1
|
Role of T Cells in the Pathogenesis of Rheumatoid Arthritis: Focus on Immunometabolism Dysfunctions. Inflammation 2023; 46:88-102. [PMID: 36215002 DOI: 10.1007/s10753-022-01751-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Evidence demonstrated that metabolic-associated T cell abnormalities could be detected in the early stage of RA development. In this context, molecular evaluations have revealed changes in metabolic pathways, leading to the aggressive phenotype of RA T cells. A growing list of genes is downregulated or upregulated in RA T cells, and most of these genes with abnormal expression fall into the category of metabolic pathways. It has been shown that RA T cells shunt glucose towards the pentose phosphate pathway (PPP), which is associated with a high level of nicotinamide adenine dinucleotide phosphate (NADPH) and intermediate molecules. An increased level of NADPH inhibits ATM activation and thereby increases the proliferation capabilities of the RA T cells. Defects in the DNA repair nuclease MRE11A cause failures in repairing mitochondrial DNA, resulting in inhibiting the fatty acid oxidation pathway and further elevated cytoplasmic lipid droplets. Accumulated lipid droplets employ to generate lipid membranes for the cell building program and are also used to form the front-end membrane ruffles that are accomplices with invasive phenotypes of RA T cells. Metabolic pathway involvement in RA pathogenesis expands the pathogenic concept of the disease beyond the common view of autoimmunity triggered by autoantigen recognition. Increased knowledge about metabolic pathways' implications in RA pathogenesis paves the way to understand better the environment/gene interactions and host/microbiota interactions and introduce potential therapeutic approaches. This review summarized emerging data about the roles of T cells in RA pathogenesis with a focus on immunometabolism dysfunctions and how these metabolic alterations can affect the disease process.
Collapse
|
2
|
HIF-1 stabilization in T cells hampers the control of Mycobacterium tuberculosis infection. Nat Commun 2022; 13:5093. [PMID: 36064840 PMCID: PMC9445005 DOI: 10.1038/s41467-022-32639-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
The hypoxia-inducible factors (HIFs) regulate the main transcriptional pathway of response to hypoxia in T cells and are negatively regulated by von Hippel-Lindau factor (VHL). But the role of HIFs in the regulation of CD4 T cell responses during infection with M. tuberculosis isn’t well understood. Here we show that mice lacking VHL in T cells (Vhl cKO) are highly susceptible to infection with M. tuberculosis, which is associated with a low accumulation of mycobacteria-specific T cells in the lungs that display reduced proliferation, altered differentiation and enhanced expression of inhibitory receptors. In contrast, HIF-1 deficiency in T cells is redundant for M. tuberculosis control. Vhl cKO mice also show reduced responses to vaccination. Further, VHL promotes proper MYC-activation, cell-growth responses, DNA synthesis, proliferation and survival of CD4 T cells after TCR activation. The VHL-deficient T cell responses are rescued by the loss of HIF-1α, indicating that the increased susceptibility to M. tuberculosis infection and the impaired responses of Vhl-deficient T cells are HIF-1-dependent. The role of hypoxia inducible factors in infection and immune response is unclear. Here, the authors study their impact on the regulation of T cells responses during Mycobacteria tuberculosis infection using transcriptomics, flow cytometry and in vivo infection.
Collapse
|
3
|
Hochgerner M, Sturm EM, Schnoegl D, Kwapiszewska G, Olschewski H, Marsh LM. Low oxygen levels decrease adaptive immune responses and ameliorate experimental asthma in mice. Allergy 2022; 77:870-882. [PMID: 34309864 PMCID: PMC9290649 DOI: 10.1111/all.15020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/09/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND High-altitude therapy has been used as add-on treatment for allergic asthma with considerable success. However, the underlying mechanisms remain unclear. In order to investigate the possible therapeutic effects of high-altitude therapy on allergic asthma, we utilized a new in vivo mouse model. METHODS Mice were treated with house dust mite (HDM) extract over 4 weeks and co-exposed to 10% oxygen (Hyp) or room air for the final 2 weeks. Experimental asthma was assessed by airway hyper-responsiveness, mucus hypersecretion and inflammatory cell recruitment. Isolated immune cells from mouse and allergic patients were stimulated in vitro with HDM under Hyp and normoxia in different co-culture systems to analyse the adaptive immune response. RESULTS Compared to HDM-treated mice in room air, HDM-treated Hyp-mice displayed ameliorated mucosal hypersecretion and airway hyper-responsiveness. The attenuated asthma phenotype was associated with strongly reduced activation of antigen-presenting cells (APCs), effector cell infiltration and cytokine secretion. In vitro, hypoxia almost completely suppressed the HDM-induced adaptive immune response in both mouse and human immune cells. While hypoxia did not affect effector T-cell responses per-se, it interfered with antigen-presenting cell (APC) differentiation and APC/effector cell crosstalk. CONCLUSIONS Hypoxia-induced reduction in the Th2-response to HDM ameliorates allergic asthma in vivo. Hypoxia interferes with APC/T-cell crosstalk and confers an unresponsive phenotype to APCs.
Collapse
Affiliation(s)
| | - Eva M. Sturm
- Division of Pharmacology, Otto Loewi Research Center Medical University of Graz Graz Austria
| | - Diana Schnoegl
- Ludwig Boltzmann Institute for Lung Vascular Research Graz Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research Graz Austria
- Division of Physiology Otto Loewi Research Center, Medical University of Graz Graz Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research Graz Austria
- Division of Pulmonology, Department of Internal Medicine Medical University of Graz Graz Austria
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research Graz Austria
| |
Collapse
|
4
|
Krauss PL, Pfeiffenberger M, Damerau A, Buttgereit T, Chen Y, Gaber T, Buttgereit F. Production of IL-6 and Phagocytosis Are the Most Resilient Immune Functions in Metabolically Compromised Human Monocytes. Front Immunol 2021; 12:730672. [PMID: 34737742 PMCID: PMC8562108 DOI: 10.3389/fimmu.2021.730672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/01/2021] [Indexed: 01/23/2023] Open
Abstract
At sites of inflammation, monocytes carry out specific immune functions while facing challenging metabolic restrictions. Here, we investigated the potential of human monocytes to adapt to conditions of gradually inhibited oxidative phosphorylation (OXPHOS) under glucose free conditions. We used myxothiazol, an inhibitor of mitochondrial respiration, to adjust two different levels of decreased mitochondrial ATP production. At these levels, and compared to uninhibited OXPHOS, we assessed phagocytosis, production of reactive oxygen species (ROS) through NADPH oxidase (NOX), expression of surface activation markers CD16, CD80, CD11b, HLA-DR, and production of the inflammatory cytokines IL-1β, IL-6 and TNF-α in human monocytes. We found phagocytosis and the production of IL-6 to be least sensitive to metabolic restrictions while surface expression of CD11b, HLA-DR, production of TNF-α, IL-1β and production of ROS through NOX were most compromised by inhibition of OXPHOS in the absence of glucose. Our data demonstrate a short-term hierarchy of immune functions in human monocytes, which represents novel knowledge potentially leading to the development of new therapeutics in monocyte-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Pierre-Louis Krauss
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Moritz Pfeiffenberger
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Alexandra Damerau
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Thomas Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Dermatology, Venerology, and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yuling Chen
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| |
Collapse
|
5
|
Braun C, Weichhart T. mTOR-dependent immunometabolism as Achilles' heel of anticancer therapy. Eur J Immunol 2021; 51:3161-3175. [PMID: 34648202 DOI: 10.1002/eji.202149270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/07/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
Immune cells are important constituents of the tumor microenvironment and essential in eradicating tumor cells during conventional therapies or novel immunotherapies. The mechanistic target of rapamycin (mTOR) signaling pathway senses the intra- and extracellular nutrient status, growth factor supply, and cell stress-related changes to coordinate cellular metabolism and activation dictating effector and memory functions in mainly all hematopoietic immune cells. In addition, the mTOR complex 1 (mTORC1) and mTORC2 are frequently deregulated and become activated in cancer cells to drive cell transformation, survival, neovascularization, and invasion. In this review, we provide an overview of the influence of mTOR complexes on immune and cancer cell function and metabolism. We discuss how mTOR inhibitors aiming to target cancer cells will influence immunometabolic cell functions participating either in antitumor responses or favoring tumor cell progression in individual immune cells. We suggest immunometabolism as the weak spot of anticancer therapy and propose to evaluate patients according to their predominant immune cell subtype in the cancer tissue. Advances in metabolic drug development that hold promise for more effective treatments in different types of cancer will have to consider their effects on the immune system.
Collapse
Affiliation(s)
- Clarissa Braun
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.,Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Siska PJ, Singer K, Evert K, Renner K, Kreutz M. The immunological Warburg effect: Can a metabolic-tumor-stroma score (MeTS) guide cancer immunotherapy? Immunol Rev 2020; 295:187-202. [PMID: 32157706 DOI: 10.1111/imr.12846] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
The "glycolytic switch" also known as the "Warburg effect" is a key feature of tumor cells and leads to the accumulation of lactate and protons in the tumor environment. Intriguingly, non-malignant lymphocytes or stromal cells such as tumor-associated macrophages and cancer-associated fibroblasts contribute to the lactate accumulation in the tumor environment, a phenomenon described as the "Reverse Warburg effect." Localized lactic acidosis has a strong immunosuppressive effect and mediates an immune escape of tumors. However, some tumors do not display the Warburg phenotype and either rely on respiration or appear as a mosaic of cells with different metabolic properties. Based on these findings and on the knowledge that T cell infiltration is predictive for patient outcome, we suggest a metabolic-tumor-stroma score to determine the likelihood of a successful anti-tumor immune response: (a) a respiring tumor with high T cell infiltration ("hot"); (b) a reverse Warburg type with respiring tumor cells but glycolytic stromal cells; (c) a mixed type with glycolytic and respiring compartments; and (d) a glycolytic (Warburg) tumor with low T cell infiltration ("cold"). Here, we provide evidence that these types can be independent of the organ of origin, prognostically relevant and might help select the appropriate immunotherapy approach.
Collapse
Affiliation(s)
- Peter J Siska
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Singer
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Marina Kreutz
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| |
Collapse
|
7
|
Glutamine Metabolism and Its Role in Immunity, a Comprehensive Review. Animals (Basel) 2020; 10:ani10020326. [PMID: 32092847 PMCID: PMC7070879 DOI: 10.3390/ani10020326] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
In the body of an animal, glutamine is a plentiful and very useful amino acid. Glutamine consumption in the body of animals in normal or disease conditions is the same or higher than the glucose. Many in vivo as well as in vitro experiments have been conducted to evaluate the importance of glutamine. Glutamine is a valuable nutrient for the proliferation of the lymphocytes. It also plays a crucial role in the production of cytokines, macrophages, phagocytic, and neutrophil to kill the bacteria. Most of the metabolic organs like the liver, gut, and skeletal muscles control the circulation and availability secretion of glutamine. In catabolic and hypercatabolic conditions, glutamine can turn out to be essential and plays a vital role in metabolism; however, availability may be compromised due to the impairment of homeostasis in the inter-tissue metabolism of amino acids. This is why the supplementation of glutamine is commonly used in clinical nutrition and is especially recommended to immune-suppressed persons. Despite this, in catabolic and hyper-catabolic conditions, it is challenging due to the amino acid concentration in plasma/bloodstream and glutamine should be provided via either the oral, enteral or parenteral route. However, the effect of glutamine as an immune-based supplement has been previously recognized as many research studies conducted in vivo and in-vitro evaluated the beneficial effects of glutamine. Hence, the present study delivers a combined review of glutamine metabolism in essential organs of the cell immune system. In this review, we have also reviewed the metabolism and action of glutamine and crucial problems due to glutamine supplementation in catabolic conditions.
Collapse
|
8
|
Ohta A. Oxygen-dependent regulation of immune checkpoint mechanisms. Int Immunol 2019; 30:335-343. [PMID: 29846615 DOI: 10.1093/intimm/dxy038] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/27/2018] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy of cancer has finally materialized following the success of immune checkpoint blockade. Since down-regulation of immune checkpoint mechanisms is beneficial in cancer treatment, it is important to ask why tumors are infamously filled with the immunosuppressive mechanisms. Indeed, immune checkpoints are physiological negative feedback mechanisms of immune activities, and the induction of such mechanisms is important in preventing excessive destruction of inflamed normal tissues. A condition commonly found in tumors and inflamed tissues is tissue hypoxia. Oxygen deprivation under hypoxic conditions by itself is immunosuppressive because proper oxygen supply could support bioenergetic demands of immune cells for optimal immune responses. However, importantly, hypoxia has been found to up-regulate a variety of immune checkpoints and to be able to drive a shift toward a more immunosuppressive environment. Moreover, extracellular adenosine, which accumulates due to tissue hypoxia, also contributes to the up-regulation of other immune checkpoints. Taken together, tissue oxygen is a key regulator of the immune response by directly affecting the energy status of immune effectors and by regulating the intensity of immunoregulatory activity in the environment. The regulators of various immune checkpoint mechanisms may represent the next focus to modulate the intensity of immune responses and to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Akio Ohta
- Department of Immunology, Foundation for Biomedical Research and Innovation at Kobe, Minatojima-Minamimachi, Kobe, Japan
| |
Collapse
|
9
|
Chapman NM, Shrestha S, Chi H. Metabolism in Immune Cell Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1011:1-85. [PMID: 28875486 DOI: 10.1007/978-94-024-1170-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The immune system is a central determinant of organismal health. Functional immune responses require quiescent immune cells to rapidly grow, proliferate, and acquire effector functions when they sense infectious agents or other insults. Specialized metabolic programs are critical regulators of immune responses, and alterations in immune metabolism can cause immunological disorders. There has thus been growing interest in understanding how metabolic processes control immune cell functions under normal and pathophysiological conditions. In this chapter, we summarize how metabolic programs are tuned and what the physiological consequences of metabolic reprogramming are as they relate to immune cell homeostasis, differentiation, and function.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Sharad Shrestha
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
10
|
Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018; 10:nu10111564. [PMID: 30360490 PMCID: PMC6266414 DOI: 10.3390/nu10111564] [Citation(s) in RCA: 564] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Glutamine is the most abundant and versatile amino acid in the body. In health and disease, the rate of glutamine consumption by immune cells is similar or greater than glucose. For instance, in vitro and in vivo studies have determined that glutamine is an essential nutrient for lymphocyte proliferation and cytokine production, macrophage phagocytic plus secretory activities, and neutrophil bacterial killing. Glutamine release to the circulation and availability is mainly controlled by key metabolic organs, such as the gut, liver, and skeletal muscles. During catabolic/hypercatabolic situations glutamine can become essential for metabolic function, but its availability may be compromised due to the impairment of homeostasis in the inter-tissue metabolism of amino acids. For this reason, glutamine is currently part of clinical nutrition supplementation protocols and/or recommended for immune suppressed individuals. However, in a wide range of catabolic/hypercatabolic situations (e.g., ill/critically ill, post-trauma, sepsis, exhausted athletes), it is currently difficult to determine whether glutamine supplementation (oral/enteral or parenteral) should be recommended based on the amino acid plasma/bloodstream concentration (also known as glutaminemia). Although the beneficial immune-based effects of glutamine supplementation are already established, many questions and evidence for positive in vivo outcomes still remain to be presented. Therefore, this paper provides an integrated review of how glutamine metabolism in key organs is important to cells of the immune system. We also discuss glutamine metabolism and action, and important issues related to the effects of glutamine supplementation in catabolic situations.
Collapse
Affiliation(s)
- Vinicius Cruzat
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
- Faculty of Health, Torrens University, Melbourne 3065, Australia.
| | - Marcelo Macedo Rogero
- Department of Nutrition, Faculty of Public Health, University of São Paulo, Avenida Doutor Arnaldo 715, São Paulo 01246-904, Brazil.
| | - Kevin Noel Keane
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil.
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| |
Collapse
|
11
|
Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018. [PMID: 30360490 DOI: 10.20944/preprints201809.0459.v1] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glutamine is the most abundant and versatile amino acid in the body. In health and disease, the rate of glutamine consumption by immune cells is similar or greater than glucose. For instance, in vitro and in vivo studies have determined that glutamine is an essential nutrient for lymphocyte proliferation and cytokine production, macrophage phagocytic plus secretory activities, and neutrophil bacterial killing. Glutamine release to the circulation and availability is mainly controlled by key metabolic organs, such as the gut, liver, and skeletal muscles. During catabolic/hypercatabolic situations glutamine can become essential for metabolic function, but its availability may be compromised due to the impairment of homeostasis in the inter-tissue metabolism of amino acids. For this reason, glutamine is currently part of clinical nutrition supplementation protocols and/or recommended for immune suppressed individuals. However, in a wide range of catabolic/hypercatabolic situations (e.g., ill/critically ill, post-trauma, sepsis, exhausted athletes), it is currently difficult to determine whether glutamine supplementation (oral/enteral or parenteral) should be recommended based on the amino acid plasma/bloodstream concentration (also known as glutaminemia). Although the beneficial immune-based effects of glutamine supplementation are already established, many questions and evidence for positive in vivo outcomes still remain to be presented. Therefore, this paper provides an integrated review of how glutamine metabolism in key organs is important to cells of the immune system. We also discuss glutamine metabolism and action, and important issues related to the effects of glutamine supplementation in catabolic situations.
Collapse
Affiliation(s)
- Vinicius Cruzat
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia. .,Faculty of Health, Torrens University, Melbourne 3065, Australia.
| | - Marcelo Macedo Rogero
- Department of Nutrition, Faculty of Public Health, University of São Paulo, Avenida Doutor Arnaldo 715, São Paulo 01246-904, Brazil.
| | - Kevin Noel Keane
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil.
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| |
Collapse
|
12
|
Lacroix R, Rozeman EA, Kreutz M, Renner K, Blank CU. Targeting tumor-associated acidity in cancer immunotherapy. Cancer Immunol Immunother 2018; 67:1331-1348. [PMID: 29974196 PMCID: PMC11028141 DOI: 10.1007/s00262-018-2195-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
Checkpoint inhibitors, such as cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) and programmed cell death-1 (PD-1) monoclonal antibodies have changed profoundly the treatment of melanoma, renal cell carcinoma, non-small cell lung cancer, Hodgkin lymphoma, and bladder cancer. Currently, they are tested in various tumor entities as monotherapy or in combination with chemotherapies or targeted therapies. However, only a subgroup of patients benefit from checkpoint blockade (combinations). This raises the question, which all mechanisms inhibit T cell function in the tumor environment, restricting the efficacy of these immunotherapeutic approaches. Serum activity of lactate dehydrogenase, likely reflecting the glycolytic activity of the tumor cells and thus acidity within the tumor microenvironment, turned out to be one of the strongest markers predicting response to checkpoint inhibition. In this review, we discuss the impact of tumor-associated acidity on the efficacy of T cell-mediated cancer immunotherapy and possible approaches to break this barrier.
Collapse
Affiliation(s)
- Ruben Lacroix
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Elisa A Rozeman
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Christian U Blank
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Weyand CM, Zeisbrich M, Goronzy JJ. Metabolic signatures of T-cells and macrophages in rheumatoid arthritis. Curr Opin Immunol 2017; 46:112-120. [PMID: 28538163 DOI: 10.1016/j.coi.2017.04.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/17/2022]
Abstract
In most autoimmune diseases, a decade-long defect in self-tolerance eventually leads to clinically relevant, tissue-destructive inflammatory disease. The pathogenic potential of chronic persistent immune responses during the pre-clinical and clinical phase is ultimately linked to the bioenergetic fitness of innate and adaptive immune cells. Chronic immune cell stimulation, high cellular turn-over, structural damage to the host tissue and maladaptive wound healing, all require a reliable supply of nutrients, oxygen, and biosynthetic precursors. Here, we use the model system of rheumatoid arthritis (RA) to discuss immunometabolism from the vantage point of T-cells and macrophages that encounter fundamentally different metabolic stress scenarios in the RA host. We outline the general principle that both insufficient nutrient supply, as well as nutrient excess generate cellular stress responses and guide immune function. ATPlow, NADPHhigh, ROSlow T-cells hyperproliferate and are forced into premature senescence. ATPhigh, ROShigh macrophages dimerize the glycolytic enzyme pyruvate kinase to amplify STAT3-dependent inflammatory effector functions. A corollary of this model is that simple nutraceutical interventions will be insufficient to re-educate the immune system in RA. Instead, interference with cell-type-exclusive and differentiation-stage-dependent metabolic setpoints will be needed to reprogram arthritogenic pathways.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA , United States.
| | - Markus Zeisbrich
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA , United States
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA , United States
| |
Collapse
|
14
|
Abstract
One of the fundamental traits of immune cells in rheumatoid arthritis (RA) is their ability to proliferate, a property shared with the joint-resident cells that form the synovial pannus. The building of biomass imposes high demands for energy and biosynthetic precursors, implicating metabolic control as a basic disease mechanism. During preclinical RA, when autoreactive T cells expand and immunological tolerance is broken, the main sites of disease are the secondary lymphoid tissues. Naive CD4+ T cells from patients with RA have a distinct metabolic signature, characterized by dampened glycolysis, low ATP levels and enhanced shunting of glucose into the pentose phosphate pathway. Equipped with high levels of NADPH and depleted of intracellular reactive oxygen species, such T cells hyperproliferate and acquire proinflammatory effector functions. During clinical RA, immune cells coexist with stromal cells in the acidic milieu of the inflamed joint. This microenvironment is rich in metabolic intermediates that are released into the extracellular space to shape cell-cell communication and the functional activity of tissue-resident cells. Increasing awareness of how metabolites regulate signalling pathways, guide post-translational modifications and condition the tissue microenvironment will help to connect environmental factors with the pathogenic behaviour of T cells in RA.
Collapse
|
15
|
Franchi L, Monteleone I, Hao LY, Spahr MA, Zhao W, Liu X, Demock K, Kulkarni A, Lesch CA, Sanchez B, Carter L, Marafini I, Hu X, Mashadova O, Yuan M, Asara JM, Singh H, Lyssiotis CA, Monteleone G, Opipari AW, Glick GD. Inhibiting Oxidative Phosphorylation In Vivo Restrains Th17 Effector Responses and Ameliorates Murine Colitis. THE JOURNAL OF IMMUNOLOGY 2017; 198:2735-2746. [PMID: 28242647 DOI: 10.4049/jimmunol.1600810] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 01/30/2017] [Indexed: 12/21/2022]
Abstract
Integration of signaling and metabolic pathways enables and sustains lymphocyte function. Whereas metabolic changes occurring during T cell activation are well characterized, the metabolic demands of differentiated T lymphocytes are largely unexplored. In this study, we defined the bioenergetics of Th17 effector cells generated in vivo. These cells depend on oxidative phosphorylation (OXPHOS) for energy and cytokine production. Mechanistically, the essential role of OXPHOS in Th17 cells results from their limited capacity to increase glycolysis in response to metabolic stresses. This metabolic program is observed in mouse and human Th17 cells, including those isolated from Crohn disease patients, and it is linked to disease, as inhibiting OXPHOS reduces the severity of murine colitis and psoriasis. These studies highlight the importance of analyzing metabolism in effector lymphocytes within in vivo inflammatory contexts and suggest a therapeutic role for manipulating OXPHOS in Th17-driven diseases.
Collapse
Affiliation(s)
- Luigi Franchi
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109
| | - Ivan Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | - Wenpu Zhao
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109
| | - Xikui Liu
- Lycera Corporation, Ann Arbor, MI 48109
| | | | | | | | | | | | - Irene Marafini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Xiao Hu
- Lycera Corporation, Ann Arbor, MI 48109
| | - Oksana Mashadova
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY 10065
| | - Min Yuan
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - John M Asara
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Harinder Singh
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Anthony W Opipari
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109; and
| | - Gary D Glick
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
16
|
Ohta A. A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment. Front Immunol 2016; 7:109. [PMID: 27066002 PMCID: PMC4809887 DOI: 10.3389/fimmu.2016.00109] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/14/2016] [Indexed: 01/12/2023] Open
Abstract
Within tumors, some areas are less oxygenated than others. Since their home ground is under chronic hypoxia, tumor cells adapt to this condition by activating aerobic glycolysis; however, this hypoxic environment is very harsh for incoming immune cells. Deprivation of oxygen limits availability of energy sources and induces accumulation of extracellular adenosine in tumors. Extracellular adenosine, upon binding with adenosine receptors on the surface of various immune cells, suppresses pro-inflammatory activities. In addition, signaling through adenosine receptors upregulates a number of anti-inflammatory molecules and immunoregulatory cells, leading to the establishment of a long-lasting immunosuppressive environment. Thus, due to hypoxia and adenosine, tumors can discourage antitumor immune responses no matter how the response was induced, whether it was spontaneous or artificially introduced with a therapeutic intention. Preclinical studies have shown the significance of adenosine in tumor survival strategy by demonstrating tumor regression after inactivation of adenosine receptors, inhibition of adenosine-producing enzymes, or reversal of tissue hypoxia. These promising results indicate a potential use of the inhibitors of the hypoxia-adenosine pathway for cancer immunotherapy.
Collapse
Affiliation(s)
- Akio Ohta
- Center for Drug Discovery, Northeastern University , Boston, MA , USA
| |
Collapse
|
17
|
Strehl C, Schellmann S, Maurizi L, Hofmann-Amtenbrink M, Häupl T, Hofmann H, Buttgereit F, Gaber T. Effects of PVA-coated nanoparticles on human T helper cell activity. Toxicol Lett 2016; 245:52-8. [DOI: 10.1016/j.toxlet.2016.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
|
18
|
Dimeloe S, Mehling M, Frick C, Loeliger J, Bantug GR, Sauder U, Fischer M, Belle R, Develioglu L, Tay S, Langenkamp A, Hess C. The Immune-Metabolic Basis of Effector Memory CD4+ T Cell Function under Hypoxic Conditions. THE JOURNAL OF IMMUNOLOGY 2015; 196:106-14. [DOI: 10.4049/jimmunol.1501766] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/26/2015] [Indexed: 01/19/2023]
|
19
|
Finlay DK. Starved human T lymphocytes keep fighting. Eur J Immunol 2015; 45:2480-3. [PMID: 26256443 DOI: 10.1002/eji.201545885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/13/2015] [Accepted: 08/04/2015] [Indexed: 12/17/2022]
Abstract
Cellular metabolism is emerging as a key determinant of T-lymphocyte differentiation and function. While this new paradigm has been primarily characterized in murine systems, research is now characterizing a role for different aspects of cellular metabolism in controlling human T-lymphocyte biology. In this issue of the European Journal of Immunology, Renner et al. [Eur. J. Immunol. 2015. 45: 2504-2516] analyze the glycolytic and mitochondrial activity of activated human CD4(+) and CD8(+) T cells, and correlate it to T-cell function. The authors show that although neither glucose deprivation nor mitochondrial restriction affects cytokine production, the glycolytic inhibitor 2-deoxyglucose severely affects T-cell function.
Collapse
Affiliation(s)
- David K Finlay
- School of Biochemistry and Immunology and School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
20
|
Renner K, Geiselhöringer AL, Fante M, Bruss C, Färber S, Schönhammer G, Peter K, Singer K, Andreesen R, Hoffmann P, Oefner P, Herr W, Kreutz M. Metabolic plasticity of human T cells: Preserved cytokine production under glucose deprivation or mitochondrial restriction, but 2-deoxy-glucose affects effector functions. Eur J Immunol 2015; 45:2504-16. [PMID: 26114249 DOI: 10.1002/eji.201545473] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 01/10/2023]
Abstract
The strong link between T-cell metabolism and effector functions is well characterized in the murine system but hardly investigated in human T cells. Therefore, we analyzed glycolytic and mitochondrial activity in correlation to function in activated human CD4 and CD8 T cells. Glycolysis was barely detectable upon stimulation but accelerated beyond 24 h, whereas mitochondrial activity was elevated immediately in both T-cell populations. Glucose deprivation or mitochondrial restriction reduced proliferation, had only a transient impact on "on-blast formation" and no impact on viability, IFN-γ, IL-2, IL-4, and IL-10 production, whereas TNF was reduced. Similar results were obtained in bulk T cells and T-cell subsets. Elevated respiration under glucose restriction demonstrated metabolic flexibility. Administration of the glycolytic inhibitor 2-deoxy-glucose suppressed both glycolysis and respiration and exerted a strong impact on cytokine production that persisted for IFN-γ after removal of 2-deoxy-glucose. Taken together, glycolytic or mitochondrial restriction alone compromised proliferation of human T cells, but barely affected their effector functions. In contrast, effector functions were severely affected by 2-deoxy-glucose treatment.
Collapse
Affiliation(s)
- Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Anna-Lena Geiselhöringer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Matthias Fante
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Christina Bruss
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Stephanie Färber
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Gabriele Schönhammer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Katrin Peter
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Singer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Reinhard Andreesen
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Petra Hoffmann
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Peter Oefner
- Institute of Functional Genomics, University Hospital of Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| |
Collapse
|
21
|
Byersdorfer CA. The role of Fatty Acid oxidation in the metabolic reprograming of activated t-cells. Front Immunol 2014; 5:641. [PMID: 25566254 PMCID: PMC4270246 DOI: 10.3389/fimmu.2014.00641] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/02/2014] [Indexed: 12/14/2022] Open
Abstract
Activation represents a significant bioenergetic challenge for T-cells, which must undergo metabolic reprogramming to keep pace with increased energetic demands. This review focuses on the role of fatty acid metabolism, both in vitro and in vivo, following T-cell activation. Based upon previous studies in the literature, as well as accumulating evidence in allogeneic cells, I propose a multi-step model of in vivo metabolic reprogramming. In this model, a primary determinant of metabolic phenotype is the ubiquity and duration of antigen exposure. The implications of this model, as well as the future challenges and opportunities in studying T-cell metabolism, will be discussed.
Collapse
Affiliation(s)
- Craig Alan Byersdorfer
- Department of Pediatrics, Division of Blood and Marrow Transplantation and Cellular Therapies, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
22
|
Fracchia KM, Walsh CM. Metabolic mysteries of the inflammatory response: T cell polarization and plasticity. Int Rev Immunol 2014; 34:3-18. [PMID: 25398050 DOI: 10.3109/08830185.2014.974748] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
While simultaneously maintaining homeostasis and reducing further harm to the host, the immune system is equipped to eliminate both tumors and pathogenic microorganisms. Bifurcated into cell-mediated and humoral immunity, the adaptive immune system requires a series of complex and coordinated signals to drive the proliferation and differentiation of appropriate subsets. These include signals that modulate cellular metabolism. When first published in the 1920s, "the Warburg effect" was used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis to meet their biosynthetic demands. Despite the early observations of Warburg and his colleagues, targeting cancer cell metabolism for therapeutic purposes still remains theoretical. Notably, many T cells exhibit the same Warburg metabolism as cancer cells and the therapeutic benefit of targeting their metabolic pathways has since been reexamined. Emerging evidence suggests that specific metabolic alterations associated with T cells may be ancillary to their subset differentiation and influential in their inflammatory response. Thus, T cell lymphocyte activation leads to skewing in metabolic plasticity, and issue that will be the subject of this review.
Collapse
|
23
|
Maciolek JA, Pasternak JA, Wilson HL. Metabolism of activated T lymphocytes. Curr Opin Immunol 2014; 27:60-74. [PMID: 24556090 DOI: 10.1016/j.coi.2014.01.006] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/20/2013] [Accepted: 01/14/2014] [Indexed: 01/04/2023]
Abstract
Activated T cells undergo metabolic reprogramming which promotes glycolytic flux and lactate production as well as elevated production of lipids, proteins, nucleic acids and other carbohydrates (i.e. induction of biomass) even in the presence of oxygen. Activated T cells show induced expression of, among other things, Glucose Transporter 1 and several glycolytic enzymes, including ADP-Dependent Glucokinase and the low affinity isoform Pyruvate Kinase-M2 (which promote glycolytic flux), as well Glutamine Transporters and Glycerol-3-phosphate Dehydrogenase 2 which make available glutamate and glycerol-3-phosphate as mitochondrial energy sources. Intracellular leucine concentrations critically regulate mammalian target of rapamycin (mTOR) signaling to promote Th1, Th2, and Th17 CD4(+) T effector cell differentiation. In contrast, T regulatory (Treg) cells are generated when AMP-Activating Protein Kinase signaling is activated and mTOR activation is suppressed. Unlike effector CD4(+) and CD8(+) T cells, Tregs and memory T cells oxidize fatty acids for fuel. Effector and memory T cells perform different functions and thus show distinct metabolic profiles which are exquisitely controlled by cellular signaling. Upon activation, T cells express the insulin and leptin receptors on their surface and become sensitive to insulin signaling and nutrient availability and show changes in differentiation. Thus, metabolism and nutrient availability influence T cell activation and function.
Collapse
Affiliation(s)
- Jason A Maciolek
- Vaccine and Infectious Disease Organization (VIDO)-Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3, Canada
| | - J Alex Pasternak
- Vaccine and Infectious Disease Organization (VIDO)-Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3, Canada
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO)-Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3, Canada.
| |
Collapse
|
24
|
Strehl C, Fangradt M, Fearon U, Gaber T, Buttgereit F, Veale DJ. Hypoxia: how does the monocyte-macrophage system respond to changes in oxygen availability? J Leukoc Biol 2013; 95:233-41. [PMID: 24168857 DOI: 10.1189/jlb.1212627] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypoxia is an important feature of inflamed tissue, such as the RA joint. Activated monocytes/macrophages and endothelial cells play a pivotal role in the pathogenesis of RA, implicated in the mechanism of inflammation and erosion. During development, myeloid progenitor cells sequentially give rise to monoblasts, promonocytes, and monocytes that are released from the bone marrow into the bloodstream. After extravasation, monocytes differentiate into long-lived, tissue-specific macrophages or DCs. The effect of different oxygen concentrations experienced by these cells during maturation represents a novel aspect of this developmental process. In inflamed joint tissue, the microvascular architecture is highly dysregulated; thus, efficiency of oxygen supply to the synovium is poor. Therefore, invading cells must adapt instantaneously to changes in the oxygen level of the microenvironment. Angiogenesis is an early event in the inflammatory joint, which is important in enabling activated monocytes to enter via endothelial cells by active recruitment to expand the synovium into a "pannus", resulting in cartilage degradation and bone destruction. The increased metabolic turnover of the expanding synovial pannus outpaces the dysfunctional vascular supply, resulting in hypoxia. The abnormal bioenergetics of the microenvironment further promotes synovial cell invasiveness. In RA, joint hypoxia represents a potential threat to cell function and survival. Notably, oxygen availability is a crucial parameter in the cellular energy metabolism, itself an important factor in determining the function of immune cells.
Collapse
Affiliation(s)
- Cindy Strehl
- 2.Charité-Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Chang CH, Curtis JD, Maggi LB, Faubert B, Villarino AV, O'Sullivan D, Huang SCC, van der Windt GJW, Blagih J, Qiu J, Weber JD, Pearce EJ, Jones RG, Pearce EL. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 2013; 153:1239-51. [PMID: 23746840 DOI: 10.1016/j.cell.2013.05.016] [Citation(s) in RCA: 1622] [Impact Index Per Article: 147.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/05/2013] [Accepted: 05/07/2013] [Indexed: 12/13/2022]
Abstract
A "switch" from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete environment, remains incompletely understood. We show here that aerobic glycolysis is specifically required for effector function in T cells but that this pathway is not necessary for proliferation or survival. When activated T cells are provided with costimulation and growth factors but are blocked from engaging glycolysis, their ability to produce IFN-γ is markedly compromised. This defect is translational and is regulated by the binding of the glycolysis enzyme GAPDH to AU-rich elements within the 3' UTR of IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through fluctuations in its expression, controls effector cytokine production. Thus, aerobic glycolysis is a metabolically regulated signaling mechanism needed to control cellular function.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
McNamee EN, Korns Johnson D, Homann D, Clambey ET. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. Immunol Res 2013; 55:58-70. [PMID: 22961658 DOI: 10.1007/s12026-012-8349-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxygen is a molecule that is central to cellular respiration and viability, yet there are multiple physiologic and pathological contexts in which cells experience conditions of insufficient oxygen availability, a state known as hypoxia. Given the metabolic challenges of a low oxygen environment, hypoxia elicits a range of adaptive responses at the cellular, tissue, and systemic level to promote continued survival and function. Within this context, T lymphocytes are a highly migratory cell type of the adaptive immune system that frequently encounters a wide range of oxygen tensions in both health and disease. It is now clear that oxygen availability regulates T cell differentiation and function, a response orchestrated in large part by the hypoxia-inducible factor transcription factors. Here, we discuss the physiologic scope of hypoxia and hypoxic signaling, the contribution of these pathways in regulating T cell biology, and current gaps in our understanding. Finally, we discuss how emerging therapies that modulate the hypoxic response may offer new modalities to alter T cell function and the outcome of acute and chronic pathologies.
Collapse
Affiliation(s)
- Eóin N McNamee
- Mucosal Inflammation Program, Department of Anesthesiology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
27
|
Chang CH, Curtis JD, Maggi LB, Faubert B, Villarino AV, O'Sullivan D, Huang SCC, van der Windt GJW, Blagih J, Qiu J, Weber JD, Pearce EJ, Jones RG, Pearce EL. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 2013. [PMID: 23746840 DOI: 10.1016/j.cell.2013.05.016.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A "switch" from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete environment, remains incompletely understood. We show here that aerobic glycolysis is specifically required for effector function in T cells but that this pathway is not necessary for proliferation or survival. When activated T cells are provided with costimulation and growth factors but are blocked from engaging glycolysis, their ability to produce IFN-γ is markedly compromised. This defect is translational and is regulated by the binding of the glycolysis enzyme GAPDH to AU-rich elements within the 3' UTR of IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through fluctuations in its expression, controls effector cytokine production. Thus, aerobic glycolysis is a metabolically regulated signaling mechanism needed to control cellular function.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gaber T, Tran CL, Schellmann S, Hahne M, Strehl C, Hoff P, Radbruch A, Burmester GR, Buttgereit F. Pathophysiological hypoxia affects the redox state and IL-2 signalling of human CD4+T cells and concomitantly impairs survival and proliferation. Eur J Immunol 2013; 43:1588-97. [DOI: 10.1002/eji.201242754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 01/23/2013] [Accepted: 03/15/2013] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Gerd-Rüdiger Burmester
- Department of Rheumatology and Clinical Immunology; Charité University Hospital; Berlin; Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology; Charité University Hospital; Berlin; Germany
| |
Collapse
|
29
|
Human immune cells' behavior and survival under bioenergetically restricted conditions in an in vitro fracture hematoma model. Cell Mol Immunol 2013; 10:151-8. [PMID: 23396474 DOI: 10.1038/cmi.2012.56] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The initial inflammatory phase of bone fracture healing represents a critical step for the outcome of the healing process. However, both the mechanisms initiating this inflammatory phase and the function of immune cells present at the fracture site are poorly understood. In order to study the early events within a fracture hematoma, we established an in vitro fracture hematoma model: we cultured hematomas forming during an osteotomy (artificial bone fracture) of the femur during total hip arthroplasty (THA) in vitro under bioenergetically controlled conditions. This model allowed us to monitor immune cell populations, cell survival and cytokine expression during the early phase following a fracture. Moreover, this model enabled us to change the bioenergetical conditions in order to mimic the in vivo situation, which is assumed to be characterized by hypoxia and restricted amounts of nutrients. Using this model, we found that immune cells adapt to hypoxia via the expression of angiogenic factors, chemoattractants and pro-inflammatory molecules. In addition, combined restriction of oxygen and nutrient supply enhanced the selective survival of lymphocytes in comparison with that of myeloid derived cells (i.e., neutrophils). Of note, non-restricted bioenergetical conditions did not show any similar effects regarding cytokine expression and/or different survival rates of immune cell subsets. In conclusion, we found that the bioenergetical conditions are among the crucial factors inducing the initial inflammatory phase of fracture healing and are thus a critical step for influencing survival and function of immune cells in the early fracture hematoma.
Collapse
|
30
|
Wahl DR, Byersdorfer CA, Ferrara JLM, Opipari AW, Glick GD. Distinct metabolic programs in activated T cells: opportunities for selective immunomodulation. Immunol Rev 2013; 249:104-15. [PMID: 22889218 DOI: 10.1111/j.1600-065x.2012.01148.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For several decades, it has been known that T-cell activation in vitro leads to increased glycolytic metabolism that fuels proliferation and effector function. Recently, this simple model has been complicated by the observation that different T-cell subsets differentially regulate fundamental metabolic pathways under the control of distinct molecular regulators. Although the majority of these data have been generated in vitro, several recent studies have documented the metabolism of T cells activated in vivo. Here, we review the recent data surrounding the differential regulation of metabolism by distinct T-cell subsets in vitro and in vivo and discuss how differential metabolic regulation might facilitate T-cell function vis-à-vis proliferation, survival, and energy production. We further discuss the important therapeutic implications of differential metabolism across T-cell subsets and review recent successes in exploiting lymphocyte metabolism to treat immune-mediated diseases.
Collapse
Affiliation(s)
- Daniel R Wahl
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | |
Collapse
|
31
|
Schwarm A, Viergutz T, Kuhla B, Hammon HM, Schweigel-Röntgen M. Fuel feeds function: Energy balance and bovine peripheral blood mononuclear cell activation. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:101-10. [PMID: 23085292 DOI: 10.1016/j.cbpa.2012.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/12/2012] [Accepted: 10/14/2012] [Indexed: 11/26/2022]
Abstract
A general phenomenon in peripartum mammals is the breakdown of (acquired) immunity. The incidence of parasite load, disease and inflammation often rise during the specific energetically demanding time of pregnancy and lactation. In this period, blood leukocytes display decreased DNA synthesis in response to mitogens in vitro. Leukocyte activation, the phase of the cell cycle preceding the DNA synthetic phase has hardly been investigated, but the few studies suggest that leukocyte activation may also be impaired by the limited energy/nutrient availability. Leukocyte activation is characterized by manifold processes, thus, we used the cellular oxygen consumption rate (OCR) as a measure of ATP turnover to support all these processes. We hypothesized that the activation of peripheral blood mononuclear cells (PBMC) - in terms of oxygen consumed over basal levels after in vitro stimulation - is altered by energy balance around parturition. We studied peripartum high-yielding dairy cows because they undergo substantial fluctuations in energy intake, energy output and body fat mass. We established a fluorescence-based test strategy allowing for long-term (≥24h) quantification of O(2)-consumption and studied the peripartum period from 5 weeks ante partum to 5 weeks postpartum. In addition, we determined cellular lactate production, DNA/RNA synthesis and cell size and zoo-technical parameters such as animal energy intake and milk yield were assessed, as well as selected plasma parameters, e.g. glucose concentration. The basal OCR of PBMC from pregnant, non-lactating cows (n=6, -5 weeks ante partum) was 1.19±0.15 nmol min(-1) (10(7)cells)(-1) and increased to maximum levels of 2.54±0.49 nmol min(-1) (10(7)cells)(-1) in phytohemagglutinin (PHA)-stimulated PBMC. The basal OCR did not change over the peripartum period. Whereas the activation indices, herein defined as the PHA-induced 24h-increase of OCR above baseline, amounted to 1.1±0.3, 4.2±0.3, 4.1±1.1, 2.1±0.3, and 2.7±0.5 at weeks -5, -1, +1, +2, and +5 relative to parturition, respectively. Because the activation index was positively correlated to plasma glucose levels and to energy balance during late pregnancy (week -5/week -1) and transition to lactation (week -1/week +2), we conclude that PBMC activation is modulated by energy/nutrient availability. In future studies, the activation index should aid the identification of causal mechanisms of disparity in PBMC activation, such as attenuated ion transport or macromolecule synthesis.
Collapse
Affiliation(s)
- A Schwarm
- Research Unit Nutritional Physiology Oskar Kellner, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Remodeling, a continuous physiological process maintains the strength of the bones, which maintains a delicate balance between bone formation and resorption process. This review gives an insight to the complex interaction and correlation between the bone remodeling and the corresponding changes in host immunological environment and also summarises the most recent developments occuring in the understanding of this complex field. T cells, both directly and indirectly increase the expression of receptor activator of nuclear factor kB ligand (RANKL); a vital step in the activation of osteoclasts, thus positively regulates the osteoclastogenesis. Though various cytokines, chemikines, transcription factors and co-stimulatory molecules are shared by both skeletal and immune systems, but researches are being conducted to establish and analyse their role and / or control on this complex but vital process. The understanding of this part of research may open new horizons in the management of inflammatory and autoimmune diseases, resulting into bone loss and that of osteoporosis also.
Collapse
Affiliation(s)
- Ajai Singh
- Department of Orthopaedics, Co Trauma Center I/C, C S M Medical University, Lucknow, India
| | | | | | | |
Collapse
|
33
|
Spies CM, Straub RH, Buttgereit F. Energy metabolism and rheumatic diseases: from cell to organism. Arthritis Res Ther 2012; 14:216. [PMID: 22747923 PMCID: PMC3446535 DOI: 10.1186/ar3885] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In rheumatic and other chronic inflammatory diseases, high amounts of energy for the activated immune system have to be provided and allocated by energy metabolism. In recent time many new insights have been gained into the control of the immune response through metabolic signals. Activation of immune cells as well as reduced nutrient supply and hypoxia in inflamed tissues cause stimulation of glycolysis and other cellular metabolic pathways. However, persistent cellular metabolic signals can promote ongoing chronic inflammation and loss of immune tolerance. On the organism level, the neuroendocrine immune response of the hypothalamic-pituitary adrenal axis and sympathetic nervous system, which is meant to overcome a transient inflammatory episode, can lead to metabolic disease sequelae if chronically activated. We conclude that, on cellular and organism levels, a prolonged energy appeal reaction is an important factor of chronic inflammatory disease etiology.
Collapse
Affiliation(s)
- Cornelia M Spies
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | |
Collapse
|
34
|
Abstract
BACKGROUND An effective immune system, especially during the inflammatory phase, putatively influences the quality and likelihood of bone healing. If and how this is reflected within the initial fracture hematoma is unclear. QUESTIONS/PURPOSES We therefore asked the following questions: (1) Does the local expression in fracture hematoma of genes involved in adaptation to hypoxia, migration, angiogenesis, and osteogenesis vary as compared to the peripheral blood? (2) Do these changes occur time dependently? (3) Is the gene expression during fracture hematoma formation altered by irradiation? METHODS Cells from fracture hematoma of 20 patients and hematomas formed in 40 patients after THA (20 without and 20 with preoperative radiation) were isolated and RNA was extracted to analyze the influence of oxygen deprivation during fracture healing on mRNA expression of genes (HIF1A, LDHA, and PGK1) involved in immunoregulation (IL6, IL8, CXCR4), angiogenesis (VEGF, IL8), and osteogenesis (SPP1, RUNX2) by quantitative PCR. RESULTS We observed locally increased LDHA gene expression in fracture hematoma cells (6-72 h post fracture) reflecting the adaptation to hypoxia. IL6, IL8, and VEGF upregulation indicated hypoxia-mediated inflammation and angiogenesis; increased CXCR4 expression reflected immigration of immune cells. Osteogenic differentiation was reflected in the increased expression of the SPP1 and RUNX2 genes. The increased expression of the LDHA, VEGF, IL8, SPP1 and RUNX2 genes occurred time dependently. Irradiation suppressed HIF1A, IL6, IL8, CXCR4, and RUNX2 gene expression. CONCLUSIONS Our data suggest cells in the fracture hematoma (1) adapt to hypoxia and (2) promote inflammation in fracture healing at the mRNA level, indicating early involvement of the immune system. CLINICAL RELEVANCE The initial fracture hematoma is important for the onset of angiogenesis, chemotaxis, and osteogenesis.
Collapse
|
35
|
Gaber T, Schellmann S, Erekul KB, Fangradt M, Tykwinska K, Hahne M, Maschmeyer P, Wagegg M, Stahn C, Kolar P, Dziurla R, Löhning M, Burmester GR, Buttgereit F. Macrophage Migration Inhibitory Factor Counterregulates Dexamethasone-Mediated Suppression of Hypoxia-Inducible Factor-1α Function and Differentially Influences Human CD4+ T Cell Proliferation under Hypoxia. THE JOURNAL OF IMMUNOLOGY 2010; 186:764-74. [DOI: 10.4049/jimmunol.0903421] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Hubbard VM, Valdor R, Patel B, Singh R, Cuervo AM, Macian F. Macroautophagy regulates energy metabolism during effector T cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:7349-57. [PMID: 21059894 PMCID: PMC3046774 DOI: 10.4049/jimmunol.1000576] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Macroautophagy is a highly conserved mechanism of lysosomal-mediated protein degradation that plays a key role in maintaining cellular homeostasis by recycling amino acids, reducing the amount of damaged proteins, and regulating protein levels in response to extracellular signals. We have found that macroautophagy is induced after effector T cell activation. Engagement of the TCR and CD28 results in enhanced microtubule-associated protein 1 light chain 3 (LC3) processing, increased numbers of LC3-containing vesicles, and increased LC3 flux, indicating active autophagosome formation and clearance. The autophagosomes formed in stimulated T cells actively fuse with lysosomes to degrade their cargo. Using a conditional KO mouse model where Atg7, a critical gene for macroautophagy, is specifically deleted in T cells, we have found that macroautophagy-deficient effector Th cells have defective IL-2 and IFN-γ production and reduced proliferation after stimulation, with no significant increase in apoptosis. We have found that ATP generation is decreased when autophagy is blocked, and defects in activation-induced cytokine production are restored when an exogenous energy source is added to macroautophagy-deficient T cells. Furthermore, we present evidence showing that the nature of the cargo inside autophagic vesicles found in resting T cells differs from the cargo of autophagosomes in activated T cells, where mitochondria and other organelles are selectively excluded. These results suggest that macroautophagy is an actively regulated process in T cells that can be induced in response to TCR engagement to accommodate the bioenergetic requirements of activated T cells.
Collapse
Affiliation(s)
- Vanessa M. Hubbard
- Department of Pathology, Albert Einstein College of Medicine, Bronx NY 10461
| | - Rut Valdor
- Department of Pathology, Albert Einstein College of Medicine, Bronx NY 10461
| | - Bindi Patel
- Department of Developmental and Molecular Biology and Institute for Aging Research, Albert Einstein College of Medicine, Bronx NY 10461
| | - Rajat Singh
- Diabetes Research Center and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx NY 10461
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology and Institute for Aging Research, Albert Einstein College of Medicine, Bronx NY 10461
| | - Fernando Macian
- Department of Pathology, Albert Einstein College of Medicine, Bronx NY 10461
| |
Collapse
|
37
|
Dziurla R, Gaber T, Fangradt M, Hahne M, Tripmacher R, Kolar P, Spies CM, Burmester GR, Buttgereit F. Effects of hypoxia and/or lack of glucose on cellular energy metabolism and cytokine production in stimulated human CD4+ T lymphocytes. Immunol Lett 2010; 131:97-105. [PMID: 20206208 DOI: 10.1016/j.imlet.2010.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 02/05/2023]
Abstract
Oxidative phosphorylation and/or glycolysis provide energy, mainly in the form of ATP, which ensures proper functioning of immune cells such as CD4(+) T lymphocytes. However, the main substrates, namely oxygen and glucose, are known to remain for a relatively short time in the inflamed tissue and in other clinical situations where immune cells need to function properly. Therefore, we examined the effect of hypoxia and/or lack of glucose on cellular energy metabolism and on cytokine secretion in stimulated human CD4(+) T lymphocytes. Human CD4(+) T cells were MACS-isolated using peripheral blood obtained from healthy donors. Stimulated cells were incubated in medium with or without glucose for 6h in a sealed chamber which led to cumulative hypoxia. During this incubation period, (i) oxygen saturation was measured continuously using a Clark-type electrode, and (ii) samples were taken at different time points in order to quantify for each the viability of cells, intracellular reactive oxygen species (iROS), ATP levels, glycolytic enzyme activity, mRNA expression of hexokinase-1 and superoxide dismutase-1, and concentrations of several different cytokines. Stimulated CD4(+) T cells which were incubated under normoxic conditions served as controls. Under hypoxic conditions, lack of glucose exerted a biphasic effect on cellular oxygen consumption: initially higher but later lower respiration rates were measured when compared to conditions where glucose was available. Lack of glucose strongly increased the number of dead cells and the formation of iROS under normoxia but not under hypoxia. Under both normoxic and hypoxic conditions, intracellular ATP levels remained almost unchanged during the incubation period if glucose was present, but decreased significantly in the absence of glucose, despite the enhanced glycolytic enzyme activity. Measurements of stimulated cytokine production demonstrated (i) that cumulative hypoxia stimulates especially the secretion of IL-1beta, IL-10 and IL-8, and (ii) that lack of glucose results in lower cytokine concentrations. We demonstrate that CD4(+) T cells are highly adaptive in bioenergetic terms which ensure their proper function under extreme conditions of glucose and/or oxygen availability as found under physiological and pathophysiological conditions. Hypoxia seems to facilitate inflammatory reactions and angiogenesis.
Collapse
Affiliation(s)
- R Dziurla
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Charitéplatz 1, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gaber T, Häupl T, Sandig G, Tykwinska K, Fangradt M, Tschirschmann M, Hahne M, Dziurla R, Erekul K, Lautenbach M, Kolar P, Burmester GR, Buttgereit F. Adaptation of human CD4+ T cells to pathophysiological hypoxia: a transcriptome analysis. J Rheumatol 2009; 36:2655-69. [PMID: 19884271 DOI: 10.3899/jrheum.090255] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Inflamed tissues are usually characterized by low oxygen levels. We investigated whether pathophysiological hypoxia (pO(2) < 1%) as found in the rheumatoid synovium modulates the transcriptome of human CD4+ T cells. METHODS We analyzed the extent to which hypoxia influences the transcriptome in the rheumatoid synovium according to a gene cluster reflecting adaptation to low oxygen levels. Hypoxia-inducible factor-1alpha (HIF-1alpha) was detected in the rheumatoid synovium using immunohistochemistry. Isolated human CD4+ T cells were exposed to hypoxia and analyzed using microarray analysis, quantitative polymerase chain reaction, and immunoblot detection. RESULTS In rheumatoid arthritis (RA) synovial tissue samples, hypoxia modulates the transcription profile. This profile is similar, but not identical, to that found in isolated CD4+ T cells incubated under hypoxic conditions. We show that HIF-1alpha is expressed in synovial tissue samples and in hypoxic CD4+ cells; and that hypoxia directly affects differential gene expression in human T cells with up to 4.8% modulation of the transcriptome. Functional genome analysis revealed substantial effects of hypoxia on immune response, transcriptional regulation, protein modification, cell growth and proliferation, and cell metabolism. CONCLUSION Severe hypoxia, a feature of joint inflammation, considerably modulates the transcriptome of cells found in the rheumatoid synovium. Human CD4+ T cells adapt to hypoxic conditions mainly by HIF-1-driven effects on the transcriptome reflecting a profound influence on immune functions. Thus, hypoxia must be taken into account when therapeutically targeting inflammation.
Collapse
Affiliation(s)
- Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yu X, Wester-Rosenlöf L, Gimsa U, Holzhueter SA, Marques A, Jonas L, Hagenow K, Kunz M, Nizze H, Tiedge M, Holmdahl R, Ibrahim SM. The mtDNA nt7778 G/T polymorphism affects autoimmune diseases and reproductive performance in the mouse. Hum Mol Genet 2009; 18:4689-98. [PMID: 19759059 DOI: 10.1093/hmg/ddp432] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondria are organelles of all nucleated cells, and variations in mtDNA sequence affect a wide spectrum of human diseases. However, animal models for mtDNA-associated diseases are rare, making it challenging to explore mechanisms underlying the contribution of mitochondria. Here, we identify a polymorphism in the mitochondrial genome, G-to-T at position 7778, which results in an aspartic acid-to-tyrosine (D-Y) substitution in the fifth amino acid of the highly conserved N-terminus of ATP synthase 8 (ATP8). Using a series of conplastic strains we show that this polymorphism increases susceptibility to multiple autoimmune diseases, including collagen-induced arthritis, autoimmune diabetes, nephritis and autoimmune pancreatitis. In addition, it impairs reproductive performance in females, but only in the MRL/MpJ strain. We also demonstrate that the mtAtp8 polymorphism alters mitochondrial performance, increasing H(2)O(2) production and affecting mitochondrial structure. Functional analysis reveals that the polymorphism increase the CD4 T cell adaptive potential to an oxidative phosphorylation impaired condition. Our findings provide direct experimental evidence for the role of mitochondria in autoimmunity and reproduction.
Collapse
Affiliation(s)
- Xinhua Yu
- Section of Immunogenetics, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|