8 T cell generation that protects mice against multiple P. berghei sporozoite challenges for at least 19 months. Using this model we defined a threshold frequency of memory CD8 T cells in the blood that predicts long-term sterilizing immunity against liver-stage infection. Importantly, the number of Plasmodium-specific memory CD8 T cells required for immunity greatly exceeds the number required for resistance to other pathogens. In addition, this model allowed us to identify readily individual immunized mice that exceed or fall below the protective threshold before infection, information that should greatly facilitate studies to dissect basic mechanisms of protective CD8 T cell memory against liver-stage Plasmodium infection. Furthermore, the extremely large threshold in memory CD8 T cell frequencies required for long-term protection in mice may have important implications for development of effective malaria vaccines.
Collapse
|
11
|
Moreno A, Caro-Aguilar I, Yazdani SS, Shakri AR, Lapp S, Strobert E, McClure H, Chitnis CE, Galinski MR. Preclinical assessment of the receptor-binding domain of Plasmodium vivax Duffy-binding protein as a vaccine candidate in rhesus macaques. Vaccine 2008; 26:4338-44. [PMID: 18573299 DOI: 10.1016/j.vaccine.2008.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 05/29/2008] [Accepted: 06/04/2008] [Indexed: 11/17/2022]
Abstract
The receptor-binding domain of Plasmodium vivax Duffy-binding protein, region II (PvRII), is an attractive candidate for a vaccine against P. vivax malaria. Here, we have studied the safety and immunogenicity of recombinant PvRII in Macaca mulatta (rhesus monkeys). Recombinant PvRII with a C-terminal 6-histidine tag was expressed in E. coli, recovered from inclusion bodies, refolded into its functional conformation, purified to homogeneity and formulated with three adjuvants, namely, Alhydrogel, Montanide ISA 720 and the GSK proprietary Adjuvant System AS02A for use in immunogenicity studies. All the PvRII vaccine formulations tested were safe and highly immunogenic. The overall magnitude of the antibody response was significantly higher for both Montanide ISA 720 and AS02A formulations in comparison with Alhydrogel. Furthermore, there was a significant correlation between antibody recognition titers by ELISA and binding inhibition titers in in vitro binding assays. The PvRII vaccine formulations also induced IFN-gamma recall responses that were identified using ex vivo ELISPOT assays. These results provide support for further clinical development of a vaccine for P. vivax malaria based on recombinant PvRII.
Collapse
Affiliation(s)
- A Moreno
- Emory Vaccine Center & Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bejon P, Mwacharo J, Kai O, Todryk S, Keating S, Lowe B, Lang T, Mwangi TW, Gilbert SC, Peshu N, Marsh K, Hill AVS. The induction and persistence of T cell IFN-gamma responses after vaccination or natural exposure is suppressed by Plasmodium falciparum. THE JOURNAL OF IMMUNOLOGY 2007; 179:4193-201. [PMID: 17785859 PMCID: PMC2658805 DOI: 10.4049/jimmunol.179.6.4193] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidemiological observations suggest that T cell immunity may be suppressed in malaria-endemic areas. In vitro studies, animal models, and limited data in humans link immunosuppression with malaria, malnutrition, and other parasitic infections. However, there are no data to determine whether malaria-induced immunosuppression is significant in the long-term, or relative data comparing it with other factors in malaria-endemic areas, so as to measure the impact of malaria, other parasitic disease, nutritional status, age. and location on the acquisition and longevity of IFN-gamma responses in children in Kenya. We studied these factors in two cohorts of 1- to 6-year-old children in a malaria-endemic area. T cell responses were induced by vaccination in one cohort, and acquired as a result of natural exposure in a second cohort. Serial ELISPOT assays conducted over a 1-year period measured the induction and kinetics of IFN-gamma production in response to the malaria Ag thrombospondin-related adhesion protein. Induced responses in both cohorts and the longevity of response in the vaccinated cohort were fitted to potential explanatory variables. Parasitemia was prospectively associated with reduced IFN-gamma-producing T cells in both cohorts (by 15-25%), and both parasitemia and episodes of febrile malaria were associated with 19 and 31% greater attrition of T cell responses, respectively. Malaria may reduce the efficacy vaccinations such as bacillus Calmette-Guérin and investigational T cell-inducing vaccines, and may delay the acquisition of immunity following natural exposure to malaria and other pathogens.
Collapse
Affiliation(s)
- Philip Bejon
- Kenya Medical Research Institute, Centre for Geographical Medicine Research (Coast) Kilifi, Kenya.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Crampton A, Vanniasinkam T. Parasite vaccines: The new generation. INFECTION GENETICS AND EVOLUTION 2007; 7:664-73. [PMID: 17702669 DOI: 10.1016/j.meegid.2007.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 06/25/2007] [Accepted: 06/27/2007] [Indexed: 12/24/2022]
Abstract
Parasites cause some of the most devastating and prevalent diseases in humans and animals. Moreover, parasitic infections increase mortality rates of other serious non-parasitic infections caused by pathogens such as HIV-1. The impact of parasitic diseases in both industrialised and developing countries is further exacerbated by the resistance of some parasites to anti-parasitic drugs and the absence of efficacious parasite vaccines. Despite years of research, much remains to be done to develop effective vaccines against parasites. This review focuses on the more recent vaccine strategies such as DNA and viral vector-based vaccines that are currently being used to develop vaccines against parasites. Obstacles yet to be overcome and possible advantages and disadvantages of these vaccine modalities are also discussed.
Collapse
Affiliation(s)
- A Crampton
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 678, Wagga Wagga, NSW 2650, Australia
| | | |
Collapse
|
14
|
Minigo G, Scalzo K, Flanagan KL, Plebanski M. Predicting memory: a prospective readout for malaria vaccines? Trends Parasitol 2007; 23:341-3. [PMID: 17586093 DOI: 10.1016/j.pt.2007.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 04/26/2007] [Accepted: 06/06/2007] [Indexed: 11/16/2022]
Abstract
Malaria vaccines aim to induce long lasting protective immunity. Bejon and colleagues propose that levels of rapidly induced (effector memory) interleukin-2 and interferon gamma producing T-cells after vaccination with leading pre-erythrocytic stage vaccines predict the induction of resting memory responses (central memory). Herein we discuss Bejon's findings in the context of current thinking on the generation and maintenance of T cell memory, with particular emphasis on the role of cytokines.
Collapse
Affiliation(s)
- Gabriela Minigo
- Department of Immunology, Monash University, The Alfred Medical Research and Education Precinct, Prahran, Victoria 3181, Australia
| | | | | | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW To focus on recent novel concepts in the development of malaria vaccines. RECENT FINDINGS There is a renewed interest in whole attenuated sporozoite vaccines, either as irradiated or genetically modified sporozoites, because they consistently elicit solid protection against challenge infections. Enthusiasm about these vaccines is, however, tempered by technical, logistical, safety and even cultural hurdles that might need to be surmounted. Less than a score of Plasmodium falciparum proteins are currently in the development pipeline as malaria vaccines. There is an urgent need to ratchet up the process of candidate vaccine discovery, and reverse vaccinology and genome-wide surveys remain promising strategies. The development of malaria vaccines for placental malaria is an active area and chondroitin sulfate A-binding epitopes of the variant PfEMP1 have been identified. Live bacteria and viral vectors hold special promise for vaccine delivery. SUMMARY Attenuated sporozoite vaccines have made a resurgence to center stage in malaria vaccine development. There is an urgent need to identify more subunit vaccine candidates that can enter into the development pipeline, identify surrogate markers of immunity and design vaccines which induce long-lasting immunity.
Collapse
|
16
|
Abstract
Vaccines that comprise attenuated viral vectors encoding antigens from target pathogens generate potent T-cell responses. One such pathogen is malaria, and in particular the liver stage of its life cycle. Immunogenicity and efficacy studies in animals and humans have revealed the generation of memory T cells of both the central and effector phenotypes, depending on the viral vectors used in the malaria vaccination regime (viral species and serotype, combination and sequence for prime-boost) and suggest a divergence in their protective role. Being able to influence the memory T-cell make-up in a rational manner may allow us to develop more efficacious vaccines.
Collapse
|
17
|
Bejon P, Mwacharo J, Kai O, Mwangi T, Milligan P, Todryk S, Keating S, Lang T, Lowe B, Gikonyo C, Molyneux C, Fegan G, Gilbert SC, Peshu N, Marsh K, Hill AVS. A phase 2b randomised trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya. PLOS CLINICAL TRIALS 2006; 1:e29. [PMID: 17053830 PMCID: PMC1617125 DOI: 10.1371/journal.pctr.0010029] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 09/01/2006] [Indexed: 11/30/2022]
Abstract
Objective: The objective was to measure the efficacy of the vaccination regimen FFM ME-TRAP in preventing episodes of clinical malaria among children in a malaria endemic area. FFM ME-TRAP is sequential immunisation with two attenuated poxvirus vectors (FP9 and modified vaccinia virus Ankara), which both deliver the pre-erythrocytic malaria antigen construct multiple epitope–thrombospondin-related adhesion protein (ME-TRAP). Design: The trial was randomised and double-blinded. Setting: The setting was a rural, malaria-endemic area of coastal Kenya. Participants: We vaccinated 405 healthy 1- to 6-year-old children. Interventions: Participants were randomised to vaccination with either FFM ME-TRAP or control (rabies vaccine). Outcome Measures: Following antimalarial drug treatment children were seen weekly and whenever they were unwell during nine months of monitoring. The axillary temperature was measured, and blood films taken when febrile. The primary analysis was time to a parasitaemia of over 2,500 parasites/μl. Results: The regime was moderately immunogenic, but the magnitude of T cell responses was lower than in previous studies. In intention to treat (ITT) analysis, time to first episode was shorter in the FFM ME-TRAP group. The cumulative incidence of febrile malaria was 52/190 (27%) for FFM ME-TRAP and 40/197 (20%) among controls (hazard ratio = 1.52). This was not statistically significant (95% confidence interval [CI] 1.0–2.3; p = 0.14 by log-rank). A group of 346 children were vaccinated according to protocol (ATP). Among these children, the hazard ratio was 1.3 (95% CI 0.8–2.1; p = 0.55 by log-rank). When multiple malaria episodes were included in the analyses, the incidence rate ratios were 1.6 (95% CI 1.1–2.3); p = 0.017 for ITT, and 1.4 (95% CI 0.9–2.1); p = 0.16 for ATP. Haemoglobin and parasitaemia in cross-sectional surveys at 3 and 9 mo did not differ by treatment group. Among children vaccinated with FFM ME-TRAP, there was no correlation between immunogenicity and malaria incidence. Conclusions: No protection was induced against febrile malaria by this vaccine regimen. Future field studies will require vaccinations with stronger immunogenicity in children living in malarious areas. Background: Malaria kills over a million people a year worldwide, and young children in sub-Saharan are particularly at risk. Cheap, safe, and effective vaccines are needed. One strategy involves a double-vaccination process. This approach (termed “prime-boost”) uses two different delivery methods to transmit the same antigen (part of a protein from the malaria parasite that can trigger an immune response). The two-step vaccination is designed to achieve a greater immune response than with just one vaccination. One research group, based in Oxford in the UK, is using an antigen called “ME-TRAP,” which is delivered using first a strain of modified fowlpox virus (called FP9), then a weakened vaccinia virus (called MVA). Previous studies done in adult UK volunteers have been promising, achieving an immune response and some protection against malaria when volunteers were deliberately infected. However, this approach has not been tested in the group most in need of a vaccine—young African children. Therefore a field trial was conducted among 405 healthy children aged 1–6 years, in a region of Kenya with year-round malaria transmission. Children were randomized to receive either the sequence of vaccines delivering ME-TRAP or to receive a rabies vaccine (as control, but which still gives the children some benefit for taking part in the trial). The children were followed up for nine months, and the primary aim of the trial was to compare the occurrence of clinical malaria (fever combined with malaria parasites in the blood) in the two groups. What this trial shows: In the 387 children receiving vaccine and having at least one follow-up visit the vaccine did produce an immune response; however, this immune response did not seem to be protective, as the occurrence of malaria was slightly higher in the group receiving the candidate vaccine—although this difference was not statistically significant. Safety data were also collected; the number and severity of adverse events were similar between volunteers receiving the rabies vaccine and those receiving the candidate malaria vaccine, and any serious events were not judged to be linked to the vaccines by the trial's data safety monitoring board. Strengths and limitations: The methods used in the trial were robust, using appropriate randomization procedures and blinding of participants and researchers. Outcome measures (clinical malaria, defined as fever together with parasites in the blood over 2,500/microliter) were clinically relevant. In order to detect cases of malaria in vaccinated children, health workers visited children weekly, and children with a temperature over 37.5 °C were tested for parasites in the blood. (In between the weekly visits, self-report and referral for assessment also allowed detection of cases.) This process of active detection of malaria cases (as opposed to obtaining data on clinical malaria only from self-report or referral) enables a smaller sample size to be used in the trial, but it is not clear whether this approach is more or less specific at picking up malaria cases than are passive methods. The researchers aimed to ensure that their case detection methods were specific; for children with normal temperature, but reported by their parents as feverish, parasite tests were done only if subsequent temperature readings were high. Contribution to the evidence: Previous studies of ME-TRAP using the FP9 and MVA vectors have shown the candidate vaccine is safe and induces a strong immune response. The safety result was also supported by the findings of the current trial, conducted in young Kenyan children, but a 5-fold lower immune response was found compared to previous studies. The trial showed that this weak immune response was not effective at preventing clinical cases of malaria in this group of children, although it is not clear why the immune response was lower than expected.
Collapse
Affiliation(s)
- Philip Bejon
- Kenya Medical Research Institute, Centre for Geographical Medicine Research (Coast), Kilifi, Kenya.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Girard MP, Reed ZH, Friede M, Kieny MP. A review of human vaccine research and development: malaria. Vaccine 2006; 25:1567-80. [PMID: 17045367 DOI: 10.1016/j.vaccine.2006.09.074] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Accepted: 09/25/2006] [Indexed: 11/18/2022]
Abstract
The last several years have seen significant progress in the development of vaccines against malaria. Most recently, proof-of-concept of vaccine-induced protection from malaria infection and disease was demonstrated in African children. Pursued by various groups and on many fronts, several other candidate vaccines are in early clinical trials. Yet, despite the optimism and promise, an effective malaria vaccine is not yet available, in part because of the lack of understanding of the types of immune responses needed for protection, added to the difficulty of identifying, selecting and producing the appropriate protective antigens from a parasite with a genome of well over five thousand genes and to the frequent need to enhance the immunogenicity of purified antigens through the use of novel adjuvants or delivery systems. Insufficient clinical trial capacity and normative research functions such as local ethical committee reviews also contribute to slow down the development process. This article attempts to summarize the state of the art of malaria vaccine development.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, 39 rue Seignemartin, FR-69008 Lyon, France.
| | | | | | | |
Collapse
|
19
|
Bejon P, Keating S, Mwacharo J, Kai OK, Dunachie S, Walther M, Berthoud T, Lang T, Epstein J, Carucci D, Moris P, Cohen J, Gilbert SC, Peshu N, Marsh K, Hill AVS. Early gamma interferon and interleukin-2 responses to vaccination predict the late resting memory in malaria-naïve and malaria-exposed individuals. Infect Immun 2006; 74:6331-8. [PMID: 16966412 PMCID: PMC1695504 DOI: 10.1128/iai.00774-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two different cell populations respond to potent T-cell-inducing vaccinations. The induction and loss of effector cells can be seen using an ex vivo enzyme-linked immunospot (ELISPOT) assay, but the more durable resting memory response is demonstrable by a cultured ELISPOT assay. The relationship of the early effector response to durable resting memory is incompletely understood. Effector phenotype is usually identified by gamma interferon (IFN-gamma) production, but interleukin-2 (IL-2) has been specifically linked to the differentiation of memory cells. Here, IFN-gamma- and IL-2-secreting effector cells were identified by an ex vivo ELISPOT assay 1 week after vaccination and compared with the resting memory responses detected by a cultured ELISPOT assay 3 months later. The different kinetics and induction of IL-2 by different vaccines and natural exposure are described. Furthermore, both early IFN-gamma and IL-2 production independently predicted subsequent memory responses at 3 months in malaria-naïve volunteers, but only IFN-gamma predicted memory in malaria-exposed volunteers. However, dual ELISPOT assays were also performed on malaria-exposed volunteers to identify cells producing both cytokines simultaneously. This demonstrated that double-cytokine-producing cells were highly predictive of memory. This assay may be useful in predicting vaccinations most likely to generate stable, long-term memory responses.
Collapse
Affiliation(s)
- Philip Bejon
- Kenya Medical Research Institute, Centre for Geographical Medical Research (Coast), P.O. Box 230, Kilifi, Kenya.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|