1
|
The role of PGE2 and EP receptors on lung's immune and structural cells; possibilities for future asthma therapy. Pharmacol Ther 2023; 241:108313. [PMID: 36427569 DOI: 10.1016/j.pharmthera.2022.108313] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/06/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Asthma is the most common airway chronic disease with treatments aimed mainly to control the symptoms. Adrenergic receptor agonists, corticosteroids and anti-leukotrienes have been used for decades, and the development of more targeted asthma treatments, known as biological therapies, were only recently established. However, due to the complexity of asthma and the limited efficacy as well as the side effects of available treatments, there is an urgent need for a new generation of asthma therapies. The anti-inflammatory and bronchodilatory effects of prostaglandin E2 in asthma are promising, yet complicated by undesirable side effects, such as cough and airway irritation. In this review, we summarize the most important literature on the role of all four E prostanoid (EP) receptors on the lung's immune and structural cells to further dissect the relevance of EP2/EP4 receptors as potential targets for future asthma therapy.
Collapse
|
2
|
Lin Y, Zhao YJ, Zhang HL, Hao WJ, Zhu RD, Wang Y, Hu W, Zhou RP. Regulatory role of KCa3.1 in immune cell function and its emerging association with rheumatoid arthritis. Front Immunol 2022; 13:997621. [PMID: 36275686 PMCID: PMC9580404 DOI: 10.3389/fimmu.2022.997621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease characterized by chronic inflammation. Immune dysfunction is an essential mechanism in the pathogenesis of RA and directly linked to synovial inflammation and cartilage/bone destruction. Intermediate conductance Ca2+-activated K+ channel (KCa3.1) is considered a significant regulator of proliferation, differentiation, and migration of immune cells by mediating Ca2+ signal transduction. Earlier studies have demonstrated abnormal activation of KCa3.1 in the peripheral blood and articular synovium of RA patients. Moreover, knockout of KCa3.1 reduced the severity of synovial inflammation and cartilage damage to a significant extent in a mouse collagen antibody-induced arthritis (CAIA) model. Accumulating evidence implicates KCa3.1 as a potential therapeutic target for RA. Here, we provide an overview of the KCa3.1 channel and its pharmacological properties, discuss the significance of KCa3.1 in immune cells and feasibility as a drug target for modulating the immune balance, and highlight its emerging role in pathological progression of RA.
Collapse
Affiliation(s)
- Yi Lin
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Hai-Lin Zhang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wen-Juan Hao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ren-Di Zhu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- *Correspondence: Wei Hu, ; Ren-Peng Zhou,
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- *Correspondence: Wei Hu, ; Ren-Peng Zhou,
| |
Collapse
|
3
|
How the Potassium Channel Response of T Lymphocytes to the Tumor Microenvironment Shapes Antitumor Immunity. Cancers (Basel) 2022; 14:cancers14153564. [PMID: 35892822 PMCID: PMC9330401 DOI: 10.3390/cancers14153564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Competent antitumor immune cells are fundamental for tumor surveillance and combating active cancers. Once established, tumors generate a tumor microenvironment (TME) consisting of complex cellular and metabolic elements that serve to suppress the function of antitumor immune cells. T lymphocytes are key cellular elements of the TME. In this review, we explore the role of ion channels, particularly K+ channels, in mediating the suppressive effects of the TME on T cells. First, we will review the complex network of ion channels that mediate Ca2+ influx and control effector functions in T cells. Then, we will discuss how multiple features of the TME influence the antitumor capabilities of T cells via ion channels. We will focus on hypoxia, adenosine, and ionic imbalances in the TME, as well as overexpression of programmed cell death ligand 1 by cancer cells that either suppress K+ channels in T cells and/or benefit from regulating these channels’ activity, ultimately shaping the immune response. Finally, we will review some of the cancer treatment implications related to ion channels. A better understanding of the effects of the TME on ion channels in T lymphocytes could promote the development of more effective immunotherapies, especially for resistant solid malignancies.
Collapse
|
4
|
Wada A, Sawada Y, Sugino H, Nakamura M. Angioedema and Fatty Acids. Int J Mol Sci 2021; 22:ijms22169000. [PMID: 34445711 PMCID: PMC8396478 DOI: 10.3390/ijms22169000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
Angioedema is a life-threatening emergency event that is associated with bradykinin and histamine-mediated cascades. Although bradykinin-mediated angioedema currently has specific therapeutic options, angioedema is sometimes intractable with current treatments, especially histamine-mediated angioedema, suggesting that some other mediators might contribute to the development of angioedema. Fatty acids are an essential fuel and cell component, and act as a mediator in physiological and pathological human diseases. Recent updates of studies revealed that these fatty acids are involved in vascular permeability and vasodilation, in addition to bradykinin and histamine-mediated reactions. This review summarizes each fatty acid’s function and the specific receptor signaling responses in blood vessels, and focuses on the possible pathogenetic role of fatty acids in angioedema.
Collapse
|
5
|
Sokolowska M, Rovati GE, Diamant Z, Untersmayr E, Schwarze J, Lukasik Z, Sava F, Angelina A, Palomares O, Akdis CA, O’Mahony L, Sanak M, Dahlen S, Woszczek G. Current perspective on eicosanoids in asthma and allergic diseases: EAACI Task Force consensus report, part I. Allergy 2021; 76:114-130. [PMID: 32279330 DOI: 10.1111/all.14295] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/25/2022]
Abstract
Eicosanoids are biologically active lipid mediators, comprising prostaglandins, leukotrienes, thromboxanes, and lipoxins, involved in several pathophysiological processes relevant to asthma, allergies, and allied diseases. Prostaglandins and leukotrienes are the most studied eicosanoids and established inducers of airway pathophysiology including bronchoconstriction and airway inflammation. Drugs inhibiting the synthesis of lipid mediators or their effects, such as leukotriene synthesis inhibitors, leukotriene receptors antagonists, and more recently prostaglandin D2 receptor antagonists, have been shown to modulate features of asthma and allergic diseases. This review, produced by an European Academy of Allergy and Clinical Immunology (EAACI) task force, highlights our current understanding of eicosanoid biology and its role in mediating human pathology, with a focus on new findings relevant for clinical practice, development of novel therapeutics, and future research opportunities.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - G. Enrico Rovati
- Department of Pharmaceutical Sciences University of Milan Milan Italy
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Skane University Hospital Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Jargen Schwarze
- Child Life and Health and Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Zuzanna Lukasik
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | - Florentina Sava
- London North Genomic Laboratory Hub Great Ormond Street Hospital for Children NHS Foundation Trust London UK
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Liam O’Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland University College Cork Cork Ireland
| | - Marek Sanak
- Department of Medicine Jagiellonian University Medical College Krakow Poland
| | - Sven‐Erik Dahlen
- Institute of Environmental Medicine Karolinska Institute Stockholm Sweden
- Centre for Allergy Research Karolinska Institute Stockholm Sweden
| | - Grzegorz Woszczek
- MRC/Asthma UK Centre in Allergic Mechanisms of Asthma School of Immunology & Microbial Sciences King's College London London UK
| |
Collapse
|
6
|
PGE2 deficiency predisposes to anaphylaxis by causing mast cell hyperresponsiveness. J Allergy Clin Immunol 2020; 146:1387-1396.e13. [DOI: 10.1016/j.jaci.2020.03.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/22/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
|
7
|
Roach KM, Bradding P. Ca 2+ signalling in fibroblasts and the therapeutic potential of K Ca3.1 channel blockers in fibrotic diseases. Br J Pharmacol 2020; 177:1003-1024. [PMID: 31758702 DOI: 10.1111/bph.14939] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
The role of Ca2+ signalling in fibroblasts is of great interest in fibrosis-related diseases. Intracellular free Ca2+ ([Ca2+ ]i ) is a ubiquitous secondary messenger, regulating a number of cellular functions such as secretion, metabolism, differentiation, proliferation and contraction. The intermediate conductance Ca2+ -activated K+ channel KCa 3.1 is pivotal in Ca2+ signalling and plays a central role in fibroblast processes including cell activation, migration and proliferation through the regulation of cell membrane potential. Evidence from a number of approaches demonstrates that KCa 3.1 plays an important role in the development of many fibrotic diseases, including idiopathic pulmonary, renal tubulointerstitial fibrosis and cardiovascular disease. The KCa 3.1 selective blocker senicapoc was well tolerated in clinical trials for sickle cell disease, raising the possibility of rapid translation to the clinic for people suffering from pathological fibrosis. This review after analysing all the data, concludes that targeting KCa 3.1 should be a high priority for human fibrotic disease.
Collapse
Affiliation(s)
- Katy M Roach
- Institute for Lung Health, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Peter Bradding
- Institute for Lung Health, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
8
|
Plaza J, Torres R, Urbano A, Picado C, de Mora F. In Vitro and In Vivo Validation of EP2-Receptor Agonism to Selectively Achieve Inhibition of Mast Cell Activity. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:712-728. [PMID: 32400135 PMCID: PMC7225001 DOI: 10.4168/aair.2020.12.4.712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 02/01/2023]
Abstract
Purpose Agonism of the prostaglandin E2 receptor, E-prostanoid receptor 2 (EP2), may represent an alternative protective mechanism in mast cell (MC)-mediated diseases. Previous studies have suggested that activation of the MC EP2 receptor prevents pathological changes in the murine models of allergic asthma. This work aimed to analytically validate the EP2 receptor on MCs as a therapeutic target. Methods Murine MC lines and primary cultures, and MCs bearing the human immunoglobulin E (IgE) receptor were subjected to IgE-mediated activation subsequent to incubation with selective EP2 agonists. Two molecularly unrelated agonists, butaprost and CP-533536, were tested either in vitro or in 2 in vivo models of allergy. Results The diverse range of MC populations was consistently inhibited through selective EP2 agonism in spite of exhibiting a heterogeneous phenotype. Such inhibition occurred in both mouse and human IgE (hIgE)-mediated activation. The use of molecularly unrelated selective EP2 agonists allowed for the confirmation of the specificity of this protective mechanism. This effect was further demonstrated in 2 in vivo murine models of allergy where MCs are a key to pathological changes: cutaneous anaphylaxis in a transgenic mouse model expressing the hIgE receptor and aeroallergen-induced murine model of asthma. Conclusions Selective EP2 agonism is a powerful pharmacological strategy to prevent MCs from being activated through IgE-mediated mechanisms and from causing deleterious effects. The MC EP2 receptor may be an effective pharmacological target in allergic and other MC-mediated conditions.
Collapse
Affiliation(s)
- Judith Plaza
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Torres
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Adrián Urbano
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - César Picado
- Department of Pneumology and Respiratory Allergy, Hospital Clínic i Universitari de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Fernando de Mora
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Traina G. Mast Cells in Gut and Brain and Their Potential Role as an Emerging Therapeutic Target for Neural Diseases. Front Cell Neurosci 2019; 13:345. [PMID: 31417365 PMCID: PMC6682652 DOI: 10.3389/fncel.2019.00345] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
The mast cells (MCs) are the leader cells of inflammation. They are well known for their involvement on allergic reactions through degranulation and release of vasoactive, inflammatory, and nociceptive mediators. Upon encountering potential danger signal, MCs are true sensors of the environment, the first to respond in rapid and selective manner. The MC activates the algic response and modulates the evolution of nociceptive pain, typical of acute inflammation, to neuropathic pain, typical not only of chronic inflammation but also of the dysregulation of the pain system. Yet, MC may contribute to modulate intensity of the associated depressive and anxiogenic component on the neuronal and microglial biological front. Chronic inflammation is a common mediator of these co-morbidities. In parallel to the removal of the etiological factors of tissue damage, the modulation of MC hyperactivity and the reduction of the release of inflammatory factors may constitute a new frontier of pharmacological intervention aimed at preventing the chronicity of inflammation, the evolution of pain, and also the worsening of the depression and anxiogenic state associated with it. So, identifying specific molecules able to modify MC activity may be an important therapeutic tool. Various preclinical evidences suggest that the intestinal microbiota contributes substantially to mood and behavioral disorders. In humans, conditions of the microbiota have been linked to stress, anxiety, depression, and pain. MC is likely the crucial neuroimmune connecting between these components. In this review, the involvement of MCs in pain, stress, and depression is reviewed. We focus on the MC as target that may be mediating stress and mood disorders via microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
10
|
Abstract
Fibrosis is a medical condition characterized by an excessive deposition of extracellular matrix compounds such as collagen in tissues. Fibrotic lesions are present in many diseases and can affect all organs. The excessive extracellular matrix accumulation in these conditions can often have serious consequences and in many cases be life-threatening. A typical event seen in many fibrotic conditions is a profound accumulation of mast cells (MCs), suggesting that these cells can contribute to the pathology. Indeed, there is now substantialv evidence pointing to an important role of MCs in fibrotic disease. However, investigations from various clinical settings and different animal models have arrived at partly contradictory conclusions as to how MCs affect fibrosis, with many studies suggesting a detrimental role of MCs whereas others suggest that MCs can be protective. Here, we review the current knowledge of how MCs can affect fibrosis.
Collapse
Affiliation(s)
- Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
11
|
Redegeld FA, Yu Y, Kumari S, Charles N, Blank U. Non-IgE mediated mast cell activation. Immunol Rev 2018; 282:87-113. [DOI: 10.1111/imr.12629] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frank A. Redegeld
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Yingxin Yu
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Sangeeta Kumari
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Nicolas Charles
- INSERM U1149; Centre de Recherche sur l'Inflammation; Paris France
- CNRS ERL8252; Paris France
- Université Paris-Diderot; Sorbonne Paris Cité; Faculté de Médecine; Site Xavier Bichat; Paris France
| | - Ulrich Blank
- INSERM U1149; Centre de Recherche sur l'Inflammation; Paris France
- CNRS ERL8252; Paris France
- Université Paris-Diderot; Sorbonne Paris Cité; Faculté de Médecine; Site Xavier Bichat; Paris France
- Inflamex Laboratory of Excellence; Paris France
| |
Collapse
|
12
|
Mast cell phenotype, TNFα expression and degranulation status in non-small cell lung cancer. Sci Rep 2016; 6:38352. [PMID: 27922077 PMCID: PMC5138591 DOI: 10.1038/srep38352] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/08/2016] [Indexed: 12/29/2022] Open
Abstract
Mast cell infiltration of tumour islets represents a survival advantage in non-small cell lung cancer (NSCLC). The phenotype and activation status of these mast cells is unknown. We investigated the mast cell phenotype in terms of protease content (tryptase-only [MCT], tryptase + chymase [MCTC]) and tumour necrosis factor-alpha (TNFα) expression, and extent of degranulation, in NSCLC tumour stroma and islets. Surgically resected tumours from 24 patients with extended survival (ES; mean survival 86.5 months) were compared with 25 patients with poor survival (PS; mean survival 8.0 months) by immunohistochemistry. Both MCT and MCTC in tumour islets were higher in ES (20.0 and 5.6 cells/mm2 respectively) compared to PS patients (0.0 cells/mm2) (p < 0.0001). Both phenotypes expressed TNFα in the islets and stroma. In ES 44% of MCT and 37% of MCTC expressed TNFα in the tumour islets. MCT in the ES stroma were more degranulated than in those with PS (median degranulation index = 2.24 versus 1.73 respectively) (p = 0.0022), and ES islet mast cells (2.24 compared to 1.71, p < 0.0001). Since both MCT and MCTC infiltrating tumour islets in ES NSCLC patients express TNFα, the cytotoxic activity of this cytokine may confer improved survival in these patients. Manipulating mast cell microlocalisation and functional responses in NSCLC may offer a novel approach to the treatment of this disease.
Collapse
|
13
|
Abstract
Mast cells (MCs) play a central role in tissue homoeostasis, sensing the local environment through numerous innate cell surface receptors. This enables them to respond rapidly to perceived tissue insults with a view to initiating a co-ordinated programme of inflammation and repair. However, when the tissue insult is chronic, the ongoing release of multiple pro-inflammatory mediators, proteases, cytokines and chemokines leads to tissue damage and remodelling. In asthma, there is strong evidence of ongoing MC activation, and their mediators and cell-cell signals are capable of regulating many facets of asthma pathophysiology. This article reviews the evidence behind this.
Collapse
Affiliation(s)
- P Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - G Arthur
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| |
Collapse
|
14
|
Serra-Pages M, Torres R, Plaza J, Herrerias A, Costa-Farré C, Marco A, Jiménez M, Maurer M, Picado C, de Mora F. Activation of the Prostaglandin E2 receptor EP2 prevents house dust mite-induced airway hyperresponsiveness and inflammation by restraining mast cells' activity. Clin Exp Allergy 2016; 45:1590-600. [PMID: 25823713 DOI: 10.1111/cea.12542] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND Prostaglandin E2 (PGE2 ) has been proposed to exert antiasthmatic effects in patients, to prevent antigen-induced airway pathology in murine models, and to inhibit mast cells (MC) activity in vitro. OBJECTIVE To assess in a murine model whether the protective effect of PGE2 may be a consequence of its ability to activate the E-prostanoid (EP)2 receptor on airway MC. METHODS Either BALB/c or C57BL/6 mice were exposed intranasally (i.n.) to house dust mite (HDM) aeroallergens. Both strains were given PGE2 locally (0.3 mg/kg), but only BALB/c mice were administered butaprost (EP2 agonist: 0.3 mg/kg), or AH6809 (EP2 antagonist; 2.5 mg/kg) combined with the MC stabilizer sodium cromoglycate (SCG: 25 mg/kg). Airway hyperresponsiveness (AHR) and inflammation, along with lung MC activity, were evaluated. In addition, butaprost's effect was assessed in MC-mediated passive cutaneous anaphylaxis (PCA) in mice challenged with 2,4-dinitrophenol (DNP). RESULTS Selective EP2 agonism attenuated aeroallergen-caused AHR and inflammation in HDM-exposed BALB/c mice, and this correlated with a reduced lung MC activity. Accordingly, the blockade of endogenous PGE2 by means of AH6809 worsened airway responsiveness in sensitive BALB/c mice, and such worsening was reversed by SCG. The relevance of MC to PGE2 -EP2 driven protection was further highlighted in MC-dependent PCA, where butaprost fully prevented MC-induced ear swelling. Unlike in BALB/c mice, PGE2 did not protect the airways of HDM-sensitized C57BL/6 animals, a strain in which we showed MC to be irrelevant to aeroallergen-driven AHR and inflammation. CONCLUSIONS & CLINICAL RELEVANCE The beneficial effect of both exogenous and endogenous PGE2 in aeroallergen-sensitized mice may be attributable to the activation of the EP2 receptor, which in turn acts as a restrainer of airway MC activity. This opens a path towards the identification of therapeutic targets against asthma along the 'EP2 -MC-airway' axis.
Collapse
Affiliation(s)
- M Serra-Pages
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - R Torres
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER (Centro de Investigación Biomédica en Red) de Enfermedades Respiratorias, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Plaza
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER (Centro de Investigación Biomédica en Red) de Enfermedades Respiratorias, Barcelona, Spain
| | - A Herrerias
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Costa-Farré
- Department of Surgery and Animals Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Marco
- Department of Surgery and Animals Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Jiménez
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER (Centro de Investigación Biomédica en Red) de Enfermedades Hepáticas y Digestivas
| | - M Maurer
- Department of Dermatology, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - C Picado
- CIBER (Centro de Investigación Biomédica en Red) de Enfermedades Respiratorias, Barcelona, Spain.,Department of Pneumology and Respiratory Allergy, Hospital Clínic, IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Universitat de Barcelona, Barcelona, Spain
| | - F de Mora
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Orai/CRACM1 and KCa3.1 ion channels interact in the human lung mast cell plasma membrane. Cell Commun Signal 2015; 13:32. [PMID: 26177720 PMCID: PMC4504158 DOI: 10.1186/s12964-015-0112-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/09/2015] [Indexed: 11/23/2022] Open
Abstract
Background Orai/CRACM1 ion channels provide the major Ca2+ influx pathway for FcεRI-dependent human lung mast cell (HLMC) mediator release. The Ca2+-activated K+ channel KCa3.1 modulates Ca2+ influx and the secretory response through hyperpolarisation of the plasma membrane. We hypothesised that there is a close functional and spatiotemporal interaction between these Ca2+- and K+-selective channels. Results Activation of FcεRI-dependent HLMC KCa3.1 currents was dependent on the presence of extracellular Ca2+, and attenuated in the presence of the selective Orai blocker GSK-7975A. Currents elicited by the KCa3.1 opener 1-EBIO were also attenuated by GSK-7975A. The Orai1 E106Q dominant-negative mutant ablated 1-EBIO and FcεRI-dependent KCa3.1 currents in HLMCs. Orai1 but not Orai2 was shown to co-immunoprecipitate with KCa3.1 when overexpressed in HEK293 cells, and Orai1 and KCa3.1 were seen to co-localise in the HEK293 plasma membrane using confocal microscopy. Conclusion KCa3.1 activation in HLMCs is highly dependent on Ca2+ influx through Orai1 channels, mediated via a close spatiotemporal interaction between the two channels.
Collapse
|
16
|
Shao Z, Gaurav R, Agrawal DK. Intermediate-conductance calcium-activated potassium channel KCa3.1 and chloride channel modulate chemokine ligand (CCL19/CCL21)-induced migration of dendritic cells. Transl Res 2015; 166:89-102. [PMID: 25583444 PMCID: PMC4458411 DOI: 10.1016/j.trsl.2014.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/31/2014] [Accepted: 11/15/2014] [Indexed: 01/12/2023]
Abstract
The role of ion channels is largely unknown in chemokine-induced migration in nonexcitable cells such as dendritic cells (DCs). Here, we examined the role of intermediate-conductance calcium-activated potassium channel (KCa3.1) and chloride channel (CLC3) in lymphatic chemokine-induced migration of DCs. The amplitude and kinetics of chemokine ligand (CCL19/CCL21)-induced Ca(2+) influx were associated with chemokine receptor 7 expression levels, extracellular-free Ca(2+) and Cl(-), and independent of extracellular K(+). Chemokines (CCL19 and CCL21) and KCa3.1 activator (1-ethyl-1,3-dihydro-2H-benzimidazol-2-one) induced plasma membrane hyperpolarization and K(+) efflux, which was blocked by 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole, suggesting that KCa3.1 carried larger conductance than the inward calcium release-activated calcium channel. Blockade of KCa3.1, low Cl(-) in the medium, and low dose of 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) impaired CCL19/CCL21-induced Ca(2+) influx, cell volume change, and DC migration. High doses of DIDS completely blocked DC migration possibly by significantly disrupting mitochondrial membrane potential. In conclusion, KCa3.1 and CLC3 are critical in human DC migration by synergistically regulating membrane potential, chemokine-induced Ca(2+) influx, and cell volume.
Collapse
Affiliation(s)
- Zhifei Shao
- Center for Clinical and Translational Science, Creighton University of School of Medicine, Omaha, Neb
| | - Rohit Gaurav
- Center for Clinical and Translational Science, Creighton University of School of Medicine, Omaha, Neb
| | - Devendra K Agrawal
- Center for Clinical and Translational Science, Creighton University of School of Medicine, Omaha, Neb.
| |
Collapse
|
17
|
Forsythe P. Microbes taming mast cells: Implications for allergic inflammation and beyond. Eur J Pharmacol 2015; 778:169-75. [PMID: 26130124 DOI: 10.1016/j.ejphar.2015.06.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/21/2015] [Accepted: 06/17/2015] [Indexed: 12/30/2022]
Abstract
There is increasing awareness of a relationship between our microbiota and the pathogenesis of allergy and other inflammatory diseases. In investigating the mechanisms underlying microbiota modulation of allergy the focus has been on the induction phase; alterations in the phenotype and function of antigen presenting cells, induction of regulatory T cells and shifts in Th1/Th2 balance. However there is evidence that microbes can influence the effector phase of disease, specifically that certain potentially beneficial bacteria can attenuate mast cell activation and degranulation. Furthermore, it appears that different non-pathogenic bacteria can utilize distinct mechanisms to stabilize mast cells, acting locally though direct interaction with the mast cell at mucosal sites or attenuating systemic mast cell dependent responses, likely through indirect signaling mechanisms. The position of mast cells on the frontline of defense against pathogens also suggests they may play an important role in fostering the host-microbiota relationship. Mast cells are also conduits of neuro-immuo-endocrine communication, suggesting the ability of microbes to modulate cell responses may have implications for host physiology beyond immunology. Further investigation of mast cell regulation by non-pathogenic or symbiotic bacteria will likely lead to a greater understanding of host microbiota interaction and the role of the microbiome in health and disease.
Collapse
Affiliation(s)
- Paul Forsythe
- McMaster Brain-Body Institute at St. Joseph's Healthcare, Hamilton, The Firestone Institute for Respiratory Health and Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
18
|
The PGE2-EP2-mast cell axis: an antiasthma mechanism. Mol Immunol 2014; 63:61-8. [PMID: 24768319 DOI: 10.1016/j.molimm.2014.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 01/10/2023]
Abstract
Despite the fact that cyclooxygenase and its products, prostaglandins, have been traditionally associated with the development of inflammation, PGE2 was implicated early on as potentially beneficial in asthma. During the 1970s and 1980s, several studies reported the bronchodilator effect of PGE2 in asthma patients. In parallel, it was being shown to exert an inhibitory effect on mast cells in vitro. In spite of this, data supporting the beneficial role for PGE2 in asthma were scarce and sometimes controversial. Many years later, in vitro and in vivo studies suggested a range of biological activities attributable to PGE2, others than the ability to relax smooth muscle, that potentially explained some of the observed positive effects in asthma. The identification and cloning of the four PGE2 receptors made available new tools with which to fine-tune investigation of the anti-inflammatory, pro-inflammatory, immunoregulatory, and bronchodilation mechanisms of PGE2. Among these, several suggested involvement of mast cells, a cell population known to play a fundamental role in acute and chronic asthma. Indeed, it has been shown that PGE2 prevents human and murine MC activity in vitro through activation of the EP2 receptor, and also that both exogenously administered and endogenous PGE2 inhibit airway MC activity in vivo in mouse models of asthma (likely through an EP2-mediated mechanism as well). In the last few years, we have furthered into the functional connection between PGE2-induced mast cells inhibition and attenuated damage, in asthma and allergy models. The validity of the findings supporting a beneficial effect of PGE2 in different asthma phases, the direct effect of PGE2 on mast cells populations, and the functional implications of the PGE2-MC interaction on airway function are some of the topics addressed in this review, under the assumption that increased understanding of the PGE2-EP2-mast cell axis will likely lead to the discovery of novel antiasthma targets.
Collapse
|
19
|
Oldford SA, Marshall JS. Mast cells as targets for immunotherapy of solid tumors. Mol Immunol 2014; 63:113-24. [PMID: 24698842 DOI: 10.1016/j.molimm.2014.02.020] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 01/09/2023]
Abstract
Mast cells have historically been studied mainly in the context of allergic disease. In recent years, we have come to understand the critical importance of mast cells in tissue remodeling events and their role as sentinel cells in the induction and development of effective immune responses to infection. Studies of the role of mast cells in tumor immunity are more limited. The pro-tumorigenic role of mast cells has been widely reported. However, mast cell infiltration predicts improved prognosis in some cancers, suggesting that their prognostic value may be dependent on other variables. Such factors may include the nature of local mast cell subsets and the various activation stimuli present within the tumor microenvironment. Experimental models have highlighted the importance of mast cells in orchestrating the anti-tumor events that follow immunotherapies that target innate immunity. Mast cells are long-lived tissue resident cells that are abundant around many solid tumors and are radiation resistant making them unique candidates for combined treatment modalities. This review will examine some of the key roles of mast cells in tumor immunity, with a focus on potential immunotherapeutic interventions that harness the sentinel role of mast cells.
Collapse
Affiliation(s)
- Sharon A Oldford
- Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jean S Marshall
- Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
20
|
Kay LJ, Gilbert M, Pullen N, Skerratt S, Farrington J, Seward EP, Peachell PT. Characterization of the EP receptor subtype that mediates the inhibitory effects of prostaglandin E2 on IgE-dependent secretion from human lung mast cells. Clin Exp Allergy 2014; 43:741-51. [PMID: 23786281 DOI: 10.1111/cea.12142] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND Prostaglandin E2 (PGE2 ) has been shown to inhibit IgE-dependent histamine release from human lung mast cells. This effect of PGE2 is believed to be mediated by EP2 receptors. However, definitive evidence that this is the case has been lacking in the absence of EP2 -selective antagonists. Moreover, recent evidence has suggested that PGE2 activates EP4 receptors to inhibit respiratory cell function. OBJECTIVE The aim of this study was to determine the receptor by which PGE2 inhibits human lung mast cell responses by using recently developed potent and selective EP2 and EP4 receptor antagonists alongside other established EP receptor ligands. METHODS The effects of non-selective (PGE2 , misoprostol), EP2 -selective (ONO-AE1-259, AH13205, butaprost-free acid) and EP4 -selective (L-902,688, TCS251) agonists on IgE-dependent histamine release and cyclic-AMP generation in mast cells were determined. The effects of EP2 -selective (PF-04418948, PF-04852946) and EP4 -selective (CJ-042794, L-161,982) antagonists on PGE2 responses of mast cells were studied. The expression of EP receptor subtypes was determined by RT-PCR. RESULTS Prostaglandin E2 , EP2 agonists and EP4 agonists inhibited IgE-dependent histamine release from mast cells. PGE2 and EP2 agonists, but not EP4 agonists, increased cyclic-AMP levels in mast cells. EP4 -selective antagonists did not affect the PGE2 inhibition of histamine release, whereas EP2 -selective antagonists caused rightward shifts in the PGE2 concentration-response curves. RT-PCR studies indicated that mast cells expressed EP2 and EP4 receptors. CONCLUSIONS AND CLINICAL RELEVANCE Although human lung mast cells may express both EP2 and EP4 receptors, the principal mechanism by which PGE2 inhibits mediator release in mast cells is by activating EP2 receptors.
Collapse
Affiliation(s)
- L J Kay
- Academic Unit of Respiratory Medicine, The Medical School, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
22
|
Ashmole I, Bradding P. Ion channels regulating mast cell biology. Clin Exp Allergy 2013; 43:491-502. [PMID: 23600539 DOI: 10.1111/cea.12043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/06/2012] [Accepted: 08/28/2012] [Indexed: 11/28/2022]
Abstract
Mast cells play a central role in the pathophysiology of asthma and related allergic conditions. Mast cell activation leads to the degranulation of preformed mediators such as histamine and the secretion of newly synthesised proinflammatory mediators such as leukotrienes and cytokines. Excess release of these mediators contributes to allergic disease states. An influx of extracellular Ca2+ is essential for mast cell mediator release. From the Ca2+ channels that mediate this influx, to the K+ , Cl- and transient receptor potential channels that set the cell membrane potential and regulate Ca2+ influx, ion channels play a critical role in mast cell biology. In this review we provide an overview of our current knowledge of ion channel expression and function in mast cells with an emphasis on how channels interact to regulate Ca2+ signalling.
Collapse
Affiliation(s)
- I Ashmole
- Department of Infection, Immunity and Inflammation, Institute for Lung Heath, Glenfield Hospital, University of Leicester, Leicester, LE3 9QP, UK
| | | |
Collapse
|
23
|
|
24
|
Wang J, Xiang M. Targeting potassium channels Kv1.3 and KC a 3.1: routes to selective immunomodulators in autoimmune disorder treatment? Pharmacotherapy 2013; 33:515-28. [PMID: 23649812 DOI: 10.1002/phar.1236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Kv1.3 and KC a 3.1 potassium channels are promising targets for the treatment of autoimmune disorders. Many Kv1.3 and KC a 3.1 blockers have a more favorable adverse event profiles than existing immunosuppressants, suggesting the selectivity of Kv1.3 and KC a 3.1 blockade. The Kv1.3 and KC a 3.1 blockers exert differential effects in different autoimmune diseases. The Kv1.3 inhibitors or gene deletion have been shown to have benefits in multiple sclerosis, type 1 diabetes, rheumatoid arthritis, psoriasis, and rapidly progressive glomerulonephritis. The KC a 3.1 blockers have demonstrated efficacy in human primary biliary cirrhosis and showed protective effects in animal models of severe colitis, allergic encephalomyelitis, inflammatory bowel disease, and multiple sclerosis. The KC a 3.1 blockers are not considered candidates for treatment of multiple sclerosis. The selective immunosuppressive effects of the Kv1.3 and KC a 3.1 blockers are due to the differences in their distribution on autoimmune-related immune cells and tissues and β1 integrin (very late activating antigen)-Kv1.3 channel cross-talk.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | |
Collapse
|
25
|
Schwab A, Fabian A, Hanley PJ, Stock C. Role of ion channels and transporters in cell migration. Physiol Rev 2013; 92:1865-913. [PMID: 23073633 DOI: 10.1152/physrev.00018.2011] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell motility is central to tissue homeostasis in health and disease, and there is hardly any cell in the body that is not motile at a given point in its life cycle. Important physiological processes intimately related to the ability of the respective cells to migrate include embryogenesis, immune defense, angiogenesis, and wound healing. On the other side, migration is associated with life-threatening pathologies such as tumor metastases and atherosclerosis. Research from the last ≈ 15 years revealed that ion channels and transporters are indispensable components of the cellular migration apparatus. After presenting general principles by which transport proteins affect cell migration, we will discuss systematically the role of channels and transporters involved in cell migration.
Collapse
|
26
|
Serra-Pages M, Olivera A, Torres R, Picado C, de Mora F, Rivera J. E-prostanoid 2 receptors dampen mast cell degranulation via cAMP/PKA-mediated suppression of IgE-dependent signaling. J Leukoc Biol 2012; 92:1155-65. [PMID: 22859831 PMCID: PMC3501892 DOI: 10.1189/jlb.0212109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 01/11/2023] Open
Abstract
The experimental administration of PGE(2) for the treatment of asthma dampens clinical symptoms, and similar efficacy has been found in dust mite-induced hypersensitivity reactions in animal models. Here, we investigate the mechanism by which PGE(2) mediates suppression of MC degranulation. We find that the effect of PGE(2) on FcεRI-dependent MC degranulation varies from activating to suppressing, depending on the relative ratio of EP(2) to EP(3) expression on these cells with suppression evident only in cells having increased EP(2) to EP(3) expression. Consistent with a role for EP(2) in suppressing MC responses in vitro, we found that a selective EP(2) agonist, Butaprost, inhibited MC-mediated FcεRI-induced immediate hypersensitivity in a model of PCA. EP(2) engagement on MCs increased cAMP production and inhibited FcεRI-mediated calcium influx. In addition, it also decreased the extent of FcεRI-induced Fyn kinase activity, leading to decreased phosphorylation of key signaling molecules such as Gab2 and Akt. Treatment with an antagonist of cAMP or shRNA down-regulation of PKA (the principal intracellular target of cAMP) reversed the EP(2)-mediated inhibitory effect on MC degranulation and restored calcium influx and phosphorylation of Akt. Collectively, the findings demonstrate that EP(2) suppresses the Fyn-mediated signals that are central to FcεRI-dependent MC degranulation, suggesting that engagement of the EP(2) on MCs may be beneficial in dampening allergic responses.
Collapse
MESH Headings
- Alprostadil/analogs & derivatives
- Alprostadil/pharmacology
- Animals
- Calcium/metabolism
- Cell Degranulation/drug effects
- Cell Degranulation/genetics
- Cell Degranulation/immunology
- Cell Line
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dinoprostone/pharmacology
- Female
- Gene Silencing
- Humans
- Immunoglobulin E/immunology
- Immunoglobulin E/metabolism
- Mast Cells/drug effects
- Mast Cells/immunology
- Mast Cells/metabolism
- Mice
- Proto-Oncogene Proteins c-fyn/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/agonists
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/agonists
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Mariona Serra-Pages
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain; and
| | - Ana Olivera
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rosa Torres
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain; and
- Department of Pneumology and Respiratory Allergy, Hospital Clínic i Universitari de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - César Picado
- Department of Pneumology and Respiratory Allergy, Hospital Clínic i Universitari de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Fernando de Mora
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain; and
| | - Juan Rivera
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Foudi N, Gomez I, Benyahia C, Longrois D, Norel X. Prostaglandin E2 receptor subtypes in human blood and vascular cells. Eur J Pharmacol 2012; 695:1-6. [DOI: 10.1016/j.ejphar.2012.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/21/2012] [Accepted: 08/27/2012] [Indexed: 12/31/2022]
|
28
|
Martin N, Ruddick A, Arthur GK, Wan H, Woodman L, Brightling CE, Jones DJL, Pavord ID, Bradding P. Primary human airway epithelial cell-dependent inhibition of human lung mast cell degranulation. PLoS One 2012; 7:e43545. [PMID: 22970103 PMCID: PMC3428358 DOI: 10.1371/journal.pone.0043545] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/23/2012] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Chronic mast cell activation is a characteristic feature of asthma. BEAS-2B human airway epithelial cells (AEC) profoundly inhibit both constitutive and IgE-dependent human lung mast cell (HLMC) histamine release. The aim of this study was to examine the regulation of HLMC degranulation by primary AEC from healthy and asthmatic subjects, and investigate further the inhibitory mechanism. METHODS HLMC were co-cultured with both BEAS-2B and primary AEC grown as monolayers or air-liquid interface (ALI) cultures. RESULTS Both constitutive and IgE-dependent HLMC histamine release were attenuated by BEAS-2B, primary AEC monolayers and ALI cultures. This occurred in the absence of HLMC-AEC contact indicating the presence of a soluble factor. Unlike healthy ALI AEC, asthmatic ALI-AEC did not significantly reduce constitutive histamine release. AEC inhibitory activity was transferable in primary AEC monolayer supernatant, but less active than with Transwell co-culture, suggesting that the inhibitory factor was labile. The AEC inhibitory effects were attenuated by both AEC wounding and pertussis toxin, indicating the involvement of a G(0)/G(i) receptor coupled mechanism. Solid phase extraction of lipids (<10 kDa) removed the AEC inhibitory activity. The lipid derivatives resolving D1 and D2 and lipoxin A(4) attenuated HLMC histamine release in a dose-dependent fashion but were not detectable in co-culture supernatants. CONCLUSIONS Primary AEC suppress HLMC constitutive and IgE-dependent histamine secretion through the release of a soluble, labile lipid mediator(s) that signals through the G(0)/G(i) receptor coupled mechanism. Manipulation of this interaction may have a significant therapeutic role in asthma.
Collapse
Affiliation(s)
- Neil Martin
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Forsythe P, Wang B, Khambati I, Kunze WA. Systemic effects of ingested Lactobacillus rhamnosus: inhibition of mast cell membrane potassium (IKCa) current and degranulation. PLoS One 2012; 7:e41234. [PMID: 22815978 PMCID: PMC3398942 DOI: 10.1371/journal.pone.0041234] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/19/2012] [Indexed: 12/14/2022] Open
Abstract
Exposure of the intestine to certain strains lactobacillus can have systemic immune effects that include the attenuation of allergic responses. Despite the central role of mast cells in allergic disease little is known about the effect of lactobacilli on the function of these cells. To address this we assessed changes in rat mast cell activation following oral treatment with a strain of Lactobacillus known to attenuate allergic responses in animal models. Sprague Dawley rats were fed with L. rhamnosus JB-1 (1×10(9)) or vehicle control for 9 days. Mediator release from peritoneal mast cells (RPMC) was determined in response to a range of stimuli. Passive cutaneous anaphylaxis (PCA) was used to assess mast cell responses in vivo. The Ca(2+) activated K(+) channel (KCa3.1) current, identified as critical to mast cell degranulation, was monitored by whole cell patch-clamp. L. rhamnosus JB-1 treatment lead to significant inhibition of mast cell mediator release in response to a range of stimuli including IgE mediated activation. Furthermore, the PCA response was significantly reduced in treated rats. Patch-clamp studies revealed that RPMC from treated animals were much less responsive to the KCa3.1 opener, DCEBIO. These studies demonstrate that Ingestion of L. rhamnosus JB-1 leads to mast cell stabilization in rats and identify KCa3.1 as an immunomodulatory target for certain lactobacilli. Thus the systemic effects of certain candidate probiotics may include mast cell stabilization and such actions could contribute to the beneficial effect of these organisms in allergic and other inflammatory disorders.
Collapse
Affiliation(s)
- Paul Forsythe
- Brain-Body Institute, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
30
|
Role of PGE2 in asthma and nonasthmatic eosinophilic bronchitis. Mediators Inflamm 2012; 2012:645383. [PMID: 22529528 PMCID: PMC3316983 DOI: 10.1155/2012/645383] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 11/17/2022] Open
Abstract
Eosinophilic bronchitis is a common cause of chronic cough, which like asthma is characterized by sputum eosinophilia, but unlike asthma there is no variable airflow obstruction or airway hyperresponsiveness. Several studies suggest that prostaglandins may play an important role in orchestrating interactions between different cells in several inflammatory diseases such as asthma. PGE2 is important because of the multiplicity of its effects on immune response in respiratory diseases; however, respiratory system appears to be unique in that PGE2 has beneficial effects. We described that the difference in airway function observed in patients with eosinophilic bronchitis and asthma could be due to differences in PGE2 production. PGE2 present in induced sputum supernatant from NAEB patients decreases BSMC proliferation, probably due to simultaneous stimulation of EP2 and EP4 receptors with inhibitory activity. This protective effect of PGE2 may not only be the result of a direct action exerted on airway smooth-muscle proliferation but may also be attributable to the other anti-inflammatory actions.
Collapse
|
31
|
Corrigan CJ, Napoli RL, Meng Q, Fang C, Wu H, Tochiki K, Reay V, Lee TH, Ying S. Reduced expression of the prostaglandin E2 receptor E-prostanoid 2 on bronchial mucosal leukocytes in patients with aspirin-sensitive asthma. J Allergy Clin Immunol 2012; 129:1636-46. [PMID: 22418066 DOI: 10.1016/j.jaci.2012.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/17/2012] [Accepted: 02/09/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND Prostaglandin E(2) (PGE(2)) is thought to play a role in the pathogenesis of aspirin-sensitive asthma (ASA). OBJECTIVE We sought to extend our previous observations implicating impaired inflammatory cell responsiveness to PGE(2) as a pathogenetic mechanism in patients with aspirin-sensitive rhinosinusitis to the bronchial mucosa in patients with ASA. METHODS Immunohistochemistry was used to enumerate inflammatory cells and their expression of cysteinyl leukotriene receptors 1 and 2 (CysLT(1) and CysLT(2)) and the PGE(2) receptors E-prostanoid 1 to 4 (EP(1)-EP(4)) in bronchial biopsy specimens from patients with ASA, patients with aspirin-tolerant asthma, and control subjects (n= 15 in each group). Concentrations of PGE(2) in bronchoalveolar lavage fluid were measured by using ELISA. The effects of PGE(2) and EP receptor agonists on CD3/CD28-stimulated cytokine production by PBMCs were measured by using ELISA. Airways responsiveness to LTD(4)in vivo was measured in asthmatic patients by means of bronchial challenge. RESULTS Compared with patients with aspirin-tolerant asthma, patients with ASA had increased bronchial mucosal neutrophil and eosinophil numbers but reduced percentages of T cells, macrophages, mast cells, and neutrophils expressing EP(2). Both groups showed increased bronchial sensitivity to inhaled LTD(4), but this did not correlate with mucosal expression of CysLT(1) or CysLT(2). Bronchoalveolar lavage fluid PGE(2) concentrations were comparable in all groups. In vitro PGE(2) inhibited cytokine production by PBMCs through EP(2) but not other PGE(2) receptors. CONCLUSION Our data are consistent with the hypothesis that impaired inhibition of inflammatory leukocytes by PGE(2) acting through the EP(2) receptor has a role in the pathogenesis of ASA.
Collapse
Affiliation(s)
- Chris J Corrigan
- Division of Asthma, Allergy & Lung Biology, King's College London, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Collington SJ, Williams TJ, Weller CL. Mechanisms underlying the localisation of mast cells in tissues. Trends Immunol 2011; 32:478-85. [PMID: 21917522 DOI: 10.1016/j.it.2011.08.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/02/2011] [Accepted: 08/02/2011] [Indexed: 12/24/2022]
Abstract
Mast cells are tissue-resident cells best known for their role in allergy and host defence against helminth parasites. They are involved in responses against other pathogenic infections, wound healing and inflammatory disease. Committed mast cell progenitors are released from the bone marrow into the circulation, from where they are recruited into tissues to complete their maturation under the control of locally produced cytokines and growth factors. Directed migration occurs at distinct stages of the mast cell life-cycle and is associated with successive up- and downregulation of cell surface adhesion molecules and chemoattractant receptors as the cells mature. This article discusses some of the recent advances in our understanding of the mechanisms underlying mast cell recruitment.
Collapse
Affiliation(s)
- Sarah J Collington
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
33
|
Shao Z, Makinde TO, Agrawal DK. Calcium-activated potassium channel KCa3.1 in lung dendritic cell migration. Am J Respir Cell Mol Biol 2011; 45:962-8. [PMID: 21493782 DOI: 10.1165/rcmb.2010-0514oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Migration to draining lymph nodes is a critical requirement for dendritic cells (DCs) to control T-cell-mediated immunity. The calcium-activated potassium channel KCa3.1 has been shown to be involved in regulating cell migration in multiple cell types. In this study, KCa3.1 expression and its functional role in lung DC migration were examined. Fluorescence-labeled antigen was intranasally delivered into mouse lungs to label lung Ag-carrying DCs. Lung CD11c(high)CD11b(low) and CD11c(low)CD11b(high) DCs from PBS-treated and ovalbumin (OVA)-sensitized mice were sorted using MACS and FACS. Indo-1 and DiBAC4(3) were used to measure intracellular Ca(2+) and membrane potential, respectively. The mRNA expression of KCa3.1 was examined using real-time PCR. Expression of KCa3.1 protein and CCR7 was measured using flow cytometry. Migration of two lung DC subsets to lymphatic chemokines was examined using TransWell in the absence or presence of the KCa3.1 blocker TRAM-34. OVA sensitization up-regulated mRNA and protein expression of KCa3.1 in lung DCs, with a greater response by the CD11c(high)CD11b(low) than CD11c(low)CD11b(high) DCs. Although KCa3.1 expression in Ag-carrying DCs was higher than that in non-Ag-carrying DCs in OVA-sensitized mice, the difference was not as prominent. However, Ag-carrying lung DCs expressed significantly higher CCR7 than non-Ag-carrying DCs. CCL19, CCL21, and KCa3.1 activator 1-EBIO induced an increase in intracellular calcium in both DC subsets. In addition, 1-EBIO-induced calcium increase was suppressed by TRAM-34. In vitro blockade of KCa3.1 with TRAM-34 impaired CCL19/CCL21-induced transmigration. In conclusion, KCa3.1 expression in lung DCs is up-regulated by OVA sensitization in both lung DC subsets, and KCa3.1 is involved in lung DC migration to lymphatic chemokines.
Collapse
Affiliation(s)
- Zhifei Shao
- Center for Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | |
Collapse
|
34
|
Sastre B, Fernández-Nieto M, López E, Gámez C, Aguado E, Quirce S, del Pozo V, Sastre J. PGE(2) decreases muscle cell proliferation in patients with non-asthmatic eosinophilic bronchitis. Prostaglandins Other Lipid Mediat 2011; 95:11-8. [PMID: 21458581 DOI: 10.1016/j.prostaglandins.2011.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/17/2011] [Accepted: 03/18/2011] [Indexed: 11/29/2022]
Abstract
Non-asthmatic eosinophilic bronchitis (NAEB) is characterized by chronic cough and sputum eosinophilia without bronchial hyperresponsiveness. The aim of the present study is to determine whether increased levels of PGE(2) from NAEB sputum supernatants play a protective role in airway inflammation and muscular hyperplasia. Twenty-one patients with NAEB, 15 asthmatic patients, and 12 healthy subjects were studied. An up-regulated PGE(2) enzymatic pathway was observed in bronchial biopsies from patients with NAEB as compared with samples from asthmatic patients. Also, EP2 and EP4 receptor expression was increased in these samples. BSMC proliferation was inhibited to a greater extent in NAEB sputum supernatants than in those taken from asthmatic subjects and healthy controls. This inhibition was mostly due to PGE(2) levels, a fact which was confirmed by employing synthetic EP2 and EP4 agonist and antagonist receptors.These findings suggest that PGE(2) inhibits BSMC proliferation entailing a reduction of smooth muscle hyperplasia and thus protecting against the onset of airflow obstruction.
Collapse
Affiliation(s)
- Beatriz Sastre
- Immunology Department, IIS-Fundación Jiménez-Díaz, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Herrerias A, Torres R, Serra M, Marco A, Pujols L, Picado C, de Mora F. Activity of the cyclooxygenase 2-prostaglandin-E prostanoid receptor pathway in mice exposed to house dust mite aeroallergens, and impact of exogenous prostaglandin E2. JOURNAL OF INFLAMMATION-LONDON 2009; 6:30. [PMID: 19878559 PMCID: PMC2776012 DOI: 10.1186/1476-9255-6-30] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 10/30/2009] [Indexed: 11/30/2022]
Abstract
Background Prostaglandin E2 (PGE2), experimentally administered to asthma patients or assayed in murine models, improves allergen-driven airway inflammation. The mechanisms are unknown, but fluctuations of the endogenous cyclooxygenase (COX)-2/prostaglandin/E prostanoid (EP) receptor pathway activity likely contribute to the clinical outcome. We analyzed the activity of the pathway in mice sensitized to aeroallergens, and then studied its modulation under exogenous PGE2. Methods Mice were exposed to house dust mite (HDM) aeroallergens, a model that enable us to mimic the development of allergic asthma in humans, and were then treated with either subcutaneous PGE2 or the selective EP1/3 receptor agonist sulprostone. Simultaneously with airway responsiveness and inflammation, lung COX-2 and EP receptor mRNA expression were assessed. Levels of PGE2, PGI2, PGD2 were also determined in bronchoalveolar lavage fluid. Results HDM-induced airway hyperreactivity and inflammation were accompanied by increased COX-2 mRNA production. In parallel, airway PGE2 and PGI2, but not PGD2, were upregulated, and the EP2 receptor showed overexpression. Subcutaneous PGE2 attenuated aeroallergen-driven airway eosinophilic inflammation and reduced endogenous PGE2 and PGI2 production. Sulprostone had neither an effect on airway responsiveness or inflammation nor diminished allergen-induced COX-2 and PGE2 overexpression. Finally, lung EP2 receptor levels remained high in mice treated with PGE2, but not in those treated with sulprostone. Conclusion The lung COX-2/PGE2/EP2 receptor pathway is upregulated in HDM-exposed mice, possibly as an effort to attenuate allergen-induced airway inflammation. Exogenous PGE2 downregulates its endogenous counterpart but maintains EP2 overexpression, a phenomenon that might be required for administered PGE2 to exert its protective effect.
Collapse
Affiliation(s)
- Aida Herrerias
- Department of Pharmacology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
36
|
Peters T, Henry PJ. Protease-activated receptors and prostaglandins in inflammatory lung disease. Br J Pharmacol 2009; 158:1017-33. [PMID: 19845685 PMCID: PMC2785524 DOI: 10.1111/j.1476-5381.2009.00449.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/11/2009] [Accepted: 07/08/2009] [Indexed: 12/17/2022] Open
Abstract
Protease-activated receptors (PARs) are a novel family of G protein-coupled receptors. Signalling through PARs typically involves the cleavage of an extracellular region of the receptor by endogenous or exogenous proteases, which reveals a tethered ligand sequence capable of auto-activating the receptor. A considerable body of evidence has emerged over the past 20 years supporting a prominent role for PARs in a variety of human physiological and pathophysiological processes, and thus substantial attention has been directed towards developing drug-like molecules that activate or block PARs via non-proteolytic pathways. PARs are widely expressed within the respiratory tract, and their activation appears to exert significant modulatory influences on the level of bronchomotor tone, as well as on the inflammatory processes associated with a range of respiratory tract disorders. Nevertheless, there is debate as to whether the principal response to PAR activation is an augmentation or attenuation of airways inflammation. In this context, an important action of PAR activators may be to promote the generation and release of prostanoids, such as prostglandin E(2), which have well-established anti-inflammatory effects in the lung. In this review, we primarily focus on the relationship between PARs, prostaglandins and inflammatory processes in the lung, and highlight their potential role in selected respiratory tract disorders, including pulmonary fibrosis, asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Terence Peters
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
| | | |
Collapse
|
37
|
Bradding P, Wulff H. The K+ channels K(Ca)3.1 and K(v)1.3 as novel targets for asthma therapy. Br J Pharmacol 2009; 157:1330-9. [PMID: 19681865 PMCID: PMC2765317 DOI: 10.1111/j.1476-5381.2009.00362.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/06/2009] [Accepted: 05/11/2009] [Indexed: 01/22/2023] Open
Abstract
Asthma affects 10% of the UK population and is an important cause of morbidity and mortality at all ages. Current treatments are either ineffective or carry unacceptable side effects for a number of patients; in consequence, development of new approaches to therapy are important. Ion channels are emerging as attractive therapeutic targets in a variety of non-excitable cells. Ion channels conducting K(+) modulate the activity of several structural and inflammatory cells which play important roles in the pathophysiology of asthma. Two channels of particular interest are the voltage-gated K(+) channel K(v)1.3 and the intermediate conductance Ca(2+)-activated K(+) channel K(Ca)3.1 (also known as IK(Ca)1 or SK4). K(v)1.3 is expressed in IFNgamma-producing T cells while K(Ca)3.1 is expressed in T cells, mast cells, macrophages, airway smooth muscle cells, fibroblasts and epithelial cells. Both channels play important roles in cell activation, migration, and proliferation through the regulation of membrane potential and calcium signalling. We hypothesize that K(Ca)3.1- and/or K(v)1.3-dependent cell processes are one of the common denominators in asthma pathophysiology. If true, these channels might serve as novel targets for the treatment of asthma. Emerging evidence lends support to this hypothesis. Further validation through the study of the role that these channels play in normal and asthmatic airway cell (patho)physiology and in vivo models will provide further justification for the assessment of small molecule blockers of K(v)1.3 and K(Ca)3.1 in the treatment of asthma.
Collapse
Affiliation(s)
- Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, UK.
| | | |
Collapse
|