1
|
Mahapatra B, Singh A, Banerjee A, Sirohi S, Singh S, Dubey VK, Singh RK. A squalene oil emulsified MPL-A and anti-CD200/CD300a antibodies adjuvanted whole-killed Leishmania vaccine provides durable immunity against L. donovani parasites. Vaccine 2024; 42:126373. [PMID: 39288578 DOI: 10.1016/j.vaccine.2024.126373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Antigenic inefficacy to induce robust immune responses and durable memory are major causes of constantly failing prophylactic approaches in leishmaniasis. Here, we determine the potential of a standardized whole-killed Leishmania vaccine (Leishvacc) adjuvanted with anti-CD200 and anti-CD300a antibodies, either alone or with monophosphoryl lipid A (MPL-SE) emulsified in squalene oil, in restoring the compromised antigen presenting abilities of dendritic cells (DCs), effector properties of CD4+T cells and providing protection against Leishmania donovani parasites. In animals vaccinated with antibodies adjuvanted vaccines, either alone or with MPL-SE, the antigen presenting abilities of CD11c+ DCs against Leishmania antigens, measured in terms of CD80, CD86, MHC-I, and MHC-II surface receptors and intracellular IL-12 were found enhanced than non-adjuvanted vaccine. We observed more proliferative and pro-inflammatory cytokines i.e. IL-2, IFN-γ, IL-23, and IL-12 producing CD4+T cells in antibodies/MPL-SE adjuvanted vaccinated animals further suggesting that this approach helps antigen activated CD4+T cells to acquire pro-inflammatory cytokines producing abilities. In antibodies, either alone or with MPL-SE, vaccinated animals, the number of CD4+ central memory T cells and their longevity were found significantly enhanced that further evidenced the impact of this vaccination approach in inducing long term protective immunity. The animals, receiving antibodies adjuvanted vaccines, either alone or with MPL-SE, exhibited excellent protection against virulent parasites by restricting their growth, which correlated with the significantly reduced parasitemia, splenomegaly, and hepatomegaly, along with fewer numbers of liver granulomas. Our findings provide an insight to a new immunoprophylactic approach against visceral leishmaniasis, which not only satisfies the safety criteria, but also provides a robust immunogenic response with remarkable potential for parasites control. However, further in-depth investigations are needed to ascertain its ability in inducing long-lasting immunity.
Collapse
Affiliation(s)
- Baishakhi Mahapatra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Abhishek Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arpita Banerjee
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shruti Sirohi
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Samer Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, India
| | - Vikash K Dubey
- Department of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Rakesh K Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Vakili ME, Mashhadi N, Ataollahi MR, Meri S, Kabelitz D, Kalantar K. Hepatitis B vaccine responders show higher frequencies of CD8 + effector memory and central memory T cells compared to non-responders. Scand J Immunol 2024; 100:e13402. [PMID: 39189677 DOI: 10.1111/sji.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024]
Abstract
Hepatitis B (HB) infection is a major global health problem. There is limited knowledge about HB vaccination-induced immune memory responses. We compared the frequency of CD8+ memory T cell subsets between responders (RSs) and non-responders (NRs) to HB vaccination. Blood samples were collected from RSs and NRs. PBMCs were cultured in the presence of Hepatitis B surface antigens (HBsAg) and PHA for 48 h to restimulate CD8+ memory T cells and T cell memory subsets were detected by flow cytometry using memory cell markers. The frequency of TEM, TCM, and TCM hi was significantly higher in responders compared to non-responders (p = 0.024, 0.022, and 0.047, respectively). Additionally, we report a positive correlation between the frequency of TEM cells in RSs with age and anti-HBsAb level (p = 0.03 and rs = 0.5; p = 0.01 and rs = 0.06). Responders display a higher level of CD8+ T cell-mediated immunity. Therefore, we suggest a possible defect in the formation of immunological CD8+ memory T cells in NRs and it may reduce antibody production compared to the RSs, although more experiments are needed.
Collapse
Affiliation(s)
- Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloofar Mashhadi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Ataollahi
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), Helsinki University Hospital, The University of Helsinki and HUSLAB, Helsinki, Finland
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig, Holstein Campus Kiel, Kiel, Germany
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), Helsinki University Hospital, The University of Helsinki and HUSLAB, Helsinki, Finland
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Gopalaswamy R, Aravindhan V, Subbian S. The Ambivalence of Post COVID-19 Vaccination Responses in Humans. Biomolecules 2024; 14:1320. [PMID: 39456253 PMCID: PMC11506738 DOI: 10.3390/biom14101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has prompted a massive global vaccination campaign, leading to the rapid development and deployment of several vaccines. Various COVID-19 vaccines are under different phases of clinical trials and include the whole virus or its parts like DNA, mRNA, or protein subunits administered directly or through vectors. Beginning in 2020, a few mRNA (Pfizer-BioNTech BNT162b2 and Moderna mRNA-1273) and adenovirus-based (AstraZeneca ChAdOx1-S and the Janssen Ad26.COV2.S) vaccines were recommended by WHO for emergency use before the completion of the phase 3 and 4 trials. These vaccines were mostly administered in two or three doses at a defined frequency between the two doses. While these vaccines, mainly based on viral nucleic acids or protein conferred protection against the progression of SARS-CoV-2 infection into severe COVID-19, and prevented death due to the disease, their use has also been accompanied by a plethora of side effects. Common side effects include localized reactions such as pain at the injection site, as well as systemic reactions like fever, fatigue, and headache. These symptoms are generally mild to moderate and resolve within a few days. However, rare but more serious side effects have been reported, including allergic reactions such as anaphylaxis and, in some cases, myocarditis or pericarditis, particularly in younger males. Ongoing surveillance and research efforts continue to refine the understanding of these adverse effects, providing critical insights into the risk-benefit profile of COVID-19 vaccines. Nonetheless, the overall safety profile supports the continued use of these vaccines in combating the pandemic, with regulatory agencies and health organizations emphasizing the importance of vaccination in preventing COVID-19's severe outcomes. In this review, we describe different types of COVID-19 vaccines and summarize various adverse effects due to autoimmune and inflammatory response(s) manifesting predominantly as cardiac, hematological, neurological, and psychological dysfunctions. The incidence, clinical presentation, risk factors, diagnosis, and management of different adverse effects and possible mechanisms contributing to these effects are discussed. The review highlights the potential ambivalence of human response post-COVID-19 vaccination and necessitates the need to mitigate the adverse side effects.
Collapse
Affiliation(s)
- Radha Gopalaswamy
- Directorate of Distance Education, Madurai Kamaraj University, Madurai 625021, India;
| | - Vivekanandhan Aravindhan
- Department of Genetics, Dr Arcot Lakshmanasamy Mudaliyar Post Graduate Institute of Basic Medical Sciences (Dr ALM PG IBMS), University of Madras, Taramani, Chennai 600005, India;
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
4
|
Jordan C, Siebold K, Priegue P, Seeberger PH, Gilmour R. A Fluorinated Sialic Acid Vaccine Lead Against Meningitis B and C. J Am Chem Soc 2024; 146:15366-15375. [PMID: 38768956 PMCID: PMC11157539 DOI: 10.1021/jacs.4c03179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Inspired by the specificity of α-(2,9)-sialyl epitopes in bacterial capsular polysaccharides (CPS), a doubly fluorinated disaccharide has been validated as a vaccine lead against Neisseria meningitidis serogroups C and/or B. Emulating the importance of fluorine in drug discovery, this molecular editing approach serves a multitude of purposes, which range from controlling α-selective chemical sialylation to mitigating competing elimination. Conjugation of the disialoside with two carrier proteins (CRM197 and PorA) enabled a semisynthetic vaccine to be generated; this was then investigated in six groups of six mice. The individual levels of antibodies formed were compared and classified as highly glycan-specific and protective. All glycoconjugates induced a stable and long-term IgG response and binding to the native CPS epitope was achieved. The generated antibodies were protective against MenC and/or MenB; this was validated in vitro by SBA and OPKA assays. By merging the fluorinated glycan epitope of MenC with an outer cell membrane protein of MenB, a bivalent vaccine against both serogroups was created. It is envisaged that validation of this synthetic, fluorinated disialoside bioisostere as a potent antigen will open new therapeutic avenues.
Collapse
Affiliation(s)
- Christina Jordan
- Institute
for Organic Chemistry, University of Münster, Corrensstraße 36, Münster 48149, Germany
| | - Kathrin Siebold
- Institute
for Organic Chemistry, University of Münster, Corrensstraße 36, Münster 48149, Germany
| | - Patricia Priegue
- Department
of Biomolecular Systems, Max Planck Institute
for Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
- Freie
Universität Berlin, Institute of
Chemistry and Biochemistry, Arnimallee 22, Berlin 14195, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
for Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
- Freie
Universität Berlin, Institute of
Chemistry and Biochemistry, Arnimallee 22, Berlin 14195, Germany
| | - Ryan Gilmour
- Institute
for Organic Chemistry, University of Münster, Corrensstraße 36, Münster 48149, Germany
| |
Collapse
|
5
|
Collatuzzo G, De Palma G, Violante FS, Porru S, Larese Filon F, Fabianova E, Violán C, Vimercati L, Leustean M, Rodriguez-Suarez MM, Sansone E, Sala E, Zunarelli C, Lodi V, Monaco MGL, Spiteri G, Negro C, Beresova J, Carrasco-Ribelles LA, Tafuri S, Asafo SS, Ditano G, Abedini M, Boffetta P. Temporal trends of COVID-19 antibodies in vaccinated healthcare workers undergoing repeated serological sampling: An individual-level analysis within 13 months in the ORCHESTRA cohort. Front Immunol 2023; 13:1079884. [PMID: 36713452 PMCID: PMC9875291 DOI: 10.3389/fimmu.2022.1079884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Short summary We investigated changes in serologic measurements after COVID-19 vaccination in 19,422 subjects. An individual-level analysis was performed on standardized measurements. Age, infection, vaccine doses, time between doses and serologies, and vaccine type were associated with changes in serologic levels within 13 months. Background Persistence of vaccine immunization is key for COVID-19 prevention. Methods We investigated the difference between two serologic measurements of anti-COVID-19 S1 antibodies in an individual-level analysis on 19,422 vaccinated healthcare workers (HCW) from Italy, Spain, Romania, and Slovakia, tested within 13 months from first dose. Differences in serologic levels were divided by the standard error of the cohort-specific distribution, obtaining standardized measurements. We fitted multivariate linear regression models to identify predictors of difference between two measurements. Results We observed a progressively decreasing difference in serologic levels from <30 days to 210-240 days. Age was associated with an increased difference in serologic levels. There was a greater difference between the two serologic measurements in infected HCW than in HCW who had never been infected; before the first measurement, infected HCW had a relative risk (RR) of 0.81 for one standard deviation in the difference [95% confidence interval (CI) 0.78-0.85]. The RRs for a 30-day increase in time between first dose and first serology, and between the two serologies, were 1.08 (95% CI 1.07-1.10) and 1.04 (95% CI 1.03-1.05), respectively. The first measurement was a strong predictor of subsequent antibody decrease (RR 1.60; 95% CI 1.56-1.64). Compared with Comirnaty, Spikevax (RR 0.83, 95% CI 0.75-0.92) and mixed vaccines (RR 0.61, 95% CI 0.51-0.74) were smaller decrease in serological level (RR 0.46; 95% CI 0.40-0.54). Conclusions Age, COVID-19 infection, number of doses, time between first dose and first serology, time between serologies, and type of vaccine were associated with differences between the two serologic measurements within a 13-month period.
Collapse
Affiliation(s)
- Giulia Collatuzzo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe De Palma
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Francesco S. Violante
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy,Occupational Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Porru
- Section of Occupational Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | - Eleonora Fabianova
- Occupational Health Department, Regional Authority of Public Health, Banská Bystrica, Slovakia
| | - Concepción Violán
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain,Direcció d’Atenció Primària Metropolitana Nord Institut Català de Salut, Barcelona, Spain,Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain,Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Luigi Vimercati
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | | | - Marta Maria Rodriguez-Suarez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) and Universitario Central de Asturias (HUCA), University of Oviedo, Oviedo, Spain
| | - Emanuele Sansone
- Occupational Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Emma Sala
- Unit of Occupational Health, Hygiene, Toxicology and Prevention, ASST Ospedali Civili di Brescia, Brescia, Italy
| | - Carlotta Zunarelli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vittorio Lodi
- Occupational Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Gianluca Spiteri
- Occupational Medicine Unit, University Hospital of Verona, Verona, Italy
| | - Corrado Negro
- Unit of Occupational Medicine, University of Trieste, Trieste, Italy
| | - Jana Beresova
- Occupational Health Department, Regional Authority of Public Health, Banská Bystrica, Slovakia
| | - LucÌa A. Carrasco-Ribelles
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
| | - Silvio Tafuri
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | - Shuffield S. Asafo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giorgia Ditano
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Mahsa Abedini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States,*Correspondence: Paolo Boffetta,
| |
Collapse
|
6
|
Alhajjat AM, Redden CR, Langereis M, Papastefan ST, Ito JA, Ott KC, Turner LE, Kang HK, Shaaban AF. CD4 and IL-2 mediated NK cell responses after COVID-19 infection and mRNA vaccination in adults. Immunobiology 2023; 228:152304. [PMID: 36508885 PMCID: PMC9683520 DOI: 10.1016/j.imbio.2022.152304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
A detailed understanding of protective immunity against SARS-CoV-2 is incredibly important in fighting the pandemic. Central to protective immunity is the ability of the immune system to recall previous exposures. Although antibody and T cell immunity have gained considerable attention, the contribution of the NK cell compartment to immune recall and protection from SARS-CoV-2 has not been explored. In this study, we investigate the NK cell responses to stimulation with SARS-CoV-2 in previously exposed and non-exposed individuals. We show that NK cells demonstrate an enhanced CD4+ T cell dependent response when re-exposed to SARS-CoV-2 antigen. The enhanced response is dependent on T cells and correlates with the number of SARS-CoV-2 specific CD4 T cells. We find that IL-2 is a critical mediator of NK cell function. These findings suggest that NK cells contribute to the protective responses against SARS-CoV-2 through a cooperation with antigen-specific CD4 T cells and have significant implications on our understanding of protective immunity in SARS-CoV-2.
Collapse
|
7
|
Escudero-Pérez B, Lawrence P, Castillo-Olivares J. Immune correlates of protection for SARS-CoV-2, Ebola and Nipah virus infection. Front Immunol 2023; 14:1156758. [PMID: 37153606 PMCID: PMC10158532 DOI: 10.3389/fimmu.2023.1156758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Correlates of protection (CoP) are biological parameters that predict a certain level of protection against an infectious disease. Well-established correlates of protection facilitate the development and licensing of vaccines by assessing protective efficacy without the need to expose clinical trial participants to the infectious agent against which the vaccine aims to protect. Despite the fact that viruses have many features in common, correlates of protection can vary considerably amongst the same virus family and even amongst a same virus depending on the infection phase that is under consideration. Moreover, the complex interplay between the various immune cell populations that interact during infection and the high degree of genetic variation of certain pathogens, renders the identification of immune correlates of protection difficult. Some emerging and re-emerging viruses of high consequence for public health such as SARS-CoV-2, Nipah virus (NiV) and Ebola virus (EBOV) are especially challenging with regards to the identification of CoP since these pathogens have been shown to dysregulate the immune response during infection. Whereas, virus neutralising antibodies and polyfunctional T-cell responses have been shown to correlate with certain levels of protection against SARS-CoV-2, EBOV and NiV, other effector mechanisms of immunity play important roles in shaping the immune response against these pathogens, which in turn might serve as alternative correlates of protection. This review describes the different components of the adaptive and innate immune system that are activated during SARS-CoV-2, EBOV and NiV infections and that may contribute to protection and virus clearance. Overall, we highlight the immune signatures that are associated with protection against these pathogens in humans and could be used as CoP.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, Braunschweig, Germany
- *Correspondence: Beatriz Escudero-Pérez, ; Javier Castillo-Olivares,
| | - Philip Lawrence
- CONFLUENCE: Sciences et Humanités (EA 1598), Université Catholique de Lyon (UCLy), Lyon, France
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Beatriz Escudero-Pérez, ; Javier Castillo-Olivares,
| |
Collapse
|
8
|
Wu X, Xing J, Tang X, Sheng X, Chi H, Zhan W. Splenic protection network revealed by transcriptome analysis in inactivated vaccine-immunized flounder ( Paralichthys olivaceus) against Edwardsiella tarda infection. Front Immunol 2022; 13:1058599. [PMID: 36439120 PMCID: PMC9681833 DOI: 10.3389/fimmu.2022.1058599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 07/01/2024] Open
Abstract
The protective immune response produced by fish after vaccination is crucial for vaccine effectiveness. Our previous studies have shown inactivated vaccine against Edwardsiella tarda can induce immune response in flounder (Paralichthys olivaceus). To elucidate the protective immune response at the genetic level, in this study, flounder was immunized with inactivated E. tarda for 5 weeks, and then they were challenged with E. tarda. The spleen was dissected at 7th day post immunization, 1st and 7th day post challenge, respectively. Transcriptome analysis showed that average of 46 million clean reads were obtained per library, while percentage of clean reads being mapped to reference genome was more than 89% in all cases, which suggested good quality of samples. As for differentially expressed genes (DEGs) identification in inactivated E. tarda groups, at 7th day post immunization, 1422 DEGs were identified and significantly enriched in innate immune-related pathways, such as Phagosome, Cell adhesion molecules and NF-kappa B signaling pathway; At 1st post challenge day, 1210 DEGs were identified and enriched to Antigen processing and presentation and Cell adhesion molecules, indicating that the pathogen was rapidly recognized and delivered; At 7th post challenge day, 1929 DEGs were identified, belonged to Toll-like receptor signaling pathway, Antigen processing and presentation, Th1 and Th2 cell differentiation and Th17 cell differentiation. Compared to 7th post immunization day, 73 immune-associated DEGs were identified at 1st post challenge day. Protein-protein interaction networks analysis revealed 11 hub genes (TLR7, TLR3, CXCR4, IFIH1, TLR8 etc), associated with recognition of pathogens and activation of innate immunity; while for 7th post challenge day, 141 immune-associated DEGs were identified. 30 hub genes (IL6, STAT1, HSP90A.1, TLR7, IL12β etc) were associated with stimulation of lymphocyte differentiation and activation of cellular immunity. Ten immune-related genes were randomly selected for RT-qPCR validation at each time point. In conclusion, data revealed protection of flounder against E. tarda infection by inactivated vaccine is mediated via immediate recognition of pathogen and subsequently activation of cellular immunity. Results give new aspect for vaccine protection cascades, is good references for vaccine evaluation.
Collapse
Affiliation(s)
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, MOE, Ocean University of China, Qingdao, China
| | | | | | | | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, MOE, Ocean University of China, Qingdao, China
| |
Collapse
|
9
|
Vakili ME, Faghih Z, Sarvari J, Doroudchi M, Hosseini SN, Kabelitz D, Kalantar K. Lower frequency of T stem cell memory (TSCM) cells in hepatitis B vaccine nonresponders. Immunol Res 2022; 70:469-480. [PMID: 35445310 PMCID: PMC9273562 DOI: 10.1007/s12026-022-09278-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Despite the availability of an effective vaccine and antiviral treatments, hepatitis B is still a global public health problem. Hepatitis B vaccination can prevent the disease. Vaccination induces long-lasting protective immune memory, and the identification of memory cell subsets can indicate the effectiveness of vaccines. Here, we compared the frequency of CD4+ memory T cell subsets between responders and nonresponders to HB vaccination. Besides, the frequency of IFN-γ+ memory T cells was compared between studied groups. Study participants were grouped according to their anti-HBsAb titer. For restimulation of CD4+ memory T cells, peripheral blood mononuclear cells (PBMCs) were cultured in the presence of HBsAg and PHA for 48 h. Besides, PMA, ionomycin, and brefeldin were added during the last 5 h of incubation to induce IFN-γ production. Flow cytometry was used for analysis. There was a statistically significant difference in the frequency of CD4+CD95+, CD4+CD95Hi, and CD4+CD95low/med T stem cell memory (TSCM) cells between responder and nonresponder groups. However, the comparison of the frequency of memory T cells producing IFN-γ showed no differences. Our results identified a possible defect of immunological CD4+ memory T cell formation in nonresponders due to their lower frequency of CD4+ TSCM cells.
Collapse
Affiliation(s)
- Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Faghih
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Nezamedin Hosseini
- Department of Recombinant Hepatitis B Vaccine, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig, Holstein Campus Kiel, 24105, Kiel, Germany.
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Kaplonek P, Yao L, Reppe K, Voß F, Kohler T, Ebner F, Schäfer A, Blohm U, Priegue P, Bräutigam M, Pereira CL, Parameswarappa SG, Emmadi M, Ménová P, Witzenrath M, Hammerschmidt S, Hartmann S, Sander LE, Seeberger PH. A semisynthetic glycoconjugate provides expanded cross-serotype protection against Streptococcus pneumoniae. Vaccine 2022; 40:1038-1046. [PMID: 35033388 DOI: 10.1016/j.vaccine.2021.12.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
Streptococcus pneumoniae (S. pneumoniae)infections are the leading cause of child mortality globally. Currentvaccines fail to induceaprotective immune response towards a conserved part of the pathogen,resulting in newserotypescausing disease. Therefore, new vaccinestrategies are urgently needed.Described is atwo-pronged approach combiningS. pneumoniaeproteins, pneumolysin (Ply) and pneumococcal surface protein A (PspA),with aprecisely defined synthetic oligosaccharide,wherebythe carrier protein actsas a serotype-independent antigen to provideadditional protection. Proof of concept in mice and swine modelsrevealed thatthe conjugatesinhibited colonization of the nasopharynx, decreased the bacterial load and reduced disease severity in the bacteria challenge model. Immunization of piglets provided the first evidence for the immunogenicity and protective potential of synthetic glycoconjugate vaccine in a large animal model.Acombination of synthetic oligosaccharides with proteins from the target pathogen opens the path to create broadly cross-protective ("universal") pneumococcal vaccines.
Collapse
Affiliation(s)
- Paulina Kaplonek
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany; Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Ling Yao
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany; Department of Infectious Diseases and Respiratory Medicine, Charité - Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Katrin Reppe
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Franziska Voß
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Thomas Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Friederike Ebner
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Alexander Schäfer
- Institute of Immunology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Patricia Priegue
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Maria Bräutigam
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Claney L Pereira
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Sharavathi G Parameswarappa
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Madhu Emmadi
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Petra Ménová
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; German Center for Lung Research (DZL), Aulweg 130, 35392 Giessen, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Susanne Hartmann
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; German Center for Lung Research (DZL), Aulweg 130, 35392 Giessen, Germany.
| | - Peter H Seeberger
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany; Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany.
| |
Collapse
|
11
|
Roy RK, Yadav R, Jain A, Tripathi V, Jain M, Singh S, Prakash H. Yin and yang of immunological memory in controlling infections: Overriding self defence mechanisms. Int Rev Immunol 2021; 41:240-252. [PMID: 33872093 DOI: 10.1080/08830185.2021.1912037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunological memory is critical for host immunity and decisive for individual to respond exponentially to previously encountered infection. Both T and B cell memory are known to orchestrate immunological memory with their central and effector memory arms contributing in prolonged immunity/defence mechanisms of host. While central memory helps in maintaining prolonged immunity for a particular infection, effector memory helps in keeping local/seasonal infection in control. In addition to this, generation of long-lived plasma cells is pivotal for generating neutralizing antibodies which can enhance recall and B cell memory to control re-infection. In view of this, scaling up memory response is one of the major objectives for the expected outcome of vaccination. In this line, this review deals with the significance of memory cells, molecular pathways of their development, maintenance, epigenetic regulation and negative regulation in various infections. We have also highlighted the significance of both T and B cell memory responses in the vaccination approaches against range of infections which is not fully explored so far.[Box: see text].
Collapse
Affiliation(s)
- Roshan Kumar Roy
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Rakhi Yadav
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Gautam Buddha Nagar, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Sandhya Singh
- Amity Institute of Physiology and Allied Sciences, Amity University, Noida, India
| | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| |
Collapse
|
12
|
Fu D, Wang Z, Tu Y, Peng F. Interactions between Biomedical Micro-/Nano-Motors and the Immune Molecules, Immune Cells, and the Immune System: Challenges and Opportunities. Adv Healthc Mater 2021; 10:e2001788. [PMID: 33506650 DOI: 10.1002/adhm.202001788] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Mobile micro- and nano-motors (MNMs) emerge as revolutionary platforms for biomedical applications, including drug delivery, biosensing, non-invasive surgery, and cancer therapy. While for applications in biomedical fields and practical clinical translation, the interactions of these untethered tiny machines with the immune system is an essential issue to be considered. This review highlights the recent approaches of surpassing immune barriers to prevent foreign motors from triggering immune responses. In addition to trials focusing on the function preservation of MNMs, examples of versatile MNMs working with the immune components (immune molecules, immune cells and the whole system) to achieve cancer immunotherapy, immunoassay, and detoxification are outlined. The immune interference part provides researchers an idea about what is the limit presented by the immune components. The coworking part suggests ways to bypass or even utilize the limit. With interdisciplinary cooperation of nanoengineering, materials science, and immunology field, the rationally designed functional MNMs are expected to provide novel opportunities for the biomedical field.
Collapse
Affiliation(s)
- Dongmei Fu
- School of Materials Science and Engineering Sun‐Yat‐sen University Guangzhou 510275 China
| | - Zhen Wang
- School of Materials Science and Engineering Sun‐Yat‐sen University Guangzhou 510275 China
| | - Yingfeng Tu
- School of Pharmaceutical Science Southern Medical University Guangzhou 510515 China
| | - Fei Peng
- School of Materials Science and Engineering Sun‐Yat‐sen University Guangzhou 510275 China
| |
Collapse
|
13
|
Jensen-Jarolim E, Roth-Walter F, Jordakieva G, Pali-Schöll I. Allergens and Adjuvants in Allergen Immunotherapy for Immune Activation, Tolerance, and Resilience. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:1780-1789. [PMID: 33753052 DOI: 10.1016/j.jaip.2020.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 11/25/2022]
Abstract
Allergen immunotherapy (AIT) is the only setting in which a vaccine is applied in patients allergic exactly to the active principle in the vaccine. Therefore, AIT products need to be not only effective but also safe. In Europe, for subcutaneous AIT, this has been achieved by the allergoid strategy in which IgE epitopes are destroyed or masked. In addition, adjuvants physically precipitate the allergen at the injection site to prevent too rapid systemic distribution. The choice of adjuvant critically shapes the efficacy and type of immune response to the injected allergen. In contrast to TH2-promoting adjuvants, others clearly counteract allergy. Marketed products in Europe are formulated with aluminum hydroxide (alum) (66.7%), microcrystalline tyrosine (16.7%), calcium phosphate (11.1%), or the TH1 adjuvant monophosphoryl lipid A (5.6%). In contrast to the European practice, in the United States mostly nonadjuvanted extracts and no allergoids are used for subcutaneous AIT, highlighting not only a regulatory but maybe a "historic preference." Sublingual AIT in the form of drops or tablets is currently applied worldwide without adjuvants, usually with higher safety but lower patient adherence than subcutaneous AIT. This article will discuss how AIT and adjuvants modulate the immune response in the treated patient toward immune activation, modulation, or-with new developments in the pipeline-immune resilience.
Collapse
Affiliation(s)
- Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria; The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University Vienna, Vienna, Austria.
| | - Franziska Roth-Walter
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria; The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University Vienna, Vienna, Austria
| | - Galateja Jordakieva
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| | - Isabella Pali-Schöll
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria; The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University Vienna, Vienna, Austria
| |
Collapse
|
14
|
Maternal schistosomiasis impairs offspring Interleukin-4 production and B cell expansion. PLoS Pathog 2021; 17:e1009260. [PMID: 33524040 PMCID: PMC7877777 DOI: 10.1371/journal.ppat.1009260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/11/2021] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies have identified a correlation between maternal helminth infections and reduced immunity to some early childhood vaccinations, but the cellular basis for this is poorly understood. Here, we investigated the effects of maternal Schistosoma mansoni infection on steady-state offspring immunity, as well as immunity induced by a commercial tetanus/diphtheria vaccine using a dual IL-4 reporter mouse model of maternal schistosomiasis. We demonstrate that offspring born to S. mansoni infected mothers have reduced circulating plasma cells and peripheral lymph node follicular dendritic cells at steady state. These reductions correlate with reduced production of IL-4 by iNKT cells, the cellular source of IL-4 in the peripheral lymph node during early life. These defects in follicular dendritic cells and IL-4 production were maintained long-term with reduced secretion of IL-4 in the germinal center and reduced generation of TFH, memory B, and memory T cells in response to immunization with tetanus/diphtheria. Using single-cell RNASeq following tetanus/diphtheria immunization of offspring, we identified a defect in cell-cycle and cell-proliferation pathways in addition to a reduction in Ebf-1, a key B-cell transcription factor, in the majority of follicular B cells. These reductions are dependent on the presence of egg antigens in the mother, as offspring born to single-sex infected mothers do not have these transcriptional defects. These data indicate that maternal schistosomiasis leads to long-term defects in antigen-induced cellular immunity, and for the first time provide key mechanistic insight into the factors regulating reduced immunity in offspring born to S. mansoni infected mothers. Maternal helminth infections are a global public health concern and correlate with altered infant immune responses to some childhood immunizations, but a mechanistic understanding of how maternal helminth infection alters the cellular immune responses of offspring is lacking. Here we establish a model of maternal Schistosoma mansoni infection in dual IL-4 reporter mice. We find that offspring born to mothers infected with S. mansoni have impaired production of IL-4 during homeostasis, and following immunization with a Tetanus-Diphtheria vaccine. We identified that iNKT cells are the dominant source of IL-4 during early life homeostasis, and that diminished IL-4 production was associated with both reduced B cell and follicular dendritic cell responses. These defects were maintained long-term, affecting memory B and T cell responses. Single-cell RNASeq analysis of immunized offspring identified egg antigen-dependent reductions in B-cell cell cycle and proliferation-related genes. These data reveal that maternal infection leads to long-lasting defects in the cellular responses to heterologous antigens and provide vital insight into the influence of maternal infection on offspring immunity.
Collapse
|
15
|
Beijnen EMS, van Haren SD. Vaccine-Induced CD8 + T Cell Responses in Children: A Review of Age-Specific Molecular Determinants Contributing to Antigen Cross-Presentation. Front Immunol 2020; 11:607977. [PMID: 33424857 PMCID: PMC7786054 DOI: 10.3389/fimmu.2020.607977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Infections are most common and most severe at the extremes of age, the young and the elderly. Vaccination can be a key approach to enhance immunogenicity and protection against pathogens in these vulnerable populations, who have a functionally distinct immune system compared to other age groups. More than 50% of the vaccine market is for pediatric use, yet to date vaccine development is often empiric and not tailored to molecular distinctions in innate and adaptive immune activation in early life. With modern vaccine development shifting from whole-cell based vaccines to subunit vaccines also comes the need for formulations that can elicit a CD8+ T cell response when needed, for example, by promoting antigen cross-presentation. While our group and others have identified many cellular and molecular determinants of successful activation of antigen-presenting cells, B cells and CD4+ T cells in early life, much less is known about the ontogeny of CD8+ T cell induction. In this review, we summarize the literature pertaining to the frequency and phenotype of newborn and infant CD8+ T cells, and any evidence of induction of CD8+ T cells by currently licensed pediatric vaccine formulations. In addition, we review the molecular determinants of antigen cross-presentation on MHC I and successful CD8+ T cell induction and discuss potential distinctions that can be made in children. Finally, we discuss recent advances in development of novel adjuvants and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M. S. Beijnen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Yang L, Jing Y, Wang W, Ying W, Lin L, Chang J, Luo L, Kang D, Jiang P, Liu J, Chen Q, Miller H, Herrada AA, Kubo M, Sun J, Liu C. DOCK2 couples with LEF-1 to regulate B cell metabolism and memory response. Biochem Biophys Res Commun 2020; 529:296-302. [PMID: 32703426 DOI: 10.1016/j.bbrc.2020.05.152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/20/2020] [Indexed: 12/31/2022]
Abstract
Dedicator of cytokinesis 2 (DOCK2) is essential for the B cell differentiation, BCR signaling and humoral immune response. However, the role of DOCK2 in the memory response of B cell is unknown. By using two DOCK2 deficient patients, we found that the memory B cells were decreased and the early activation of DOCK2 deficient memory B cells was abolished to the degree of naïve B cells due to the decreased expression of CD19 and CD21 mechanistically. Interestingly the expression of LEF-1, a negative regulator of CD21, was increased in DOCK2 deficient B cells. This was linked to the increased expression of HIF-1α and cell metabolism, which in turn affected the ER structure. Finally, the reduction of memory B cells in DOCK2 patients was due to the increased apoptosis, which might be related with the increased metabolism.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukai Jing
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Li Lin
- Department of Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Jiang Chang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Luo
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqing Kang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Panpan Jiang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ju Liu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyue Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Heather Miller
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Andrés A Herrada
- Lymphatic and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Kanagawa, Japan
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China.
| | - Chaohong Liu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Wium M, Jonker HI, Olivier AJ, Bellstedt DU, Botes A. DNA Vaccines Against Mycoplasma Elicit Humoral Immune Responses in Ostriches. Front Immunol 2019; 10:1061. [PMID: 31139188 PMCID: PMC6527592 DOI: 10.3389/fimmu.2019.01061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022] Open
Abstract
In ostriches, the population densities resulting from intensive rearing increases susceptibility to pathogens such as mycoplasmas. In addition to good management practices, vaccination offers an attractive alternative for controlling mycoplasma infections in food animals, instead of using antibiotics, which often leave unacceptable residues. The use of live attenuated vaccines, however, carry the concern of reversion to virulence or genetic recombination with field strains. Currently there are no commercially available vaccines against ostrich-infecting mycoplasmas and this study therefore set out to develop and evaluate the use of a DNA vaccine against mycoplasma infections in ostriches using an OppA protein as antigen. To this end, the oppA gene of “Mycoplasma nasistruthionis sp. nov.” str. Ms03 was cloned into two DNA vaccine expression vectors after codon correction by site-directed mutagenesis. Three-months-old ostriches were then vaccinated intramuscularly at different doses followed by a booster vaccination after 6 weeks. The ability of the DNA vaccines to elicit an anti-OppA antibody response was evaluated by ELISA using the recombinant OppA protein of Ms03 as coating antigen. A statistically significant anti-OppA antibody response could be detected after administration of a booster vaccination indicating that the OppA protein was successfully immunogenic. The responses were also both dose and vector dependent. In conclusion, the DNA vaccines were able to elicit an immune response in ostriches and can therefore be viewed as an option for the development of vaccines against mycoplasma infections.
Collapse
Affiliation(s)
- Martha Wium
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | | | - Dirk Uwe Bellstedt
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Annelise Botes
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
18
|
MohanKrishnan A, Patel H, Bhurani V, Parmar R, Yadav N, Dave N, Rana S, Gupta S, Madariya J, Vyas P, Dalai SK. Inclusion of non-target antigen in vaccination favors generation of OVA specific CD4 memory T cells. Cell Immunol 2019; 337:1-14. [PMID: 30773218 DOI: 10.1016/j.cellimm.2018.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/04/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022]
Abstract
Inducing long-lived memory T cells by sub-unit vaccines has been a challenge. Subunit vaccines containing single immunogenic target antigen from a given pathogen have been designed with the presumption of mimicking the condition associated with natural infection, but fail to induce quality memory responses. In this study, we have included non-target antigens with vaccine candidate, OVA, in the inoculum containing TLR ligands to suffice the minimal condition of pathogen to provoke immune response. We found that inclusion of immunogenic HEL (hen egg lysozyme) or poorly immunogenic MBP (Myelin Basic protein) non-target antigen enhances the OVA specific CD4 T cell responses. Interestingly, poorly immunogenic MBP was found to strongly favor the generation of OVA specific memory CD4 T cells. MBP not only improves magnitude of T cell response but also promotes the T cells to undergo higher cycles of division, one of the characteristic of central memory T cells. Inclusion of MBP with vaccine targets was also found to promote multiple cytokine producing CD4 T cells. We also found that challenge of host with non-target antigen MBP favors generation of central Memory T cells.
Collapse
Affiliation(s)
| | - Hardik Patel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Vishakha Bhurani
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Rajesh Parmar
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Naveen Yadav
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Niyam Dave
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Sonal Rana
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Somnath Gupta
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Jagdish Madariya
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Prerak Vyas
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | | |
Collapse
|
19
|
Lew MH, Noordin R, Monsur Alam Khan M, Tye GJ. Immune Stimulation of RAP domain binding protein (rTgRA15) from Toxoplasma gondii. Pathog Glob Health 2018; 112:387-394. [PMID: 30332344 DOI: 10.1080/20477724.2018.1536854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Toxoplasmosis, a parasitic disease in human and animals, is caused by Toxoplasma gondii. Our previous study has led to the discovery of a novel RAP domain binding protein antigen (TgRA15), an apparent in-vivo induced antigen recognised by antibodies in acutely infected individuals. This study is aimed to evaluate the humoral response and cytokine release elicited by recombinant TgRA15 protein in C57BL/6 mice, demonstrating its potential as a candidate vaccine for Toxoplasma gondii infection. In this study, the recombinant TgRA15 protein was expressed in Escherichia coli, purified and refolded into soluble form. C57BL/6 mice were immunised intradermally with the antigen and CASAC (Combined Adjuvant for Synergistic Activation of Cellular immunity). Antigen-specific humoral and cell-mediated responses were evaluated using Western blot and ELISA. The total IgG, IgG1 and IgG2a antibodies specific to the antigen were significantly increased in treatment group compare to control group. A higher level of interferon gamma (IFN-γ) secretion was demonstrated in the mice group receiving booster doses of rTgRA15 protein, suggesting a potential Th1-mediated response. In conclusion, the rTgRA15 protein has the potential to generate specific antibody response and elicit cellular response, thus potentially serve as a vaccine candidate against T. gondii infection.
Collapse
Affiliation(s)
- Min Han Lew
- a Institute for Research in Molecular Medicine (INFORMM) , Universiti Sains Malaysia , Minden , Penang , Malaysia
| | - Rahmah Noordin
- a Institute for Research in Molecular Medicine (INFORMM) , Universiti Sains Malaysia , Minden , Penang , Malaysia
| | - Mohammed Monsur Alam Khan
- a Institute for Research in Molecular Medicine (INFORMM) , Universiti Sains Malaysia , Minden , Penang , Malaysia
| | - Gee Jun Tye
- a Institute for Research in Molecular Medicine (INFORMM) , Universiti Sains Malaysia , Minden , Penang , Malaysia
| |
Collapse
|
20
|
Magiri R, Mutwiri G, Wilson HL. Recent advances in experimental polyphosphazene adjuvants and their mechanisms of action. Cell Tissue Res 2018; 374:465-471. [PMID: 30294754 DOI: 10.1007/s00441-018-2929-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/16/2018] [Indexed: 11/25/2022]
Abstract
Vaccination continues to be a very important public health intervention to control infectious diseases in the world. Subunit vaccines are generally poorly immunogenic and require the addition of adjuvants to induce protective immune responses. Despite their critical role in vaccines, adjuvant mechanism of action remains poorly understood, which is a barrier to the development of new, safe and effective vaccines. In the present review, we focus on recent progress in understanding the mechanisms of action of the experimental adjuvants poly[di(carboxylatophenoxy)phosphazene] (PCPP) and poly[di(sodiumcarboxylatoethyl-phenoxy)phosphazene] (PCEP) (in this review, adjuvants PCPP and PCEP are collectively referred to as PZ denoting polyphosphazenes). PZs are high molecular weight, water-soluble, synthetic polymers that have been shown to regulate innate immune response genes, induce cytokines and chemokines secretion at the site of injection and, also, induce immune cell recruitment to the site of injection to create a local immune-competent environment. There is an evidence that as well as its role as an immunoadjuvant (that activate innate immune responses), PZ can also act as a vaccine carrier. The mechanism of action that explains how PZ leads to these effects is not known and is a barrier to the development of designer vaccines.
Collapse
Affiliation(s)
- Royford Magiri
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Canada
- Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - George Mutwiri
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Canada
- Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Heather L Wilson
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Canada.
- Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada.
- VIDO-InterVac, 120 Veterinary Road, Saskatoon, Canada.
| |
Collapse
|
21
|
Bhurani V, Mohankrishnan A, Morrot A, Dalai SK. Developing effective vaccines: Cues from natural infection. Int Rev Immunol 2018; 37:249-265. [PMID: 29927676 DOI: 10.1080/08830185.2018.1471479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ultimate goal of any vaccine is to generate a heterogeneous and stable pool of memory lymphocytes. Vaccine are designed with the hope to generate antigen specific long-lived T cell responses, as it may be the case in natural infection; however, inducing such response by sub-unit vaccine has been a challenge. Although significant progress has been made, there is lot of scope for designing novel vaccine strategies by taking cues from the natural infection. This review focuses upon the roadblocks and the possible ways to overcome them leading to developing effective vaccines. Here we propose that mimicking the natural course of infection as well as the inclusion of non-target antigens in vaccine formulations might generate heterogeneous pool of memory T cells to ensure long-lived protection.
Collapse
Affiliation(s)
- Vishakha Bhurani
- a Institute of Science , Nirma University , Ahmedabad , Gujarat , India
| | | | - Alexandre Morrot
- b Faculdade de Medicina , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil.,c Instituto Oswaldo Cruz , Fiocruz , Rio de Janeiro , Brazil
| | - Sarat Kumar Dalai
- a Institute of Science , Nirma University , Ahmedabad , Gujarat , India
| |
Collapse
|
22
|
Elllis JA. Another Look at the "Dismal Science" and Jenner's Experiment. Vet Clin North Am Small Anim Pract 2017; 48:243-255. [PMID: 29195925 DOI: 10.1016/j.cvsm.2017.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The follow-up to Jenner's experiment, routine vaccination, has reduced more disease and saved more vertebrate lives than any other iatrogenic procedure by orders of magnitude. The unassailability of that potentially provocative cliché has been ciphered in human medicine, even if it is more difficult in our profession. Most public relations headaches concerning vaccines are a failure to communicate, often resulting in overly great expectations. Even in the throes of a tight appointment schedule remembering and synopsizing (for clients), some details of the dismal science can make practice great again.
Collapse
Affiliation(s)
- John A Elllis
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
23
|
Woo SJ, Kang SS, Park SM, Yang JS, Song MK, Yun CH, Han SH. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response. Mol Immunol 2015; 67:492-500. [PMID: 26278659 DOI: 10.1016/j.molimm.2015.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 01/16/2023]
Abstract
Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity.
Collapse
Affiliation(s)
- Sun-Je Woo
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Seok-Seong Kang
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Sung-Moo Park
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jae Seung Yang
- Laboratory Sciences Division, International Vaccine Institute, Seoul 151-742, Republic of Korea
| | - Man Ki Song
- Laboratory Sciences Division, International Vaccine Institute, Seoul 151-742, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea.
| |
Collapse
|
24
|
Barbosa T, Barral-Netto M. Challenges in the research and development of new human vaccines. Braz J Med Biol Res 2015; 46:103-8. [PMID: 23558931 PMCID: PMC3854358 DOI: 10.1590/1414-431x20131873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/16/2013] [Indexed: 12/22/2022] Open
Abstract
The field of vaccinology was born from the observations by the fathers of vaccination, Edward Jenner and Louis Pasteur, that a permanent, positive change in the way our bodies respond to life-threatening infectious diseases can be obtained by specific challenge with the inactivated infectious agent performed in a controlled manner, avoiding the development of clinical disease upon exposure to the virulent pathogen. Many of the vaccines still in use today were developed on an empirical basis, essentially following the paradigm established by Pasteur, "isolate, inactivate, and inject" the disease-causing microorganism, and are capable of eliciting uniform, long-term immune memory responses that constitute the key to their proven efficacy. However, vaccines for pathogens considered as priority targets of public health concern are still lacking. The literature tends to focus more often on vaccine research problems associated with specific pathogens, but it is increasingly clear that there are common bottlenecks in vaccine research, which need to be solved in order to advance the development of the field as a whole. As part of a group of articles, the objective of the present report is to pinpoint these bottlenecks, exploring the literature for common problems and solutions in vaccine research applied to different situations. Our goal is to stimulate brainstorming among specialists of different fields related to vaccine research and development. Here, we briefly summarize the topics we intend to deal with in this discussion.
Collapse
Affiliation(s)
- T Barbosa
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz, Salvador, BA, Brasil.
| | | |
Collapse
|
25
|
Cooper C, Klein M, Walmsley S, Haase D, MacKinnon-Cameron D, Marty K, Li Y, Smith B, Halperin S, Law B, Scheifele D. High-Level Immunogenicity Is Achieved Vaccine With Adjuvanted Pandemic H1N12009and Improved With Booster Dosing in a Randomized Trial of HIV-Infected Adults. HIV CLINICAL TRIALS 2015. [DOI: 10.1310/hct1301-23] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Wienands J, Engels N. The Memory Function of the B Cell Antigen Receptor. Curr Top Microbiol Immunol 2015; 393:107-121. [PMID: 26362935 DOI: 10.1007/82_2015_480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Activated B lymphocytes preserve their antigen experience by differentiating into long-lived pools of antibody-secreting plasma cells or various types of memory B cells (MBCs). The former population constantly produces serum immunoglobulins with sufficient specificity and affinity to thwart infections with recurrent pathogens. By contrast, memory B cell populations retain their antigen receptors on the cell surface and hence need pathogen-induced differentiation steps before they can actively contribute to host defense. The terminal differentiation of MBCs into antibody-secreting plasma cells is hallmarked by the absence of the lag phase characteristic for primary antibody responses. Moreover, secondary antibody responses are predominantly driven by MBCs that bear an antigen receptor of the IgG class on their surface although IgM-positive memory populations exist as well. These fundamental principles of B cell memory were enigmatic for decades. Only recently, we have begun to understand the underlying mechanisms. This review summarizes our current understanding of how different subpopulations of MBCs are generated during primary immune responses and how their functional heterogeneity on antigen recall is controlled by different signaling capabilities of B cell antigen receptor (BCR) isotypes and by the nature of the antigen.
Collapse
Affiliation(s)
- Jürgen Wienands
- Medical Faculty, Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, Humboldtallee 34, 37073, Göttingen, Germany.
| | - Niklas Engels
- Medical Faculty, Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, Humboldtallee 34, 37073, Göttingen, Germany.
| |
Collapse
|
27
|
Zaffina S, Marcellini V, Santoro AP, Scarsella M, Camisa V, Vinci MR, Musolino AM, Nicolosi L, Rosado MM, Carsetti R. Repeated vaccinations do not improve specific immune defenses against Hepatitis B in non-responder health care workers. Vaccine 2014; 32:6902-6910. [PMID: 25444815 DOI: 10.1016/j.vaccine.2014.10.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 09/22/2014] [Accepted: 10/27/2014] [Indexed: 01/28/2023]
Abstract
Hepatitis B is a major infectious occupational hazard for health care workers and can be prevented with a safe and effective vaccine. The serum titer of anti-HBsAg antibodies is the most commonly used correlate of protection and post-vaccination anti-HBsAg concentrations of ≥ 10 mIU/ml are considered protective. Subjects with post-vaccination anti-HBsAg titers of <10 mIU/ml 1-6 months post-vaccination, who tested negative for HBsAg and anti-HBc, are defined as non-responders. The question of whether non-responders should be repeatedly vaccinated is still open. The aim of the study was to (i) evaluate the distribution of lymphocyte subpopulations and the percentage of HBsAg-specific memory B cells in responders and non-responders (ii) assess whether non-responders can be induced to produce antibodies after administration of a booster dose of vaccine (iii) determine whether booster vaccination increases the number of specific memory B cells in non-responders. Combining flow-cytometry, ELISPOT and serology we tested the integrity and function of the immune system in 24 health care workers, confirmed to be non-responders after at least three vaccine injections. We compared the results with those obtained in 21 responders working in the same institution. We found that the great majority of the non-responders had a functional immune system and a preserved ability to respond to other conventional antigens. Our most important findings are that the frequency of HBsAg-specific memory B cells is comparable in non-responders and controls and that booster immunization does not lead either to antibody production or memory B cell increase in non-responders.
Collapse
Affiliation(s)
- Salvatore Zaffina
- Health Technology Assessment & Safety Research Unit and Occupational Medicine Service, Department of Laboratories, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165 Roma, Italy
| | - Valentina Marcellini
- Immunology Unit, Immunology and Pharmacotherapy Research Area, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165 Roma, Italy
| | - Anna Paola Santoro
- Health Technology Assessment & Safety Research Unit and Occupational Medicine Service, Department of Laboratories, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165 Roma, Italy
| | - Marco Scarsella
- Immunology Unit, Immunology and Pharmacotherapy Research Area, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165 Roma, Italy
| | - Vincenzo Camisa
- Health Technology Assessment & Safety Research Unit and Occupational Medicine Service, Department of Laboratories, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165 Roma, Italy
| | - Maria Rosaria Vinci
- Health Technology Assessment & Safety Research Unit and Occupational Medicine Service, Department of Laboratories, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165 Roma, Italy
| | - Anna Maria Musolino
- Paediatric Emergency Department, Department of Laboratories, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165 Roma, Italy
| | - Luciana Nicolosi
- Department of Pediatrics, Department of Laboratories, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165 Roma, Italy
| | - M Manuela Rosado
- Immunology Unit, Immunology and Pharmacotherapy Research Area, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165 Roma, Italy.
| | - Rita Carsetti
- Immunology Unit, Immunology and Pharmacotherapy Research Area, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165 Roma, Italy; Diagnostic Immunology Unit, Department of Laboratories, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165 Roma, Italy.
| |
Collapse
|
28
|
Ex vivo restimulation of human PBMC expands a CD3+CD4-CD8- γδ+ T cell population that can confound the evaluation of CD4 and CD8 T cell responses to vaccination. Clin Dev Immunol 2013; 2013:186420. [PMID: 24066003 PMCID: PMC3770040 DOI: 10.1155/2013/186420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 11/17/2022]
Abstract
The measurement of vaccine-induced humoral and CD4+ and CD8+ cellular immune responses represents an important correlate of vaccine efficacy. Accurate and reliable assays evaluating such responses are therefore critical during the clinical development phase of vaccines. T cells play a pivotal role both in coordinating the adaptive and innate immune responses and as effectors. During the assessment of cell-mediated immunity (CMI) in subjects participating in a large-scale influenza vaccine trial, we identified the expansion of an IFN-γ-producing CD3+CD4−CD8−γδ+
T cell population in the peripheral blood of 90/610 (15%) healthy subjects. The appearance of CD3+CD4−CD8−γδ+ T cells in the blood of subjects was transient and found to be independent of the study cohort, vaccine group, subject gender and ethnicity, and ex vivo restimulation conditions. Although the function of this population and relevance to vaccination are unclear, their inclusion in the total vaccine-specific T-cell response has the potential to confound data interpretation. It is thus recommended that when evaluating the induction of IFN-γ-producing CD4+ and CD8+ immune responses following vaccination, the CD3+CD4−CD8−γδ+ T cells are either excluded or separately enumerated from the overall frequency determination.
Collapse
|
29
|
Vaccination against a virus-encoded cytokine significantly restricts viral challenge. J Virol 2013; 87:11323-31. [PMID: 23946461 DOI: 10.1128/jvi.01925-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification of immune correlates of protection for viral vaccines is complicated by multiple factors, but there is general consensus on the importance of antibodies that neutralize viral attachment to susceptible cells. Development of new viral vaccines has mostly followed this neutralizing antibody paradigm, but as a recent clinical trial of human cytomegalovirus (HCMV) vaccination demonstrated, this singular approach can yield limited protective efficacy. Since HCMV devotes >50% of its coding capacity to proteins that modulate host immunity, it is hypothesized that expansion of vaccine targets to include this part of the viral proteome will disrupt viral natural history. HCMV and rhesus cytomegalovirus (RhCMV) each encode an ortholog to the cellular interleukin-10 (cIL-10) cytokine: cmvIL-10 and rhcmvIL10, respectively. Despite extensive sequence divergence from their host's cIL-10, each viral IL-10 retains nearly identical functionality to cIL-10. Uninfected rhesus macaques were immunized with engineered, nonfunctional rhcmvIL-10 variants, which were constructed by site-directed mutagenesis to abolish binding to the cIL-10 receptor. Vaccinees developed antibodies that neutralized rhcmvIL-10 function with no cross-neutralization of cIL-10. Following subcutaneous RhCMV challenge, the vaccinees exhibited both reduced RhCMV replication locally at the inoculation site and systemically and significantly reduced RhCMV shedding in bodily fluids compared to controls. Attenuation of RhCMV infection by rhcmvIL-10 vaccination argues that neutralization of viral immunomodulation may be a new vaccine paradigm for HCMV by expanding potential vaccine targets.
Collapse
|
30
|
Komegae EN, Grund LZ, Lopes-Ferreira M, Lima C. The longevity of Th2 humoral response induced by proteases natterins requires the participation of long-lasting innate-like B cells and plasma cells in spleen. PLoS One 2013; 8:e67135. [PMID: 23840604 PMCID: PMC3696013 DOI: 10.1371/journal.pone.0067135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 05/16/2013] [Indexed: 11/22/2022] Open
Abstract
The generation of long-lived antibody-secreting cells (ASC) and memory B cells are critical events for an effective vaccine and the choice of adjuvant can influence these processes. Various cellular and molecular mechanism involved in the protease action that determine Th2 responses have been identified. However, direct or indirect actions in the regulation of the induction, survival and longevity of ASC in differential compartments remain largely unknown. We investigated whether the proteolytic activity of proteins are determinant for the modulation of the memory immune response in mice, promoting the differentiation of memory B cells to terminally differentiated end stage cells. Here, we show that the proteolytic activity of Natterins, from the venom of Thalassophryne nattereri Brazilian fish, besides inducing a Th2 response with plasmatic titers of high-affinity antigen-specific IgE over extended periods is sufficient for the generation of signals that contribute to the formation of a survival niche in the spleen, essential for the longevity of the main subtype of ASC with B220neg phenotype.
Collapse
Affiliation(s)
- Evilin Naname Komegae
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lidiane Zito Grund
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Monica Lopes-Ferreira
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Carla Lima
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
31
|
Romeu B, Gonzalez E, Lastre M, Pérez O. Can mucosal adjuvants contribute to the induction of immunological memory induced via unconjugated T-cell-independent antigens? J Drug Target 2012; 20:502-8. [PMID: 22632258 DOI: 10.3109/1061186x.2012.693497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vaccination remains the most cost-effective method for preventing infectious diseases. Key to vaccine design is the development of immunological memory, which is an essential property of the adaptive immune system. Bacterial polysaccharide conjugate vaccines are the gold standard currently used to confer protection of the host by inducing humoral immune responses against T-cell-independent antigens. Conjugate vaccines are effective, but we propose that local mucosal immune responses are likely to also play an important role in inducing immunity, and they have been less explored than systemic and adaptive immune responses. Adjuvants have been used to improve the immune response to vaccine antigens, however, no mucosal adjuvant has been licensed for human use. Here we describe the recent progress in the use of mucosal adjuvants to achieve significant immune responses against T-cell-independent antigens. We also introduce the idea that studying the mechanisms that induce cell sub-populations with strong immunological memory may facilitate the design of novel vaccine formulations, in particular in cases of B-cell unresponsiveness to thymus-independent stimuli.
Collapse
Affiliation(s)
- Belkis Romeu
- Immunology Department, Research and Development, Finlay Institute, Havana, Cuba
| | | | | | | |
Collapse
|
32
|
Kremer M, Suezer Y, Volz A, Frenz T, Majzoub M, Hanschmann KM, Lehmann MH, Kalinke U, Sutter G. Critical role of perforin-dependent CD8+ T cell immunity for rapid protective vaccination in a murine model for human smallpox. PLoS Pathog 2012; 8:e1002557. [PMID: 22396645 PMCID: PMC3291617 DOI: 10.1371/journal.ppat.1002557] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 01/15/2012] [Indexed: 11/30/2022] Open
Abstract
Vaccination is highly effective in preventing various infectious diseases, whereas the constant threat of new emerging pathogens necessitates the development of innovative vaccination principles that also confer rapid protection in a case of emergency. Although increasing evidence points to T cell immunity playing a critical role in vaccination against viral diseases, vaccine efficacy is mostly associated with the induction of antibody responses. Here we analyze the immunological mechanism(s) of rapidly protective vaccinia virus immunization using mousepox as surrogate model for human smallpox. We found that fast protection against lethal systemic poxvirus disease solely depended on CD4 and CD8 T cell responses induced by vaccination with highly attenuated modified vaccinia virus Ankara (MVA) or conventional vaccinia virus. Of note, CD4 T cells were critically required to allow for MVA induced CD8 T cell expansion and perforin-mediated cytotoxicity was a key mechanism of MVA induced protection. In contrast, selected components of the innate immune system and B cell-mediated responses were fully dispensable for prevention of fatal disease by immunization given two days before challenge. In conclusion, our data clearly demonstrate that perforin-dependent CD8 T cell immunity plays a key role in MVA conferred short term protection against lethal mousepox. Rapid induction of T cell immunity might serve as a new paradigm for treatments that need to fit into a scenario of protective emergency vaccination. Prophylactic use of vaccinia virus allowed eradication of human smallpox, one of the greatest successes in medicine. However there are concerns that variola virus, the infectious agent of smallpox, may be used as bioterroristic weapon and zoonotic monkeypox or cowpox remain threatening infections in humans. Thus, new developments of safe and rapidly protecting orthopoxvirus-specific vaccines have been initiated. The candidate vaccine modified vaccinia virus Ankara (MVA) was recently shown to protect against lethal systemic poxvirus disease even when applied shortly before or after infection of mice with ectromelia virus, the probably best animal model for human smallpox. Surprisingly, little is known about the protective mechanism of early immune responses elicited against orthopoxvirus infections. Here, we used the mousepox model to analyze the immunological basis of rapidly protective MVA vaccination. In contrast to common understanding of orthopoxvirus vaccine efficacy relying mainly on antibody mediated immunity, we observed unimpaired protection also in absence of B cells. Surprisingly, rapid protection by vaccination with MVA or conventional vaccinia virus was solely dependent on T cells, irrespective of the route of injection. Thus, our study suggests a key role for T cell immunity in rapidly protective immunization against orthopoxviruses and potentially other infectious agents.
Collapse
Affiliation(s)
- Melanie Kremer
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Muenchen, Germany
| | | | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Muenchen, Germany
| | - Theresa Frenz
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and Hannover Medical School, Hannover, Germany
| | - Monir Majzoub
- Institute of Veterinary Pathology, University of Munich LMU, Muenchen, Germany
| | | | - Michael H. Lehmann
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Muenchen, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and Hannover Medical School, Hannover, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Muenchen, Germany
- * E-mail:
| |
Collapse
|
33
|
Abstract
Vaccines against microbial diseases have improved the health of millions of people. In the next decade and beyond, many conceptual and technological scientific advances offer extraordinary opportunities to expand the portfolio of immunisations against viral and bacterial diseases and to pioneer the first vaccines against human parasitic and fungal diseases. Scientists in the public and private sectors are motivated as never before to bring about these innovations in immunisation. Many societal factors threaten to compromise realisation of the public health gains that immunisation can achieve in the next decade and beyond--understanding these factors is imperative. Vaccines are typically given to healthy individuals and safety issues loom high on the list of public concerns. The public needs to regain confidence in immunisation and trust the organisations responsible for the research, development, and implementation of vaccines. In the past, by use of a judicious amalgam of knowledge and empiricism, successful vaccines were largely developed by microbiologists who identified antigens that induced immune responses to conserved pathogen components. In the future, vaccines need to be developed against deadly diseases for which this strategy is often not feasible because of the extensive antigenic variability of relevant pathogens. High microbial diversity means that immunity after natural infection is often ineffective for prevention of disease on subsequent exposure, for example in HIV infection and malaria. Additionally, vaccines need to be generated to protect the people who are most vulnerable because of age or underlying diseases. Thus, in the future, a much deeper understanding of the immunological challenges--including the diversifying role of host genetics and environmental factors, leading perhaps to more personalised approaches-will be the touchstone for rational design and development of adjuvants that result in novel safe and effective vaccines.
Collapse
Affiliation(s)
- E Richard Moxon
- University of Oxford Department of Paediatrics, John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
34
|
Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB. Age effects on B cells and humoral immunity in humans. Ageing Res Rev 2011; 10:330-5. [PMID: 20728581 DOI: 10.1016/j.arr.2010.08.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/29/2010] [Accepted: 08/04/2010] [Indexed: 12/15/2022]
Abstract
Both humoral and cellular immune responses are impaired in aged individuals, leading to decreased vaccine responses. Although T cell defects occur, defects in B cells play a significant role in age-related humoral immune changes. The ability to undergo class switch recombination (CSR), the enzyme for CSR, AID (activation-induced cytidine deaminase) and the transcription factor E47 are all decreased in aged stimulated B cells. We here present an overview of age-related changes in human B cell markers and functions, and also discuss some controversies in the field of B cell aging.
Collapse
|
35
|
Koutsonanos DG, del Pilar Martin M, Zarnitsyn VG, Jacob J, Prausnitz MR, Compans RW, Skountzou I. Serological memory and long-term protection to novel H1N1 influenza virus after skin vaccination. J Infect Dis 2011; 204:582-91. [PMID: 21685355 DOI: 10.1093/infdis/jir094] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A major goal in influenza vaccine development is induction of serological memory and cellular responses to confer long-term protection and limit virus spread after infection. Here, we investigate induction of long-lived immunity against the 2009 H1N1 virus after skin vaccination. METHODS BALB/c mice received a single dose of 5 μg inactivated A/California/04/09 virus via coated metal microneedles (MN) applied to skin or via subcutaneous injection. RESULTS MN or subcutaneous vaccination elicited similar serum IgG and hemagglutination inhibition titers and 100% protection against lethal viral challenge 6 weeks after vaccination. Six months after vaccination, the subcutaneous group exhibited a 60% decrease in functional antibody titers and extensive lung inflammation after challenge with 10 × LD(50) of homologous virus. In contrast, the MN group maintained high functional antibody titers and IFN-γ levels, inhibition of viral replication, and no signs of lung inflammation after challenge. MN vaccination conferred complete protection against lethal challenge, whereas subcutaneous vaccination induced only partial protection. These findings were further supported by high numbers of bone marrow plasma cells and spleen antibody-secreting cells detected in the MN group. CONCLUSIONS A single skin vaccination with MN induced potent long-lived immunity and improved protection against the 2009 H1N1 influenza virus, compared with subcutaneous injection.
Collapse
Affiliation(s)
- Dimitrios G Koutsonanos
- Department of Microbiology & Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Li A, Xiong S, Lin Y, Liu R, Chu Y. A high-affinity T-helper epitope enhances peptide-pulsed dendritic cell-based vaccine. DNA Cell Biol 2011; 30:883-92. [PMID: 21612399 DOI: 10.1089/dna.2011.1222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The NV epitope, a dominant helper determinant from the circumsporozoite antigen of Plasmodium falciparum, is strongly immunogenic and can provide help for cytotoxic T-lymphocyte (CTL) activation. In this study, we evaluated whether the addition of NV peptide can augment the efficacy of peptide-pulsed dendritic cell (DC) immunization in vivo. Using B16 melanoma as tumor model, we demonstrated that DCs pulsed with both NV and gp100 (a melanoma-specific antigen) peptide enhanced immune priming and protection from tumor challenge in vivo. Further, we showed the mechanisms of the NV epitope that help CTL activation; MHC-II-restricted NV peptide induced dramatically more effective helper cells, with a higher level of CD40L expression and IFN-γ production, which, in turn, more effectively conditioned DCs for CTL activation. The improved helper cells also induced greater IL-12 production by DCs, accounting for the reciprocal T-helper polarization to Th1, and increased the expression of costimulatory molecules. Collectively, these findings demonstrate that NV peptide in addition to tumor antigen-pulsed DC immunizations augment helper cell activation, which in turn promotes maturation of DC, and enhance in vivo antitumor activity.
Collapse
Affiliation(s)
- Ang Li
- Key Laboratory of Molecular Medicine of Ministry of Education, Department of Immunology of Shanghai Medical College and Institute for Immunobiology, Fudan University, Shanghai, P.R. China
| | | | | | | | | |
Collapse
|
37
|
Rosado MM, Scarsella M, Pandolfi E, Cascioli S, Giorda E, Chionne P, Madonne E, Gesualdo F, Romano M, Ausiello CM, Rapicetta M, Zanetti AR, Tozzi A, Carsetti R. Switched memory B cells maintain specific memory independently of serum antibodies: the hepatitis B example. Eur J Immunol 2011; 41:1800-8. [PMID: 21469123 DOI: 10.1002/eji.201041187] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/08/2011] [Accepted: 03/14/2011] [Indexed: 01/29/2023]
Abstract
The immunogenicity of a vaccine is conventionally measured through the level of serum Abs early after immunization, but to ensure protection specific Abs should be maintained long after primary vaccination. For hepatitis B, protective levels often decline over time, but breakthrough infections do not seem to occur. The aim of this study was to demonstrate whether, after hepatitis B vaccination, B-cell memory persists even when serum Abs decline. We compared the frequency of anti-hepatitis-specific memory B cells that remain in the blood of 99 children five years after priming with Infanrix -hexa (GlaxoSmithKline) (n=34) or with Hexavac (Sanofi Pasteur MSD) (n=65). These two vaccines differ in their ability to generate protective levels of IgG. Children with serum Abs under the protective level, <10 mIU/mL, received a booster dose of hepatitis B vaccine, and memory B cells and serum Abs were measured 2 wk later. We found that specific memory B cells had a similar frequency in all children independently of primary vaccine. Booster injection resulted in the increase of memory B cell frequencies (from 11.3 in 10(6) cells to 28.2 in 10(6) cells, p<0.01) and serum Abs (geometric mean concentration, GMC from 2.9 to 284 mIU/mL), demonstrating that circulating memory B cells effectively respond to Ag challenge even when specific Abs fall under the protective threshold.
Collapse
Affiliation(s)
- M Manuela Rosado
- Research Center Ospedale Pediatrico Bambino Gesù, IRCSS, Laboratory of Flow-Cytometry and B Cell Development, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lycke N. Is the choice of vaccine adjuvant critical for long-term memory development? Expert Rev Vaccines 2011; 9:1357-61. [PMID: 21105771 DOI: 10.1586/erv.10.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
From vaccine practice to vaccine science: the contribution of human immunology to the prevention of infectious disease. Immunol Cell Biol 2011; 89:332-9. [PMID: 21301476 DOI: 10.1038/icb.2010.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past 50 years, the practice of vaccination has reached the important goal of reducing many of the diseases that afflicted humanity in past centuries. A better understanding of immunological mechanisms underlying the induction of immune protection and the advent of new technology led to improved vaccine preparations based on purified microbial antigens and new adjuvants able to boost both humoral and cellular immune responses. Despite these tremendous advances, much remains to be done. The emergence of new pathogens, the spread of strains resistant to antibiotics and the enormous increase in latent infections are urgently demanding more and more effective vaccines. Understanding the immunological mechanisms that mediate resistance against infections would certainly provide valuable information for the design of new candidate vaccines.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Following the evidence that T-cell responses are crucial in the control of HIV-1 infection, vaccines targeting T-cell responses were tested in recent clinical trials. However, these vaccines showed a lack of efficacy. This review attempts to define the qualitative and quantitative features that are desirable for T-cell-induced responses by vaccines. We also describe strategies that could lead to achievement of this goal. RECENT FINDINGS Using the yellow fever vaccine as a benchmark of an efficient vaccine, recent studies identified factors of immune protection and more importantly innate immune pathways needed for the establishment of long-term protective adaptive immunity. SUMMARY To prevent or control HIV-1 infection, a vaccine must induce efficient and persistent antigen-specific T cells endowed with mucosal homing capacity. Such cells should have the capability to counteract HIV-1 diversity and its rapid spread from the initial site of infection. To achieve this goal, the activation of a diversified innate immune response is critical. New systems biology approaches will provide more precise correlates of immune protection that will pave the way for new approaches in T-cell-based vaccines.
Collapse
|
41
|
Bemark M, Bergqvist P, Stensson A, Holmberg A, Mattsson J, Lycke NY. A Unique Role of the Cholera Toxin A1-DD Adjuvant for Long-Term Plasma and Memory B Cell Development. THE JOURNAL OF IMMUNOLOGY 2011; 186:1399-410. [PMID: 21199899 DOI: 10.4049/jimmunol.1002881] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Mats Bemark
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
42
|
Mucosal adjuvants and long-term memory development with special focus on CTA1-DD and other ADP-ribosylating toxins. Mucosal Immunol 2010; 3:556-66. [PMID: 20844480 DOI: 10.1038/mi.2010.54] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ultimate goal for vaccination is to stimulate protective immunological memory. Protection against infectious diseases not only relies on the magnitude of the humoral immune response, but more importantly on the quality and longevity of it. Adjuvants are critical components of most non-living vaccines. Although little attention has been given to qualitative aspects of the choice of vaccine adjuvant, emerging data demonstrate that this function may be central to vaccine efficacy. In this review we describe efforts to understand more about how adjuvants influence qualitative aspects of memory development. We describe recent advances in understanding how vaccines induce long-lived plasma and memory B cells, and focus our presentation on the germinal center reaction. As mucosal vaccination requires powerful adjuvants, we have devoted much attention to the adenosine diphosphate (ADP)-ribosylating cholera toxin and the CTA1-DD adjuvants as examples of how mucosal adjuvants can influence induction of long-term memory.
Collapse
|
43
|
Correlates of protection induced by vaccination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1055-65. [PMID: 20463105 DOI: 10.1128/cvi.00131-10] [Citation(s) in RCA: 1237] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper attempts to summarize current knowledge about immune responses to vaccines that correlate with protection. Although the immune system is redundant, almost all current vaccines work through antibodies in serum or on mucosa that block infection or bacteremia/viremia and thus provide a correlate of protection. The functional characteristics of antibodies, as well as quantity, are important. Antibody may be highly correlated with protection or synergistic with other functions. Immune memory is a critical correlate: effector memory for short-incubation diseases and central memory for long-incubation diseases. Cellular immunity acts to kill or suppress intracellular pathogens and may also synergize with antibody. For some vaccines, we have no true correlates, but only useful surrogates, for an unknown protective response.
Collapse
|
44
|
Moore GE, HogenEsch H. Adverse Vaccinal Events in Dogs and Cats. Vet Clin North Am Small Anim Pract 2010; 40:393-407. [DOI: 10.1016/j.cvsm.2010.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
45
|
Shaping successful and unsuccessful CD8 T cell responses following infection. J Biomed Biotechnol 2010; 2010:159152. [PMID: 20379363 PMCID: PMC2850140 DOI: 10.1155/2010/159152] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 01/22/2010] [Indexed: 01/05/2023] Open
Abstract
CD8 T cells play a vital role in the immunological protection against intracellular pathogens. Ideally, robust effector responses are induced, which eradicate the pathogen, and durable memory CD8 T cells are also established, which help confer protection against subsequent reinfection. The quality and magnitude of these responses is dictated by multiple factors, including their initial interactions with professional antigen-presenting cells, as well as the cytokine milieu and availability of CD4 T cell help. These factors set the transcriptional landscape of the responding T cells, which in turn influences their phenotypic and functional attributes as well as ultimate fate. Under certain conditions, such as during chronic infections, the development of these usually successful responses becomes subverted. Here we discuss advances in our understanding of the cellular and molecular determinants of T cell quality, and the formation of effector, memory, and exhausted CD8 T cells, during acute and chronic infections.
Collapse
|
46
|
Sivick KE, Mobley HLT. Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect Immun 2010; 78:568-85. [PMID: 19917708 PMCID: PMC2812207 DOI: 10.1128/iai.01000-09] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) is a substantial economic and societal burden-a formidable public health issue. Symptomatic UTI causes significant discomfort in infected patients, results in lost productivity, predisposes individuals to more serious infections, and usually necessitates antibiotic therapy. There is no licensed vaccine available for prevention of UTI in humans in the United States, likely due to the challenge of targeting a relatively heterogeneous group of pathogenic strains in a unique physiological niche. Despite significant advances in the understanding of UPEC biology, mechanistic details regarding the host response to UTI and full comprehension of genetic loci that influence susceptibility require additional work. Currently, there is an appreciation for the role of classic innate immune responses-from pattern receptor recognition to recruitment of phagocytic cells-that occur during UPEC-mediated UTI. There is, however, a clear disconnect regarding how factors involved in the innate immune response to UPEC stimulate acquired immunity that facilitates enhanced clearance upon reinfection. Unraveling the molecular details of this process is vital in the development of a successful vaccine for prevention of human UTI. Here, we survey the current understanding of host responses to UPEC-mediated UTI with an eye on molecular and cellular factors whose activity may be harnessed by a vaccine that stimulates lasting and sterilizing immunity.
Collapse
Affiliation(s)
- Kelsey E. Sivick
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|