1
|
Wang N, Yigit B, van der Poel CE, Cuenca M, Carroll MC, Herzog RW, Engel P, Terhorst C. The Checkpoint Regulator SLAMF3 Preferentially Prevents Expansion of Auto-Reactive B Cells Generated by Graft-vs.-Host Disease. Front Immunol 2019; 10:831. [PMID: 31057553 PMCID: PMC6482334 DOI: 10.3389/fimmu.2019.00831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/29/2019] [Indexed: 12/16/2022] Open
Abstract
Absence of the mouse cell surface receptor SLAMF3 in SLAMF3-/- mice suggested that this receptor negatively regulates B cell homeostasis by modulating activation thresholds of B cell subsets. Here, we examine whether anti-SLAMF3 affects both B and T cell subsets during immune responses to haptenated ovalbumin [NP-OVA] and in the setting of chronic graft vs. host disease (cGVHD) induced by transferring B6.C-H2bm12/KhEg (bm12) CD4+ T cells into B6 WT mice. We find that administering αSLAMF3 to NP-OVA immunized B6 mice primarily impairs antibody responses and Germinal center B cell [GC B] numbers, whilst CXCR5+, PD-1+, and ICOS+ T follicular helper (TFH) cells are not significantly affected. By contrast, administering αSLAMF3 markedly enhanced autoantibody production upon induction of cGVHD by the transfer of bm12 CD4+ T cells into B6 recipients. Surprisingly, αSLAMF3 accelerated both the differentiation of GC B and donor-derived TFH cells initiated by cGVHD. The latter appeared to be induced by decreased numbers of donor-derived Treg and T follicular regulatory (TFR) cells. Collectively, these data show that control of anti-SLAMF3-induced signaling is requisite to prevent autoantibody responses during cGVHD, but reduces responses to foreign antigens.
Collapse
Affiliation(s)
- Ninghai Wang
- Division of Immunology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Burcu Yigit
- Division of Immunology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Cees E van der Poel
- Program in Cellular and Molecular Medicine, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Marta Cuenca
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Pablo Engel
- Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Cox Terhorst
- Division of Immunology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
2
|
Gotot J, Dhana E, Yagita H, Kaiser R, Ludwig-Portugall I, Kurts C. Antigen-specific Helios - , Neuropilin-1 - Tregs induce apoptosis of autoreactive B cells via PD-L1. Immunol Cell Biol 2018; 96:852-862. [PMID: 29617057 DOI: 10.1111/imcb.12053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
Regulatory T cells (Tregs) maintain self-tolerance and prevent autoimmunity by controlling autoreactive T cells. We recently demonstrated in vivo that Tregs can directly suppress auto-reactive B cells via programmed death ligand 1 (PD-L1) that ligated PD-1 on B cells and caused them to undergo apoptosis. Here, we asked whether this mechanism is utilized by thymus-derived natural Tregs and/or by peripheral lymphoid tissue-induced Tregs. We first demonstrated that antigen-specific PD-L1-expressing Tregs were induced in the draining lymph node of autoantigen-expressing tissue and characterized them by their lack of the transcription factor Helios and of the surface marker Neuropilin-1 (Nrp-1). Next, we established an in vitro co-culture system to study the interaction between B cells and Treg subsets under controlled conditions. We found that Nrp- Treg, but not Nrp+ Treg suppressed autoreactive B cells, whereas both were able to suppress T-helper cells. Such suppression was antigen-specific and was facilitated by PD-L1/PD-1-induced apoptosis. Furthermore, it required physical cell contact and was MHC II-restricted, providing an explanation for the antigen-specificity of peripherally-induced Tregs. These findings identify a role for peripherally induced Helios- Nrp-1- inducible Treg in controlling peripheral B-cell tolerance against tissue auto-antigens.
Collapse
Affiliation(s)
- Janine Gotot
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Ermanila Dhana
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Romina Kaiser
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Isis Ludwig-Portugall
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| |
Collapse
|
3
|
Moore TC, Messer RJ, Hasenkrug KJ. Regulatory T cells suppress virus-specific antibody responses to Friend retrovirus infection. PLoS One 2018; 13:e0195402. [PMID: 29614127 PMCID: PMC5882174 DOI: 10.1371/journal.pone.0195402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
Recent vaccine studies with experimental antigens have shown that regulatory T cells (Tregs) constrain the magnitude of B cell responses. This homeostatic Treg-mediated suppression is thought to reduce the potential of germinal center (GC) responses to generate autoreactive antibodies. However, essentially opposite results were observed in live influenza infections where Tregs promoted B cell and antibody responses. Thus, it remains unclear whether Tregs dampen or enhance B cell responses, especially during live viral infections. Here, we use mice infected with Friend retrovirus (FV), which induces a robust expansion of Tregs. Depletion of Tregs led to elevated activation, proliferation, and class switching of B cells. In addition, Treg depletion enhanced the production of virus-specific and virus-neutralizing antibodies and reduced FV viremia. Thus, in contrast to influenza infection, Tregs either directly or indirectly suppress B cells during mouse retroviral infection indicating that the ultimate effect of Tregs on B cell responses is specific to the particular infectious agent.
Collapse
Affiliation(s)
- Tyler C. Moore
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, United States of America
| | - Ronald J. Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, United States of America
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, United States of America
- * E-mail:
| |
Collapse
|
4
|
Zhang R, Sage PT, Finn K, Huynh A, Blazar BR, Marangoni F, Mempel TR, Sharpe AH, Turka LA. B Cells Drive Autoimmunity in Mice with CD28-Deficient Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3972-3980. [PMID: 29093061 PMCID: PMC5716898 DOI: 10.4049/jimmunol.1700409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 10/05/2017] [Indexed: 12/27/2022]
Abstract
Follicular regulatory T (TFR) cells are a newly defined regulatory T cell (Treg) subset that suppresses follicular helper T cell-mediated B cell responses in the germinal center reaction. The precise costimulatory signal requirements for proper TFR cell differentiation and function are still not known. Using conditional knockout strategies of CD28, we previously demonstrated that loss of CD28 signaling in Tregs caused autoimmunity in mice (termed CD28-ΔTreg mice), characterized by lymphadenopathy, accumulation of activated T cells, and cell-mediated inflammation of the skin and lung. In this study, we show that CD28 signaling is required for TFR cell differentiation. Treg-specific deletion of CD28 caused a reduction in TFR cell numbers and function, which resulted in increased germinal center B cells and Ab production. Moreover, residual CD28-deficient TFR cells showed a diminished suppressive capacity as assessed by their ability to inhibit Ab responses in vitro. Surprisingly, genetic deletion of B cells in CD28-ΔTreg mice prevented the development of lymphadenopathy and CD4+ T cell activation, and autoimmunity that mainly targeted skin and lung tissues. Thus, autoimmunity occurring in mice with CD28-deficient Tregs appears to be driven primarily by loss of TFR cell differentiation and function with resulting B cell-driven inflammation.
Collapse
Affiliation(s)
- Ruan Zhang
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129
| | - Peter T Sage
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Kelsey Finn
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129
| | - Alexandria Huynh
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455; and
| | - Francesco Marangoni
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02129
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02129
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Laurence A Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129;
| |
Collapse
|
5
|
Foxp3 + regulatory T cells maintain the bone marrow microenvironment for B cell lymphopoiesis. Nat Commun 2017; 8:15068. [PMID: 28485401 PMCID: PMC5436085 DOI: 10.1038/ncomms15068] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 02/24/2017] [Indexed: 02/08/2023] Open
Abstract
Foxp3+ regulatory T cells (Treg cells) modulate the immune system and maintain self-tolerance, but whether they affect haematopoiesis or haematopoietic stem cell (HSC)-mediated reconstitution after transplantation is unclear. Here we show that B-cell lymphopoiesis is impaired in Treg-depleted mice, yet this reduced B-cell lymphopoiesis is rescued by adoptive transfer of affected HSCs or bone marrow cells into Treg-competent recipients. B-cell reconstitution is abrogated in both syngeneic and allogeneic transplantation using Treg-depleted mice as recipients. Treg cells can control physiological IL-7 production that is indispensable for normal B-cell lymphopoiesis and is mainly sustained by a subpopulation of ICAM1+ perivascular stromal cells. Our study demonstrates that Treg cells are important for B-cell differentiation from HSCs by maintaining immunological homoeostasis in the bone marrow microenvironment, both in physiological conditions and after bone marrow transplantation. Treg cells suppress peripheral immune responses, but their function in haematopoiesis is unclear. Here the authors show they modulate the bone marrow microenvironment to sustain haematopoietic stem cell-driven generation of mature B cells.
Collapse
|
6
|
Hochheiser K, Klein M, Gottschalk C, Hoss F, Scheu S, Coch C, Hartmann G, Kurts C. Cutting Edge: The RIG-I Ligand 3pRNA Potently Improves CTL Cross-Priming and Facilitates Antiviral Vaccination. THE JOURNAL OF IMMUNOLOGY 2016; 196:2439-43. [PMID: 26819202 DOI: 10.4049/jimmunol.1501958] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/28/2015] [Indexed: 12/25/2022]
Abstract
Protective immunity against intracellular pathogens involves the induction of robust CTL responses. Vaccination with protein Ags establishes such responses only when combined with immune-stimulatory adjuvants. In this study, we compared different adjuvants and identified triphosphate RNA (3pRNA) as especially effective at inducing CTL responses. 3pRNA sensing required IPS-1/MAVS signaling and induced type I IFN in plasmacytoid dendritic cells and macrophages, with the latter being more important for the adjuvant effect. Type I IFN acted on CD11c(+) cells, especially on CD8α(+) Batf3-dependent dendritic cells. Vaccination with OVA in combination with 3pRNA protected mice from a subsequent OVA-encoding adenovirus infection in a CD8(+) cell-dependent manner and more efficiently than other adjuvants. In summary, 3pRNA is a superior adjuvant for CTL activation and might be useful to facilitate antiviral immunization strategies.
Collapse
Affiliation(s)
- Katharina Hochheiser
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms University, Bonn 53105, Germany;
| | - Marika Klein
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms University, Bonn 53105, Germany
| | - Catherine Gottschalk
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms University, Bonn 53105, Germany
| | - Florian Hoss
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms University, Bonn 53105, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf 40225, Germany; and
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, Bonn 53127, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, Bonn 53127, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms University, Bonn 53105, Germany;
| |
Collapse
|
7
|
Shao HY, Huang JY, Lin YW, Yu SL, Chitra E, Chang CK, Sung WC, Chong P, Chow YH. Depletion of regulatory T-cells leads to moderate B-cell antigenicity in respiratory syncytial virus infection. Int J Infect Dis 2015; 41:56-64. [PMID: 26555647 DOI: 10.1016/j.ijid.2015.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/15/2015] [Accepted: 10/31/2015] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES The regulation of the immunopathology of respiratory syncytial virus (RSV) by regulatory T-cells (CD4(+)CD25(+)Foxp3(+); Tregs) is not understood. METHODS To deduce the same, Tregs were depleted in BALB/c mice by injecting anti-CD25 antibody followed by RSV infection (anti-CD25-RSV mice). RESULTS In this model, a decrease in anti-fusion (F) antibody and neutralizing activity, and an increase in anti-nucleocapsid (N) antibody in serum, were seen. Decreased antibody-dependent cell-mediated cytotoxicity (ADCC) activity, increased IgG2a, and an influx of activated CD8(+) T-cells into the lungs were also observed. Co-culture of splenic CD45RA(+) B-cells from RSV-infected normal mice with CD4(+) cells isolated from anti-CD25-RSV mice (B/CD4) increased anti-F antibody secretion. The inclusion of CD25(+) Tregs isolated from isotype Ig-RSV mice into the B/CD4 co-culture substantially enhanced the frequency of anti-F antibody production. However, the same effect was not seen in the co-culture of CD45RA(+) B-cells with dendritic cells (DCs) (B/DCs) or CD8(+) cells (B/CD8) that were obtained from anti-CD25-RSV mice. The transfer of enriched B-cells from anti-CD25-RSV mice into RSV-infected SCID mice increased severe lung inflammation associated with the increased viral load and eosinophil number. CONCLUSIONS These results indicate that Tregs modulate B-cell activity, particularly in producing F-specific neutralizing antibodies, to regulate RSV-mediated exacerbated diseases.
Collapse
Affiliation(s)
- Hsiao-Yun Shao
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Room No. R1-7033, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan; Graduate Program of Biotechnology in Medicine, Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Juo-Yu Huang
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Room No. R1-7033, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Yi-Wen Lin
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Room No. R1-7033, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Shu-Ling Yu
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Room No. R1-7033, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Ebenezer Chitra
- School of Medical Sciences, Division of Human Biology, International Medical University, Kuala Lumpur, Malaysia
| | - Ching-Kun Chang
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Room No. R1-7033, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan; Graduate School of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Wang-Chou Sung
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Room No. R1-7033, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Pele Chong
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Room No. R1-7033, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Yen-Hung Chow
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Room No. R1-7033, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
Alahgholi-Hajibehzad M, Kasapoglu P, Jafari R, Rezaei N. The role of T regulatory cells in immunopathogenesis of myasthenia gravis: implications for therapeutics. Expert Rev Clin Immunol 2015; 11:859-70. [DOI: 10.1586/1744666x.2015.1047345] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Regulatory T Cells Control Antigen-Specific Expansion of Tfh Cell Number and Humoral Immune Responses via the Coreceptor CTLA-4. Immunity 2014; 41:1013-25. [DOI: 10.1016/j.immuni.2014.12.006] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/31/2014] [Indexed: 02/06/2023]
|
10
|
Milanez-Almeida P, Klawonn F, Meyer-Hermann M, Huehn J. Differential control of immune cell homeostasis by Foxp3(+) regulatory T cells in murine peripheral lymph nodes and spleen. Eur J Microbiol Immunol (Bp) 2014; 4:147-55. [PMID: 25215190 DOI: 10.1556/eujmi-d-14-00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/17/2014] [Indexed: 01/15/2023] Open
Abstract
Foxp3(+) regulatory T cells (Tregs) hamper efficient immune responses to tumors and chronic infections. Therefore, depletion of Foxp3(+) Tregs has been proposed as therapeutic option to boost immune responses and to improve vaccinations. Although Treg-mediated control of T cell homeostasis is well established, Foxp3(+) Treg interaction with other immune cell subsets is only incompletely understood. Thus, the present study aimed at examining dynamic effects of experimental Foxp3(+) Treg depletion on a broad range of immune cell subsets, including B cells, natural killer cells, and myeloid cells. Striking differences were observed when peripheral lymph nodes (LN) and spleen were compared. B cells, for example, showed a massive and long-lasting accumulation only in LN but not in spleen of transiently Treg-depleted mice. In contrast, monocyte-derived dendritic cells, which are potent inducers of T cell responses, also accumulated selectively, but only transiently in LN, suggesting that this cell population is under very strict control of Foxp3(+) Tregs. In summary, the observations described here provide insights into the dynamics of immune cells after selective depletion of Foxp3(+) Tregs. This will allow a better prediction of the impact of Treg ablation in translational studies that aim at boosting immune responses and vaccinations.
Collapse
|
11
|
Riccardo F, Bolli E, Macagno M, Arigoni M, Cavallo F, Quaglino E. Chimeric DNA Vaccines: An Effective Way to Overcome Immune Tolerance. Curr Top Microbiol Immunol 2014; 405:99-122. [PMID: 25294003 DOI: 10.1007/82_2014_426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The fact that cancer immunotherapy is considered to be a safe and successful weapon for use in combination with surgery, radiation, and chemotherapy treatments means that it has recently been chosen as Breakthrough of the Year 2013 by Science editors. Anticancer vaccines have been extensively tested, in this field, both in preclinical cancer models and in the clinic. However, tumor-associated antigens (TAAs) are often self-tolerated molecules and cancer patients suffer from strong immunosuppressive effects, meaning that the triggering of an effective anti-tumor immune response is difficult. One possible means to overcome immunological tolerance to self-TAAs is of course the use of vaccines that code for xenogeneic proteins. However, a low-affinity antibody response against the self-homologous protein expressed by cancer cells is generally induced by xenovaccination. This issue becomes extremely limiting when working with tumors in which the contribution of the humoral rather than the cellular immune response is required if tumor growth is to be hampered. A possible way to avoid this problem is to use hybrid vaccines which code for chimeric proteins that include both homologous and xenogeneic moieties. In fact, a superior protective anti-tumor immune response against ErbB2+ transplantable and autochthonous mammary tumors was observed over plasmids that coded for the fully rat or fully human proteins when hybrid plasmids that coded for chimeric rat/human ErbB2 protein were tested in ErbB2 transgenic mice. In principle, these findings may become the basis for a new rational means of designing effective vaccines against TAAs.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Marco Macagno
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
12
|
Abstract
T(reg) cells are essential for the maintenance of immune homeostasis and prevention of autoimmunity. In humoral immune responses, loss of T(reg) cell function causes increased levels of serum autoantibodies, hyper-IgE, spontaneous generation of germinal centres, and enhanced numbers of specialised T follicular helper cells (T(fh) cells) controlled by the lineage-defining transcription factor BCL-6 (B-cell lymphoma 6). Recent studies have demonstrated that a subset of T(reg) cells [T follicular regulatory (T(freg)) cells] are able to co-opt the follicular T-cell program by gaining expression of BCL-6 and travelling to the follicle where they have an important role in the control of expansion of T(fh) cells and the germinal centre reaction. However, the mechanisms by which they exert this control are still under investigation. In this review, we discuss the effects of T(reg) cells on humoral immunity and the mechanisms by which they exert their regulatory function.
Collapse
Affiliation(s)
- James B Wing
- Department of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Osaka, Japan
| | | |
Collapse
|
13
|
Adjobimey T, Satoguina J, Oldenburg J, Hoerauf A, Layland LE. Co-activation through TLR4 and TLR9 but not TLR2 skews Treg-mediated modulation of Igs and induces IL-17 secretion in Treg: B cell co-cultures. Innate Immun 2013; 20:12-23. [PMID: 23529856 DOI: 10.1177/1753425913479414] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Whereas Th17 cells are associated with aggravated inflammation, regulatory T cells (Tregs) provide an environment to control overt responses. Nevertheless, Tregs display a certain degree of plasticity demonstrating that T cell differentiation processes are not absolute. Previously, we showed that human Treg clones induced B cells to produce IgG4. Here we focus on the actions of freshly isolated CD4(+)CD25(+)Foxp3(+)CD127(dim) Tregs on Ig production by B cells and the consequences of prior TLR activation of B cells. In the absence of TLR stimuli, Tregs, but not conventional T cells, dampened B cell proliferation, plasma cell formation and, with the exception of IgG4, all other Ig production. Although IgG4 levels were unchanged in total B cell:Treg co-cultures, levels were increased in Treg co-cultures of naive, but not memory, B cells. Triggering TLR on B cells skewed both Ig and cytokine secretion patterns and, surprisingly, Tregs within TLR4- and TLR9- but not TLR2-triggered B cell co-cultures up-regulated retinoic acid related orphan receptor (RORC) and produced IL-17. These data indicate that under conditions like bacterial or viral infections, B cells can escape Treg control, and provides an explanation as to why patients suffering from allergy or helminth infections display polar immunopathological symptoms despite being exposed to the same agent.
Collapse
Affiliation(s)
- Tomabu Adjobimey
- 1Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Clinic Bonn, Bonn, Germany
| | | | | | | | | |
Collapse
|
14
|
Impairment of regulatory T cells in myasthenia gravis: studies in an experimental model. Autoimmun Rev 2013; 12:894-903. [PMID: 23535156 DOI: 10.1016/j.autrev.2013.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 12/27/2022]
Abstract
Myasthenia gravis (MG) is an antibody mediated, T cell dependent autoimmune disease characterized by muscle fatigability in which autoantibodies directed to the acetylcholine receptor (AChR) impair neuromuscular transmission. The identification of CD4⁺CD25⁺Foxp3⁺Treg cells as important regulators of tolerance opened a major area of investigation raising the possibility that a dysfunction in the Treg compartment is involved in the etiology and pathogenesis of autoimmune diseases, including MG. In this paper we summarize shortly Treg abnormalities that were reported in MG patients and report on our studies of Treg in experimental autoimmune MG (EAMG). Hopefully these studies would pave the way towards the development of novel Treg-based treatment modalities that will restore self-tolerance in MG and other autoimmune diseases. In our previous studies in EAMG we have shown that Treg cells transferred from healthy rat donors to myasthenic rats suppress EAMG. However, Treg cells from sick animals do not have the same in vivo suppressive activity as those from healthy donors. The objective of the present study was to further characterize quantitative and qualitative alterations in Treg cells of rats with EAMG. We found that the frequency of CD4⁺CD25⁺Foxp3⁺Treg cells within the spleen and PBL was decreased in EAMG rats as compared to naïve and CFA-immunized healthy controls. Treg cells from myasthenic rats were less effective than Treg cells from controls in suppressing the proliferation of CD4⁺T effector cells in response to ConA and of B cells in response to LPS. Moreover, CD4⁺CD25⁺ cells from EAMG rats exhibited an elevated extent of apoptosis and expressed upregulated levels of FAS and of Th17-associated cytokines. Since EAMG is an induced disease, these quantitative and qualitative alterations in Treg cells do not reflect predisposing impairments and seem to be associated with the specific autoimmune response resulting from AChR immunization.
Collapse
|
15
|
Lee SY, Cho ML, Oh HJ, Ryu JG, Park MJ, Jhun JY, Park MK, Stone JC, Ju JH, Hwang SY, Park SH, Surh CD, Kim HY. Interleukin-2/anti-interleukin-2 monoclonal antibody immune complex suppresses collagen-induced arthritis in mice by fortifying interleukin-2/STAT5 signalling pathways. Immunology 2013; 137:305-16. [PMID: 23167249 DOI: 10.1111/imm.12008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/29/2012] [Accepted: 08/14/2012] [Indexed: 02/02/2023] Open
Abstract
In this study, we investigated the effects of administration of interleukin-2 (IL-2)/JES6-1 (anti-IL-2 monoclonal antibody) immune complexes on the expansion and activation of regulatory T (Treg) cells, the down-regulation of T helper type 17 (Th17) cells, and the control of the severity of collagen-induced arthritis (CIA). Wild-type and CIA-induced wild-type mice were injected intraperitoneally (i.p.) with IL-2 or IL-2/JES6-1 complex three times at 2-day intervals. Treg cell surface markers were analysed by flow cytometry. After injecting IL-2 or IL-2/JES6-1, the time kinetics of IL-2 signalling molecules was examined by FACS and Western blotting. Concentrations of IL-17 and IL-10 were measured by ELISA. Injection of IL-2/JES6-1 increased the proportion of Foxp3+ Treg cells among splenic CD4+ T cells, which reached the highest level on day 4 after injection. Up-regulation of CTLA4, GITR and glycoprotein-A repetitions predominant (GARP) was observed. Activation of p-signal transducer and activator of transcription 5 (STAT5) was apparent within 3 hr after injection of IL-2/JES6-1 complexes. Expression of IL-2 signalling molecules, including p-AKT and p-p38/mitogen-activated protein kinase, was also higher in splenocytes treated with IL-2/JES6-1 complexes. Injection of IL-2/JES6-1 complexes suppressed the induction of CIA and the production of IL-17 and inflammatory responses while increasing the level of IL-10 in the spleen. The expansion of Treg cells (via STAT5) and the concomitant increase in IL-2 signalling pathways by IL-2/JES6-1 complexes suggests their potential use as a novel therapeutic agent for the treatment of autoimmune arthritis.
Collapse
Affiliation(s)
- Seon-Yeong Lee
- The Rheumatism Research Centre, Catholic Research Institute of Medical Science, The Catholic University of Korea, Banpo-dong, Seocho-gu, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Regulatory T cells use programmed death 1 ligands to directly suppress autoreactive B cells in vivo. Proc Natl Acad Sci U S A 2012; 109:10468-73. [PMID: 22689978 DOI: 10.1073/pnas.1201131109] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mechanisms by which regulatory T cells (T(regs)) suppress autoantibody production are unclear. Here we have addressed this question using transgenic mice expressing model antigens in the kidney. We report that T(regs) were essential and sufficient to suppress autoreactive B cells in an antigen-specific manner and to prevent them from producing autoantibodies. Most of this suppression was mediated through the inhibitory cell-surface-molecule programmed death-1 (PD-1). Suppression required PD-1 expression on autoreactive B cells and expression of the two PD-1 ligands on T(regs). PD-1 ligation inhibited activation of autoreactive B cells, suppressed their proliferation, and induced their apoptosis. Intermediate PD-1(+) cells, such as T helper cells, were dispensable for suppression. These findings demonstrate in vivo that T(regs) use PD-1 ligands to directly suppress autoreactive B cells, and they identify a previously undescribed peripheral B-cell tolerance mechanism against tissue autoantigens.
Collapse
|
17
|
Alexander CM, Tygrett LT, Boyden AW, Wolniak KL, Legge KL, Waldschmidt TJ. T regulatory cells participate in the control of germinal centre reactions. Immunology 2011; 133:452-68. [PMID: 21635248 DOI: 10.1111/j.1365-2567.2011.03456.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Germinal centre (GC) reactions are central features of T-cell-driven B-cell responses, and the site where antibody-producing cells and memory B cells are generated. Within GCs, a range of complex cellular and molecular events occur which are critical for the generation of high affinity antibodies. These processes require exquisite regulation not only to ensure the production of desired antibodies, but to minimize unwanted autoreactive or low affinity antibodies. To assess whether T regulatory (Treg) cells participate in the control of GC responses, immunized mice were treated with an anti-glucocorticoid-induced tumour necrosis factor receptor-related protein (GITR) monoclonal antibody (mAb) to disrupt Treg-cell activity. In anti-GITR-treated mice, the GC B-cell pool was significantly larger compared with control-treated animals, with switched GC B cells composing an abnormally high proportion of the response. Dysregulated GCs were also observed regardless of strain, T helper type 1 or 2 polarizing antigens, and were also seen after anti-CD25 mAb treatment. Within the spleens of immunized mice, CXCR5(+) and CCR7(-) Treg cells were documented by flow cytometry and Foxp3(+) cells were found within GCs using immunohistology. Final studies demonstrated administration of either anti-transforming growth factor-β or anti-interleukin-10 receptor blocking mAb to likewise result in dysregulated GCs, suggesting that generation of inducible Treg cells is important in controlling the GC response. Taken together, these findings indicate that Treg cells contribute to the overall size and quality of the humoral response by controlling homeostasis within GCs.
Collapse
Affiliation(s)
- Carla-Maria Alexander
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Le Texier L, Thebault P, Lavault A, Usal C, Merieau E, Quillard T, Charreau B, Soulillou JP, Cuturi MC, Brouard S, Chiffoleau E. Long-term allograft tolerance is characterized by the accumulation of B cells exhibiting an inhibited profile. Am J Transplant 2011; 11:429-38. [PMID: 21114655 DOI: 10.1111/j.1600-6143.2010.03336.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Numerous reports have highlighted the central role of regulatory T cells in long-term allograft tolerance, but few studies have investigated the B-cell aspect. We analyzed the B-cell response in a rat model of long-term cardiac allograft tolerance induced by a short-term immunosuppression. We observed that tolerated allografts are infiltrated by numerous B cells organized in germinal centers that are strongly regulated in their IgG alloantibody response. Moreover, alloantibodies from tolerant recipients exhibit a deviation toward a Th2 isotype and do not activate in vitro donor-type endothelial cells in a pro-inflammatory way but maintained expression of cytoprotective molecules. Interestingly, this inhibition of the B-cell response is characterized by the progressive accumulation in the graft and in the blood of B cells blocked at the IgM to IgG switch recombination process and overexpressing BANK-1 and the inhibitory receptor Fcgr2b. Importantly, B cells from tolerant recipients are able to transfer allograft tolerance. Taken together, these results demonstrate a strong regulation of the alloantibody response in tolerant recipients and the accumulation of B cells exhibiting an inhibited and regulatory profile. These mechanisms of regulation of the B-cell response could be instrumental to develop new strategies to promote tolerance.
Collapse
Affiliation(s)
- L Le Texier
- INSERM U643, CHU Nantes, Institut de Transplantation et de Recherche en Transplantation Urologie Nephrologie, Nantes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Recovery of B-cell homeostasis after rituximab in chronic graft-versus-host disease. Blood 2010; 117:2275-83. [PMID: 21097674 DOI: 10.1182/blood-2010-10-307819] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Investigation of the effects of rituximab (anti-CD20) on B-cell-activating factor of the tumor necrosis factor family (BAFF) and B cells would better define the significance of B-cell homeostasis in chronic graft-versus-host disease (cGVHD) pathophysiology. We studied 20 cGVHD patients at a median of 25 months after rituximab treatment when most patients had recovered total B-cell numbers. A total of 55% of patients had stable/improved cGVHD, and total B-cell numbers in these patients were significantly higher compared with rituximab-unresponsive patients. Although total B-cell number did not differ significantly between cGVHD groups before rituximab, there was a proportional increase in B-cell precursors in patients who later had stable/improved cGVHD. After rituximab, BAFF levels increased in all patients. Coincident with B-cell recovery in the stable/improved group, BAFF/B-cell ratios and CD27(+) B-cell frequencies decreased significantly. The peripheral B-cell pool in stable/improved cGVHD patients was largely composed of naive IgD(+) B cells. By contrast, rituximab-unresponsive cGVHD patients had persistent elevation of BAFF and a predominance of circulating B cells possessing an activated BAFF-R(Lo)CD20(Lo) cell surface phenotype. Thus, naive B-cell reconstitution and decreased BAFF/B-cell ratios were associated with clinical response after rituximab in cGVHD. Our findings begin to delineate B-cell homeostatic mechanisms important for human immune tolerance.
Collapse
|
21
|
Leonardo SM, Josephson JA, Hartog NL, Gauld SB. Altered B cell development and anergy in the absence of Foxp3. THE JOURNAL OF IMMUNOLOGY 2010; 185:2147-56. [PMID: 20639490 DOI: 10.4049/jimmunol.1000136] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The importance of regulatory T cells in immune tolerance is illustrated by the human immune dysregulatory disorder IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked), caused by a lack of regulatory T cells due to decreased or absent expression of Foxp3. Although the majority of work on regulatory T cells has focused on their ability to suppress T cell responses, the development of significant autoantibody titers in patients with IPEX suggests that regulatory T cells also contribute to the suppression of autoreactive B cells. Using a murine model, deficient in the expression of Foxp3, we show that B cell development is significantly altered in the absence of regulatory T cells. Furthermore, we identify a loss of B cell anergy as a likely mechanism to explain the production of autoantibodies that occurs in the absence of regulatory T cells. Our results suggest that regulatory T cells, by either direct or indirect mechanisms, modulate B cell development and anergy.
Collapse
Affiliation(s)
- Steven M Leonardo
- Division of Allergy and Immunology, Department of Pediatrics, Medical College of Wisconsin and Children's Research Institute, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
22
|
Yu S, Fang Y, Sharp GC, Braley-Mullen H. Transgenic expression of TGF-beta on thyrocytes inhibits development of spontaneous autoimmune thyroiditis and increases regulatory T cells in thyroids of NOD.H-2h4 mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:5352-9. [PMID: 20335535 PMCID: PMC3272275 DOI: 10.4049/jimmunol.0903620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transgenic NOD.H-2h4 mice expressing TGF-beta under control of the thyroglobulin promoter were generated to assess the role of TGF-beta in the development of thyrocyte hyperplasia. In contrast to nontransgenic littermates, which develop lymphocytic spontaneous autoimmune thyroiditis (L-SAT), all TGF-beta transgenic (Tg) mice given NaI water for 2-7 mo developed thyroid lesions characterized by severe thyroid epithelial cell hyperplasia and proliferation, with fibrosis and less lymphocyte infiltration than in nontransgenic mice. Most Tg mice produced less anti-mouse thyroglobulin autoantibody than did wild type (WT) mice. T cells from Tg and WT mice were equivalent in their ability to induce L-SAT after transfer to SCID or TCRalpha(-/-) mice. WT lymphocytes could transfer experimental autoimmune thyroiditis or L-SAT to Tg mice, indicating that the transgenic environment did not prevent migration of lymphocytes to the thyroid. Thyroids of Tg mice had higher frequencies of Foxp3(+) regulatory T cells (Tregs) compared with nontransgenic WT mice. Transient depletion of Tregs by anti-CD25 resulted in increased infiltration of inflammatory cells into thyroids of transgenic mice. Treg depletion also resulted in increased anti-mouse thyroglobulin autoantibody responses and increased expression of IFN-gamma and IFN-gamma-inducible chemokines in thyroids of Tg mice. The results suggest that spontaneous autoimmune thyroiditis is inhibited in mice expressing transgenic TGF-beta on thyrocytes, at least in part, because there is an increased frequency of Tregs in their thyroids.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Proliferation
- Cells, Cultured
- Epithelial Cells/immunology
- Epithelial Cells/pathology
- Female
- Growth Inhibitors/administration & dosage
- Growth Inhibitors/biosynthesis
- Growth Inhibitors/genetics
- Lymphocyte Depletion
- Male
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Mice, Transgenic
- Rats
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Thyroid Gland/immunology
- Thyroid Gland/metabolism
- Thyroid Gland/pathology
- Thyroiditis, Autoimmune/genetics
- Thyroiditis, Autoimmune/immunology
- Thyroiditis, Autoimmune/prevention & control
- Transforming Growth Factor beta/administration & dosage
- Transforming Growth Factor beta/biosynthesis
- Transforming Growth Factor beta/genetics
Collapse
Affiliation(s)
- Shiguang Yu
- Research Service, Department of Veterans Affairs, Columbia, Mo 65212
- Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Mo 65212
- Arkansas Biosciences Institute, Department of Biological Science, Arkansas State University, Jonesboro, AR 72467
| | - Yujiang Fang
- Research Service, Department of Veterans Affairs, Columbia, Mo 65212
- Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Mo 65212
| | - Gordon C. Sharp
- Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Mo 65212
- Department of Pathology, University of Missouri School of Medicine, Columbia, Mo 65212
| | - Helen Braley-Mullen
- Research Service, Department of Veterans Affairs, Columbia, Mo 65212
- Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Mo 65212
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Mo 65212
| |
Collapse
|