1
|
van Schaik EJ, Fratzke AP, Gregory AE, Dumaine JE, Samuel JE. Vaccine development: obligate intracellular bacteria new tools, old pathogens: the current state of vaccines against obligate intracellular bacteria. Front Cell Infect Microbiol 2024; 14:1282183. [PMID: 38567021 PMCID: PMC10985213 DOI: 10.3389/fcimb.2024.1282183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Obligate intracellular bacteria have remained those for which effective vaccines are unavailable, mostly because protection does not solely rely on an antibody response. Effective antibody-based vaccines, however, have been developed against extracellular bacteria pathogens or toxins. Additionally, obligate intracellular bacteria have evolved many mechanisms to subvert the immune response, making vaccine development complex. Much of what we know about protective immunity for these pathogens has been determined using infection-resolved cases and animal models that mimic disease. These studies have laid the groundwork for antigen discovery, which, combined with recent advances in vaccinology, should allow for the development of safe and efficacious vaccines. Successful vaccines against obligate intracellular bacteria should elicit potent T cell memory responses, in addition to humoral responses. Furthermore, they ought to be designed to specifically induce strong cytotoxic CD8+ T cell responses for protective immunity. This review will describe what we know about the potentially protective immune responses to this group of bacteria. Additionally, we will argue that the novel delivery platforms used during the Sars-CoV-2 pandemic should be excellent candidates to produce protective immunity once antigens are discovered. We will then look more specifically into the vaccine development for Rickettsiaceae, Coxiella burnetti, and Anaplasmataceae from infancy until today. We have not included Chlamydia trachomatis in this review because of the many vaccine related reviews that have been written in recent years.
Collapse
Affiliation(s)
- E J van Schaik
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
| | - A P Fratzke
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Charles River Laboratories, Reno, NV, United States
| | - A E Gregory
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Jennifer E Dumaine
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
| | - J E Samuel
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Department of Veterinary Pathobiology, School of Veterinary Medicine, Texas A&M University (TAMU), College Station, TX, United States
| |
Collapse
|
2
|
Eskeland S, Bø-Granquist EG, Stuen S, Lybeck K, Wilhelmsson P, Lindgren PE, Makvandi-Nejad S. Temporal patterns of gene expression in response to inoculation with a virulent Anaplasma phagocytophilum strain in sheep. Sci Rep 2023; 13:20399. [PMID: 37989861 PMCID: PMC10663591 DOI: 10.1038/s41598-023-47801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
The aim of this study was to characterize the gene expression of host immune- and cellular responses to a Norwegian virulent strain of Anaplasma phagocytophilum, the cause of tick-borne fever in sheep. Ten sheep were intravenously inoculated with a live virulent strain of A. phagocytophilum. Clinical-, observational-, hematological data as well as bacterial load, flow cytometric cell count data from peripheral blood mononuclear cells and host's gene expression post infection was analysed. The transcriptomic data were assessed for pre-set time points over the course of 22 days following the inoculation. Briefly, all inoculated sheep responded with clinical signs of infection 3 days post inoculation and onwards with maximum bacterial load observed on day 6, consistent with tick-borne fever. On days, 3-8, the innate immune responses and effector processes such as IFN1 signaling pathways and cytokine mediated signaling pathways were observed. Several pathways associated with the adaptive immune responses, namely T-cell activation, humoral immune responses, B-cell activation, and T- and B-cell differentiation dominated on the days of 8, 10 and 14. Flow-cytometric analysis of the PBMCs showed a reduction in CD4+CD25+ cells on day 10 and 14 post-inoculation and a skewed CD4:CD8 ratio indicating a reduced activation and proliferation of CD4-T-cells. The genes of important co-stimulatory molecules such as CD28 and CD40LG, important in T- and B-cell activation and proliferation, did not significantly change or experienced downregulation throughout the study. The absence of upregulation of several co-stimulatory molecules might be one possible explanation for the low activation and proliferation of CD4-T-cells during A. phagocytophilum infection, indicating a suboptimal CD4-T-cell response. The upregulation of T-BET, EOMES and IFN-γ on days 8-14 post inoculation, indicates a favoured CD4 Th1- and CD8-response. The dynamics and interaction between CD4+CD25+ and co-stimulatory molecules such as CD28, CD80, CD40 and CD40LG during infection with A. phagocytophilum in sheep needs further investigation in the future.
Collapse
Affiliation(s)
- Sveinung Eskeland
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway.
| | - Erik G Bø-Granquist
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Kyrkjevegen 332/334, 4325, Sandnes, Norway
| | - Kari Lybeck
- Norwegian Veterinary Institute, Elizabeth Stephansens Vei 1, 1433, Ås, Norway
| | - Peter Wilhelmsson
- Division of Clinical Microbiology, Laboratory Medicine, National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Region Jönköping County, 553 05, Jönköping, Sweden
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | | |
Collapse
|
3
|
Londoño AF, Scorpio DG, Dumler JS. Innate immunity in rickettsial infections. Front Cell Infect Microbiol 2023; 13:1187267. [PMID: 37228668 PMCID: PMC10203653 DOI: 10.3389/fcimb.2023.1187267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Rickettsial agents are a diverse group of alpha-proteobacteria within the order Rickettsiales, which possesses two families with human pathogens, Rickettsiaceae and Anaplasmataceae. These obligate intracellular bacteria are most frequently transmitted by arthropod vectors, a first step in the pathogens' avoidance of host cell defenses. Considerable study of the immune responses to infection and those that result in protective immunity have been conducted. Less study has focused on the initial events and mechanism by which these bacteria avoid the innate immune responses of the hosts to survive within and propagate from host cells. By evaluating the major mechanisms of evading innate immunity, a range of similarities among these bacteria become apparent, including mechanisms to escape initial destruction in phagolysosomes of professional phagocytes, those that dampen the responses of innate immune cells or subvert signaling and recognition pathways related to apoptosis, autophagy, proinflammatory responses, and mechanisms by which these microbes attach to and enter cells or those molecules that trigger the host responses. To illustrate these principles, this review will focus on two common rickettsial agents that occur globally, Rickettsia species and Anaplasma phagocytophilum.
Collapse
Affiliation(s)
- Andrés F. Londoño
- The Henry M. Jackson Foundation for Advancement in Military Medicine, Bethesda, MD, United States
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Diana G. Scorpio
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - J. Stephen Dumler
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
4
|
Do Not Forget About the Ticks: An Unusual Cause of Fever, GI Distress, and Cytopenias in a Child With ALL. J Pediatr Hematol Oncol 2022; 44:e901-e904. [PMID: 34935737 DOI: 10.1097/mph.0000000000002369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022]
Abstract
We report the case of a 5-year-old male with B-cell acute lymphoblastic leukemia in remission, receiving maintenance chemotherapy, who presented with fever, emesis, diarrhea, headache, and lethargy. He developed rapidly progressive cytopenias and was found to have acute human granulocytic anaplasmosis as well as evidence of past infection with Babesia microti. The case highlights the need to maintain a broad differential for infection in children undergoing chemotherapy or other immunosuppressive therapies with possible or known tick exposure.
Collapse
|
5
|
El Hamiani Khatat S, Daminet S, Duchateau L, Elhachimi L, Kachani M, Sahibi H. Epidemiological and Clinicopathological Features of Anaplasma phagocytophilum Infection in Dogs: A Systematic Review. Front Vet Sci 2021; 8:686644. [PMID: 34250067 PMCID: PMC8260688 DOI: 10.3389/fvets.2021.686644] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Anaplasma phagocytophilum is a worldwide emerging zoonotic tick-borne pathogen transmitted by Ixodid ticks and naturally maintained in complex and incompletely assessed enzootic cycles. Several studies have demonstrated an extensive genetic variability with variable host tropisms and pathogenicity. However, the relationship between genetic diversity and modified pathogenicity is not yet understood. Because of their proximity to humans, dogs are potential sentinels for the transmission of vector-borne pathogens. Furthermore, the strong molecular similarity between human and canine isolates of A. phagocytophilum in Europe and the USA and the positive association in the distribution of human and canine cases in the USA emphasizes the epidemiological role of dogs. Anaplasma phagocytophilum infects and survives within neutrophils by disregulating neutrophil functions and evading specific immune responses. Moreover, the complex interaction between the bacterium and the infected host immune system contribute to induce inflammatory injuries. Canine granulocytic anaplasmosis is an acute febrile illness characterized by lethargy, inappetence, weight loss and musculoskeletal pain. Hematological and biochemistry profile modifications associated with this disease are unspecific and include thrombocytopenia, anemia, morulae within neutrophils and increased liver enzymes activity. Coinfections with other tick-borne pathogens (TBPs) may occur, especially with Borrelia burgdorferi, complicating the clinical presentation, diagnosis and response to treatment. Although clinical studies have been published in dogs, it remains unclear if several clinical signs and clinicopathological abnormalities can be related to this infection.
Collapse
Affiliation(s)
- Sarah El Hamiani Khatat
- Department of Medicine, Surgery and Reproduction, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Sylvie Daminet
- Department of Companion Animals, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Luc Duchateau
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Latifa Elhachimi
- Department of Pathology and Veterinary Public Health, Unit of Parasitology, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Malika Kachani
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Hamid Sahibi
- Department of Pathology and Veterinary Public Health, Unit of Parasitology, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| |
Collapse
|
6
|
Müller BJ, Westheider A, Birkner K, Seelig B, Kirschnek S, Bogdan C, von Loewenich FD. Anaplasma phagocytophilum Induces TLR- and MyD88-Dependent Signaling in In Vitro Generated Murine Neutrophils. Front Cell Infect Microbiol 2021; 11:627630. [PMID: 33747981 PMCID: PMC7970703 DOI: 10.3389/fcimb.2021.627630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Anaplasma phagocytophilum is a tick-transmitted obligate intracellular Gram-negative bacterium that replicates in neutrophils. It elicits febrile disease in humans and in animals. In a mouse model, elimination of A. phagocytophilum required CD4+ T cells, but was independent of IFN-γ and other classical antibacterial effector mechanisms. Further, mice deficient for immune recognition and signaling via Toll-like receptor (TLR) 2, TLR4 or MyD88 were unimpaired in pathogen control. In contrast, animals lacking adaptor molecules of Nod-like receptors (NLR) such as RIP2 or ASC showed delayed clearance of A. phagocytophilum. In the present study, we investigated the contribution of further pattern recognition receptor (PRR) pathways to the control of A. phagocytophilum in vivo. Mice deficient for the NLR NOD2 had elevated bacterial loads in the early phase of infection, but were unimpaired in pathogen elimination. In contrast, animals lacking adaptor proteins of different C-type lectin receptors (CLR) such as DAP12, Fc-receptor γ-chain (FcRγ) and SYK controlled A. phagocytophilum as efficiently as wild-type mice. Further, we investigated which PRR pathways are involved in the sensing of A. phagocytophilum by in vitro generated Hoxb8 murine neutrophils. In vitro, recognition of A. phagocytophilum by murine neutrophils was dependent on TLR- and MyD88 signaling. However, it remained intact in the absence of the NLR NOD1, NOD2 and NALP3 and of the CLR adaptor molecules DAP12 and FcRγ. From these results, we conclude that TLR rather than NLR or CLR are critical for the detection of A. phagocytophilum by neutrophils although in vivo defective TLR-signaling is compensated probably because of the redundancy of the immune system.
Collapse
Affiliation(s)
- Beate J Müller
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Arne Westheider
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Katharina Birkner
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Birte Seelig
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Susanne Kirschnek
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
7
|
Clinical and immunological responses in sheep after inoculation with Himar1-transformed Anaplasma phagocytophilum and subsequent challenge with a virulent strain of the bacterium. Vet Immunol Immunopathol 2020; 231:110165. [PMID: 33316536 DOI: 10.1016/j.vetimm.2020.110165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 11/21/2022]
Abstract
In Norway, the tick-transmitted bacterium Anaplasma phagocytophilum is estimated to cause tick-borne fever (TBF) in 300 000 lambs on pastures each year, resulting in economic and animal welfare consequences. Today, prophylactic measures mainly involve the use of acaricides, but a vaccine has been requested by farmers and veterinarians for decades. Several attempts have been made to produce a vaccine against A. phagocytophilum including antigenic surface proteins, inactivated whole cell vaccines and challenge followed by treatment. In the current study, a virulent wild type strain of A. phagocytophilum named Ap.Norvar1 (16S rRNA sequence partial identical to sequence in GenBank acc.no M73220) was subject to genetic transformation with a Himar1-transposon, which resulted in three bacterial mutants, capable of propagation in a tick cell line (ISE6). In order to test the immunogenicity and pathogenicity of the live, mutated bacteria, these were clinically tested in an inoculation- and challenge study in sheep. One group was inoculated with the Ap.Norvar1 as an infection control. After inoculation, the sheep inoculated with mutated bacteria and the Ap.Norvar1 developed typical clinical signs of infection and humoral immune response. After challenge with Ap.Norvar1, 28 days later all groups inoculated with mutated bacteria showed clinical signs of tick-borne fever and bacteremia while the group initially inoculated with the Ap.Norvar1, showed protection against clinical disease. The current study shows a weak, but partial protection against infection in animals inoculated with mutated bacteria, while animals that received Ap.Norvar1 both for inoculation and challenge, responded with homologues protection.
Collapse
|
8
|
Immunization against Anaplasma phagocytophilum Adhesin Binding Domains Confers Protection against Infection in the Mouse Model. Infect Immun 2020; 88:IAI.00106-20. [PMID: 32661123 DOI: 10.1128/iai.00106-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/02/2020] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophilum causes granulocytic anaplasmosis, a debilitating infection that can be fatal in the immunocompromised. It also afflicts animals, including dogs, horses, and sheep. No granulocytic anaplasmosis vaccine exists. Because A. phagocytophilum is an obligate intracellular bacterium, inhibiting microbe-host cell interactions that facilitate invasion can disrupt infection. The binding domains of A. phagocytophilum adhesins A. phagocytophilum invasion protein A (AipA), A. phagocytophilum surface protein (Asp14), and outer membrane protein A (OmpA) are essential for optimal bacterial entry into host cells, but their relevance to infection in vivo is undefined. In this study, C57BL/6 mice were immunized with a cocktail of keyhole limpet hemocyanin-conjugated peptides corresponding to the AipA, Asp14, and OmpA binding domains in alum followed by challenge with A. phagocytophilum The bacterial peripheral blood burden was pronouncedly reduced in immunized mice compared to controls. Examination of pre- and postchallenge sera from these mice revealed that immunization elicited antibodies against AipA and Asp14 peptides but not OmpA peptide. Nonetheless, pooled sera from pre- and postchallenge groups, but not from control groups, inhibited A. phagocytophilum infection of HL-60 cells. Adhesin domain immunization also elicited interferon gamma (IFN-γ)-producing CD8-positive (CD8+) T cells. A follow-up study confirmed that immunization against only the AipA or Asp14 binding domain was sufficient to reduce the bacterial peripheral blood load in mice following challenge and elicit antibodies that inhibit A. phagocytophilum cellular infection in vitro These data demonstrate that AipA and Asp14 are critical for A. phagocytophilum to productively infect mice, and immunization against their binding domains elicits a protective immune response.
Collapse
|
9
|
Crosby FL, Lundgren AM, Hoffman C, Pascual DW, Barbet AF. VirB10 vaccination for protection against Anaplasma phagocytophilum. BMC Microbiol 2018; 18:217. [PMID: 30563470 PMCID: PMC6299599 DOI: 10.1186/s12866-018-1346-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022] Open
Abstract
Background Human granulocytic anaplasmosis (HGA) is a tick-borne disease caused by the etiologic agent Anaplasma phagocytophilum. HGA was designated a nationally notifiable disease in the United States in 1998. Currently there are no vaccines available against HGA. Conserved membrane proteins that are subdominant in Anaplasma species, such as VirB9 and VirB10, may represent better vaccine targets than the variable immunodominant surface proteins. VirB9 and VirB10 are constituents of the Type 4 secretion system (T4SS) that is conserved amongst many intracellular bacteria and performs essential functions for invasion and survival in host cells. Results Immunogenicity and contribution to protection, provided after intramuscular vaccination of plasmid DNA encoding VirB9-1, VirB9-2, and VirB10 followed by inoculation of homologous recombinant proteins, in a prime-boost immunization strategy was evaluated in a murine model of HGA. Recombinant VirB9-1-, VirB9-2-, and VirB10-vaccinated mice developed antibody responses that specifically reacted with A. phagocytophilum organisms. However, only the mice vaccinated with VirB10 developed a significant increase in IFN-γ CD4+ T cells and partial protection against challenge with A. phagocytophilum. Conclusions This work provides evidence that A. phagocytophilum T4SS VirB10 is partially protective in a murine model against infection in an IFN-γ-dependent fashion and suggests that this protein may be a potential vaccine candidate against this and possibly other pathogenic bacteria with a T4SS.
Collapse
Affiliation(s)
- Francy L Crosby
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32608, USA.
| | - Anna M Lundgren
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32608, USA
| | - Carol Hoffman
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32608, USA
| | - David W Pascual
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32608, USA
| | - Anthony F Barbet
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32608, USA
| |
Collapse
|
10
|
Oliva Chávez AS, Herron MJ, Nelson CM, Felsheim RF, Oliver JD, Burkhardt NY, Kurtti TJ, Munderloh UG. Mutational analysis of gene function in the Anaplasmataceae: Challenges and perspectives. Ticks Tick Borne Dis 2018; 10:482-494. [PMID: 30466964 DOI: 10.1016/j.ttbdis.2018.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/13/2018] [Accepted: 11/09/2018] [Indexed: 01/10/2023]
Abstract
Mutational analysis is an efficient approach to identifying microbial gene function. Until recently, lack of an effective tool for Anaplasmataceae yielding reproducible results has created an obstacle to functional genomics, because surrogate systems, e.g., ectopic gene expression and analysis in E. coli, may not provide accurate answers. We chose to focus on a method for high-throughput generation of mutants via random mutagenesis as opposed to targeted gene inactivation. In our search for a suitable mutagenesis tool, we considered attributes of the Himar1 transposase system, i.e., random insertion into AT dinucleotide sites, which are abundant in Anaplasmataceae, and lack of requirement for specific host factors. We chose the Anaplasma marginale tr promoter, and the clinically irrelevant antibiotic spectinomycin for selection, and in addition successfully implemented non-antibiotic selection using an herbicide resistance gene. These constructs function reasonably well in Anaplasma phagocytophilum harvested from human promyelocyte HL-60 cells or Ixodes scapularis tick cells. We describe protocols developed in our laboratory, and discuss what likely makes them successful. What makes Anaplasmataceae electroporation competent is unknown and manipulating electroporation conditions has not improved mutational efficiency. A concerted effort is needed to resolve remaining problems that are inherent to the obligate intracellular bacteria. Finally, using this approach, we describe the discovery and characterization of a putative secreted effector necessary for Ap survival in HL-60 cells.
Collapse
Affiliation(s)
- Adela S Oliva Chávez
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Michael J Herron
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Curtis M Nelson
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | | | - Jonathan D Oliver
- School of Public Health, Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | - Timothy J Kurtti
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
11
|
López V, Alberdi P, Fuente JDL. Common Strategies, Different Mechanisms to Infect the Host: Anaplasma and Mycobacterium. Tuberculosis (Edinb) 2018. [DOI: 10.5772/intechopen.71535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Differential Susceptibility of Male Versus Female Laboratory Mice to Anaplasma phagocytophilum Infection. Trop Med Infect Dis 2018; 3:tropicalmed3030078. [PMID: 30274474 PMCID: PMC6161277 DOI: 10.3390/tropicalmed3030078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/07/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
Human granulocytic anaplasmosis (HGA) is a debilitating, non-specific febrile illness caused by the granulocytotropic obligate intracellular bacterium called Anaplasma phagocytophilum. Surveillance studies indicate a higher prevalence of HGA in male versus female patients. Whether this discrepancy correlates with differential susceptibility of males and females to A. phagocytophilum infection is unknown. Laboratory mice have long been used to study granulocytic anaplasmosis. Yet, sex as a biological variable (SABV) in this model has not been evaluated. In this paper, groups of male and female C57Bl/6 mice that had been infected with A. phagocytophilum were assessed for the bacterial DNA load in the peripheral blood, the percentage of neutrophils harboring bacterial inclusions called morulae, and splenomegaly. Infected male mice exhibited as much as a 1.85-fold increase in the number of infected neutrophils, which is up to a 1.88-fold increase in the A. phagocytophilum DNA load, and a significant increase in spleen size when compared to infected female mice. The propensity of male mice to develop a higher level of A. phagocytophilum infection is relevant for studies utilizing the mouse model. This stresses the importance of including SABV and aligns with the observed higher incidence of infection in male versus female patients.
Collapse
|
13
|
Gussmann K, Kirschnek S, von Loewenich FD. Interferon-γ-dependent control of Anaplasma phagocytophilum by murine neutrophil granulocytes. Parasit Vectors 2017; 10:329. [PMID: 28697801 PMCID: PMC5506630 DOI: 10.1186/s13071-017-2274-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/05/2017] [Indexed: 01/06/2023] Open
Abstract
Background Anaplasma phagocytophilum is a Gram-negative obligate intracellular bacterium that is transmitted by ticks of the Ixodes ricinus complex. It replicates in neutrophils and elicits febrile disease in humans and animals. Because of its striking tropism for neutrophils, A. phagocytophilum has been used as a model organism to study the immune response against obligate intracellular pathogens. In mice, the control of A. phagocytophilum in the early phase of infection is dependent on natural killer cell-derived interferon-γ (IFN-γ). In contrast, the final elimination strictly requires CD4+ T-cells. It is a matter of debate, whether neutrophils serve only as host cells or as killer cells as well. Results To study this, we used in vitro generated murine neutrophils with defects in major antimicrobial molecules such as NADPH-oxidase (gp91phox−/−), myeloperoxidase (MPO−/−) and inducible nitric oxide synthase (iNOS−/−). However, bacterial growth in gene-deficient neutrophils was comparable to that in wild-type cells. Whereas gp91phox and MPO expression remained unchanged, the infection led to an induction of iNOS. In neutrophils stimulated with IFN-γ, bacterial growth was significantly impaired, and iNOS was induced. However, the antibacterial effect of IFN-γ was still seen in iNOS−/− neutrophils. Conclusion Thus, murine in vitro generated neutrophils stimulated with IFN-γ seem to act as killer cells by an iNOS-independent mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2274-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathrin Gussmann
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Hermann-Herder-Strasse 11, D-79104, Freiburg, Germany
| | - Susanne Kirschnek
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Hermann-Herder-Strasse 11, D-79104, Freiburg, Germany
| | - Friederike D von Loewenich
- Department of Medical Microbiology and Hygiene, University of Mainz, Obere Zahlbacherstrasse 67, D-55131, Mainz, Germany.
| |
Collapse
|
14
|
Schotthoefer AM, Schrodi SJ, Meece JK, Fritsche TR, Shukla SK. Pro-inflammatory immune responses are associated with clinical signs and symptoms of human anaplasmosis. PLoS One 2017. [PMID: 28628633 PMCID: PMC5476275 DOI: 10.1371/journal.pone.0179655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human anaplasmosis (HA) is an emerging tick-borne disease that may present as a mild flu-like illness or a life threatening, sepsis-like condition. Although disease severity is hypothesized to relate to immunopathology and immune dysfunction in humans, studies to directly measure immune responses in infected humans have been very limited. We quantified cytokines in 80 confirmed HA patients using a multiplex chemiluminescence immunoassay system and compared similarly measured responses in 1000 control subjects. Pro-inflammatory cytokines were significantly elevated in HA patients (all seven p<0.0001). Interferon gamma (IFN-γ) concentrations were particularly high, with average concentrations 7.8 times higher in the HA patients than the controls. A subset of cytokines consisting of IL-1β, IL-8, IL-6, TNF-α, and IL-10 was also coordinately high and significantly associated with severity of thrombocytopenia in HA patients. Patients with infections in the very acute stage (≤ 4 days ill) tended to have the highest IFN-γ, IL-12p70, and IL-2 levels. Higher concentrations of IL-13 and IL-5 were associated with diarrhea and vomiting. Our findings support a pathophysiological role for a pro-inflammatory response in HA, especially with regard to the modulation of hematopoiesis and subsequent hematopoietic complications.
Collapse
Affiliation(s)
- Anna M. Schotthoefer
- Marshfield Clinic Research Institute, Marshfield Clinic, Marshfield, Wisconsin, United States of America
- * E-mail:
| | - Steven J. Schrodi
- Marshfield Clinic Research Institute, Marshfield Clinic, Marshfield, Wisconsin, United States of America
| | - Jennifer K. Meece
- Marshfield Clinic Research Institute, Marshfield Clinic, Marshfield, Wisconsin, United States of America
| | - Thomas R. Fritsche
- Marshfield Labs, Marshfield Clinic, Marshfield, Wisconsin, United States of America
- Microbiology Department, University of Wisconsin-La Crosse, La Crosse, Wisconsin, United States of America
| | - Sanjay K. Shukla
- Marshfield Clinic Research Institute, Marshfield Clinic, Marshfield, Wisconsin, United States of America
| |
Collapse
|
15
|
Walker DH, Dumler JS. The role of CD8 T lymphocytes in rickettsial infections. Semin Immunopathol 2015; 37:289-99. [PMID: 25823954 DOI: 10.1007/s00281-015-0480-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/15/2015] [Indexed: 12/01/2022]
Abstract
Arthropod-borne obligately intracellular bacteria pose a difficult challenge to the immune system. The genera Rickettsia, Orientia, Ehrlichia, and Anaplasma evolved mechanisms of immune evasion, and each interacts differently with the immune system. The roles of CD8 T cells include protective immunity and immunopathology. In Rickettsia infections, CD8 T cells are protective mediated in part by cytotoxicity toward infected cells. In contrast, TNF-α overproduction by CD8 T cells is pathogenic in lethal ehrlichiosis by induction of apoptosis/necrosis in hepatocytes. Yet, CD8 T cells, along with CD4 T cells and antibodies, also contribute to protective immunity in ehrlichial infections. In granulocytic anaplasmosis, CD8 T cells impact pathogen control modestly but could contribute to immunopathology by virtue of their dysfunction. While preliminary evidence indicates that CD8 T cells are important in protection against Orientia tsutsugamushi, mechanistic studies have been neglected. Valid animal models will enable experiments to elucidate protective and pathologic immune mechanisms. The public health need for vaccines against these agents of human disease, most clearly O. tsutsugamushi, and the veterinary diseases, canine monocytotropic ehrlichiosis (Ehrlichia canis), heartwater (Ehrlichia ruminantium), and bovine anaplasmosis (A. marginale), requires detailed immunity and immunopathology investigations, including the roles of CD8 T lymphocytes.
Collapse
Affiliation(s)
- David H Walker
- Department of Pathology, Director, UTMB Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555-0609, USA,
| | | |
Collapse
|
16
|
Chen G, Severo MS, Sakhon OS, Choy A, Herron MJ, Felsheim RF, Wiryawan H, Liao J, Johns JL, Munderloh UG, Sutterwala FS, Kotsyfakis M, Pedra JHF. Anaplasma phagocytophilum dihydrolipoamide dehydrogenase 1 affects host-derived immunopathology during microbial colonization. Infect Immun 2012; 80:3194-205. [PMID: 22753375 PMCID: PMC3418742 DOI: 10.1128/iai.00532-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/21/2012] [Indexed: 01/06/2023] Open
Abstract
Anaplasma phagocytophilum is a tick-borne rickettsial pathogen that provokes an acute inflammatory response during mammalian infection. The illness caused by A. phagocytophilum, human granulocytic anaplasmosis, occurs irrespective of pathogen load and results instead from host-derived immunopathology. Thus, characterizing A. phagocytophilum genes that affect the inflammatory process is critical for understanding disease etiology. By using an A. phagocytophilum Himar1 transposon mutant library, we showed that a single transposon insertion into the A. phagocytophilum dihydrolipoamide dehydrogenase 1 gene (lpda1 [APH_0065]) affects inflammation during infection. A. phagocytophilum lacking lpda1 revealed enlargement of the spleen, increased splenic extramedullary hematopoiesis, and altered clinicopathological abnormalities during mammalian colonization. Furthermore, LPDA1-derived immunopathology was independent of neutrophil infection and correlated with enhanced reactive oxygen species from NADPH oxidase and nuclear factor (NF)-κB signaling in macrophages. Taken together, these findings suggest the presence of different signaling pathways in neutrophils and macrophages during A. phagocytophilum invasion and highlight the importance of LPDA1 as an immunopathological molecule.
Collapse
Affiliation(s)
- Gang Chen
- Department of Entomology and Center for Disease Vector Research, University of California—Riverside, Riverside, California, USA
| | - Maiara S. Severo
- Department of Entomology and Center for Disease Vector Research, University of California—Riverside, Riverside, California, USA
| | - Olivia S. Sakhon
- Department of Entomology and Center for Disease Vector Research, University of California—Riverside, Riverside, California, USA
| | - Anthony Choy
- Department of Entomology and Center for Disease Vector Research, University of California—Riverside, Riverside, California, USA
| | - Michael J. Herron
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | | | - Hilda Wiryawan
- Department of Bioengineering, University of California—Riverside, Riverside, California, USA
| | - Jiayu Liao
- Department of Bioengineering, University of California—Riverside, Riverside, California, USA
| | - Jennifer L. Johns
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | | | - Fayyaz S. Sutterwala
- Inflammation Program and Division of Infectious Diseases, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
| | - Joao H. F. Pedra
- Department of Entomology and Center for Disease Vector Research, University of California—Riverside, Riverside, California, USA
| |
Collapse
|
17
|
Sukumaran B, Ogura Y, Pedra JHF, Kobayashi KS, Flavell RA, Fikrig E. Receptor interacting protein-2 contributes to host defense against Anaplasma phagocytophilum infection. ACTA ACUST UNITED AC 2012; 66:211-9. [PMID: 22747758 DOI: 10.1111/j.1574-695x.2012.01001.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 12/20/2022]
Abstract
The Gram-negative obligate intracellular bacterium Anaplasma phagocytophilum is the causative agent of human granulocytic anaplasmosis (HGA), an emerging tick-borne infectious disease occurring worldwide. HGA is generally self-limiting; however, the underlying mechanisms, particularly the innate immune pathways that mediate the immune clearance of A. phagocytophilum, are less understood. We herein report an unexpected role for Receptor interacting protein-2 (Rip2), the adaptor protein for the Nod-like receptors (NLRs), Nod1/Nod2, in the host immune response against A. phagocytophilum infection. Although A. phagocytophilum genome is reported to lack the genes encoding the known ligands of Nod1 and Nod2, its infection upregulated the transcription of Rip2 in human primary neutrophils. Our results revealed that Rip2-deficient mice had significantly higher bacterial load than wild-type controls throughout the infection period. In addition, the Rip2-deficient mice took strikingly longer duration to clear A. phagocytophilum infection. Detailed analysis identified that interferon gamma (IFNγ) and interleukin (IL)-18 but not IL-12, macrophage inflammatory protein-2, and KC response were diminished in A. phagocytophilum-challenged Rip2-deficient mice. Together, these results revealed that Rip2 plays important roles in the immune control of A. phagocytophilum and may contribute to our understanding of the host response to Rickettsiales.
Collapse
Affiliation(s)
- Bindu Sukumaran
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Brown WC. Adaptive immunity to Anaplasma pathogens and immune dysregulation: implications for bacterial persistence. Comp Immunol Microbiol Infect Dis 2012; 35:241-52. [PMID: 22226382 DOI: 10.1016/j.cimid.2011.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 11/30/2011] [Accepted: 12/06/2011] [Indexed: 12/15/2022]
Abstract
Anaplasma marginale is an obligate intraerythrocytic bacterium that infects ruminants, and notably causes severe economic losses in cattle worldwide. Anaplasma phagocytophilum infects neutrophils and causes disease in many mammals, including ruminants, dogs, cats, horses, and humans. Both bacteria cause persistent infection - infected cattle never clear A. marginale and A. phagocytophilum can also cause persistent infection in ruminants and other animals for several years. This review describes correlates of the protective immune response to these two pathogens as well as subversion and dysregulation of the immune response following infection that likely contribute to long-term persistence. I also compare the immune dysfunction observed with intraerythrocytic A. marginale to that observed in other models of chronic infection resulting in high antigen loads, including malaria, a disease caused by another intraerythrocytic pathogen.
Collapse
Affiliation(s)
- Wendy C Brown
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, United States.
| |
Collapse
|
19
|
Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clin Microbiol Rev 2011; 24:469-89. [PMID: 21734244 PMCID: PMC3131063 DOI: 10.1128/cmr.00064-10] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Anaplasma phagocytophilum persists in nature by cycling between mammals and ticks. Human infection by the bite of an infected tick leads to a potentially fatal emerging disease called human granulocytic anaplasmosis. A. phagocytophilum is an obligatory intracellular bacterium that replicates inside mammalian granulocytes and the salivary gland and midgut cells of ticks. A. phagocytophilum evolved the remarkable ability to hijack the regulatory system of host cells. A. phagocytophilum alters vesicular traffic to create an intracellular membrane-bound compartment that allows replication in seclusion from lysosomes. The bacterium downregulates or actively inhibits a number of innate immune responses of mammalian host cells, and it upregulates cellular cholesterol uptake to acquire cholesterol for survival. It also upregulates several genes critical for the infection of ticks, and it prolongs tick survival at freezing temperatures. Several host factors that exacerbate infection have been identified, including interleukin-8 (IL-8) and cholesterol. Host factors that overcome infection include IL-12 and gamma interferon (IFN-γ). Two bacterial type IV secretion effectors and several bacterial proteins that associate with inclusion membranes have been identified. An understanding of the molecular mechanisms underlying A. phagocytophilum infection will foster the development of creative ideas to prevent or treat this emerging tick-borne disease.
Collapse
|
20
|
Martirosyan A, Moreno E, Gorvel JP. An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol Rev 2011; 240:211-34. [PMID: 21349096 DOI: 10.1111/j.1600-065x.2010.00982.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Brucella is an intracellular bacterial pathogen that causes abortion and infertility in mammals and leads to a debilitating febrile illness that can progress into a long lasting disease with severe complications in humans. Its virulence depends on survival and replication properties in host cells. In this review, we describe the stealthy strategy used by Brucella to escape recognition of the innate immunity and the means by which this bacterium evades intracellular destruction. We also discuss the development of adaptive immunity and its modulation during brucellosis that in course leads to chronic infections. Brucella has developed specific strategies to influence antigen presentation mediated by cells. There is increasing evidence that Brucella also modulates signaling events during host adaptive immune responses.
Collapse
Affiliation(s)
- Anna Martirosyan
- Faculté de Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Marseille, France
| | | | | |
Collapse
|
21
|
Detection of "Candidatus Neoehrlichia mikurensis" in two patients with severe febrile illnesses: evidence for a European sequence variant. J Clin Microbiol 2010; 48:2630-5. [PMID: 20519481 DOI: 10.1128/jcm.00588-10] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recently, a new genus of Anaplasmataceae termed "Candidatus Neoehrlichia" was discovered in ticks and rodents. Here, we report on two patients who suffered from febrile bacteremia due to "Candidatus Neoehrlichia mikurensis" associated with thrombotic or hemorrhagic events. 16S rRNA and groEL gene sequencing provided evidence of three groups of sequence variants.
Collapse
|
22
|
Carrade D, Foley J, Borjesson D, Sykes J. Canine Granulocytic Anaplasmosis: A Review. J Vet Intern Med 2009; 23:1129-41. [DOI: 10.1111/j.1939-1676.2009.0384.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
23
|
Impairment of gamma interferon signaling in human neutrophils infected with Anaplasma phagocytophilum. Infect Immun 2009; 78:358-63. [PMID: 19858302 DOI: 10.1128/iai.01005-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Anaplasma phagocytophilum, the causative agent of tick-borne human granulocytic anaplasmosis (HGA), is an intracellular bacterium which survives and multiplies inside polymorphonuclear neutrophil granulocytes (PMN). Increased bacterial burden in gamma interferon (IFN-gamma)-deficient mice suggested a major role of IFN-gamma in the control of A. phagocytophilum. Here we investigated whether infection of human PMN with A. phagocytophilum impairs IFN-gamma signaling thus facilitating intracellular survival of the bacterium. The secretion of the IFN-gamma-inducible chemokines IP-10/CXCL10 and MIG/CXCL9 was markedly inhibited in infected neutrophils. Molecular analyses revealed that, compared to uninfected PMN, A. phagocytophilum decreased the expression of the IFN-gamma receptor alpha-chain CD119, diminished the IFN-gamma-induced phosphorylation of STAT1, and enhanced the expression of SOCS1 and SOCS3 in PMN. Since IFN-gamma activates various antibacterial effector mechanisms of PMN, the impaired IFN-gamma signaling in infected cells likely contributes to the survival of A. phagocytophilum inside PMN and to HGA disease development.
Collapse
|