1
|
Dendritic cells in systemic lupus erythematosus: From pathogenesis to therapeutic applications. J Autoimmun 2022; 132:102856. [DOI: 10.1016/j.jaut.2022.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
|
2
|
Wu L, Xu Y, Zhao H, Zhou Y, Chen Y, Yang S, Lei J, Zhang J, Wang J, Wu Y, Li Y. FcγRIIB potentiates differentiation of myeloid-derived suppressor cells to mediate tumor immunoescape. Am J Cancer Res 2022; 12:842-858. [PMID: 34976216 PMCID: PMC8692894 DOI: 10.7150/thno.66575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/22/2021] [Indexed: 11/05/2022] Open
Abstract
Background: FcγRIIB, the sole inhibitory receptor of the Fc gamma receptor family, plays pivotal roles in innate and adaptive immune responses. However, the expression and function of FcγRIIB in myeloid-derived suppressor cells (MDSCs) remains unknown. This study aimed to investigate whether and how FcγRIIB regulates the immunosuppressive activity of MDSCs during cancer development. Methods: The MC38 and B16-F10 tumor-bearing mouse models were established to investigate the role of FcγRIIB during tumor progression. FcγRIIB-deficient mice, adoptive cell transfer, mRNA-sequencing and flow cytometry analysis were used to assess the role of FcγRIIB on immunosuppressive activity and differentiation of MDSCs. Results: Here we show that FcγRIIB was upregulated in tumor-infiltrated MDSCs. FcγRIIB-deficient mice showed decreased accumulation of MDSCs in the tumor microenvironment (TME) compared with wild-type mice. FcγRIIB was required for the differentiation and immunosuppressive activity of MDSCs. Mechanistically, tumor cell-derived granulocyte-macrophage colony stimulating factor (GM-CSF) increased the expression of FcγRIIB on hematopoietic progenitor cells (HPCs) by activating specificity protein 1 (Sp1), subsequently FcγRIIB promoted the generation of MDSCs from HPCs via Stat3 signaling. Furthermore, blockade of Sp1 dampened MDSC differentiation and infiltration in the TME and enhanced the anti-tumor therapeutic efficacy of gemcitabine. Conclusion: These results uncover an unrecognized regulatory role of the FcγRIIB in abnormal differentiation of MDSCs during cancer development and suggest a potential therapeutic target for anti-tumor therapy.
Collapse
|
3
|
Pabón-Porras MA, Molina-Ríos S, Flórez-Suárez JB, Coral-Alvarado PX, Méndez-Patarroyo P, Quintana-López G. Rheumatoid arthritis and systemic lupus erythematosus: Pathophysiological mechanisms related to innate immune system. SAGE Open Med 2019; 7:2050312119876146. [PMID: 35154753 PMCID: PMC8826259 DOI: 10.1177/2050312119876146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis and systemic lupus erythematosus are two highly prevalent autoimmune diseases that generate disability and low quality of life. The innate immune system, a long-forgotten issue in autoimmune diseases, is becoming increasingly important and represents a new focus for the treatment of these entities. This review highlights the role that innate immune system plays in the pathophysiology of rheumatoid arthritis and systemic lupus erythematosus. The role of the innate immune system in rheumatoid arthritis and systemic lupus erythematosus pathophysiology is not only important in early stages but is essential to maintain the immune response and to allow disease progression. In rheumatoid arthritis, genetic and environmental factors are involved in the initial stimulation of the innate immune response in which macrophages are the main participants, as well as fibroblast-like synoviocytes. In systemic lupus erythematosus, all the cells contribute to the inflammatory response, but the complement system is the major effector of the inflammatory process. Detecting alterations in the normal function of these cells, besides its contribution to the understanding of the pathophysiology of autoimmune diseases, could help to establish new treatment strategies for these diseases.
Collapse
Affiliation(s)
| | | | - Jorge Bruce Flórez-Suárez
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia
| | - Paola Ximena Coral-Alvarado
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| | - Paul Méndez-Patarroyo
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| | - Gerardo Quintana-López
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.,Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
4
|
Roghanian A, Stopforth RJ, Dahal LN, Cragg MS. New revelations from an old receptor: Immunoregulatory functions of the inhibitory Fc gamma receptor, FcγRIIB (CD32B). J Leukoc Biol 2018; 103:1077-1088. [PMID: 29406570 DOI: 10.1002/jlb.2mir0917-354r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/03/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022] Open
Abstract
The Fc gamma receptor IIB (FcγRIIB/CD32B) was generated million years ago during evolution. It is the sole inhibitory receptor for IgG, and has long been associated with the regulation of humoral immunity and innate immune homeostasis. However, new and surprising functions of FcγRIIB are emerging. In particular, FcγRIIB has been shown to perform unexpected activatory roles in both immune-signaling and monoclonal antibody (mAb) immunotherapy. Furthermore, although ITIM signaling is an integral part of FcγRIIB regulatory activity, it is now clear that inhibition/activation of immune responses can occur independently of the ITIM. In light of these new findings, we present an overview of the established and noncanonical functions of FcγRIIB and discuss how this knowledge might be exploited therapeutically.
Collapse
Affiliation(s)
- Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Richard J Stopforth
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Lekh N Dahal
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
5
|
Hu L, Hu X, Long K, Gao C, Dong HL, Zhong Q, Gao XM, Gong FY. Extraordinarily potent proinflammatory properties of lactoferrin-containing immunocomplexes against human monocytes and macrophages. Sci Rep 2017; 7:4230. [PMID: 28652573 PMCID: PMC5484712 DOI: 10.1038/s41598-017-04275-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/14/2017] [Indexed: 12/25/2022] Open
Abstract
Lactoferrin (LTF), an important first line defense molecule against infection, is a common target for humoral autoimmune reactions in humans. Since LTF is a multifunctional protein capable of activating innate immune cells via various surface receptors, we hypothesized that LTF-containing immune complexes (ICs) (LTF-ICs), likely formed in patients with high titer anti-LTF autoantibodies, could possess unique monocyte/macrophage-activating properties compared with other ICs. ELISA analysis on serum samples from rheumatoid arthritis (RA) patients (n = 80) and healthy controls (n = 35) for anti-LTF autoantibodies confirmed a positive correlation between circulating LTF-specific IgG and RA. ICs between human LTF and LTF-specific IgG purified from patient sera or immunized rabbits and mice, but not control ICs, LTF or Abs alone, elicited strong production of TNF-α and IL-1β by freshly fractionated human peripheral blood monocytes and monocytes-derived macrophages. Furthermore, LTF-ICs utilized both membrane-anchored CD14 and CD32a (FcγRIIa) to trigger monocyte activation in an internalization-, Toll-like receptor (TLR)4- and TLR9-dependent manner, and also that LTF-IC-induced cytokine production was blocked by specific inhibitors of caspase-1, NF-κB and MAPK. These results uncover a possible pathway for LTF-ICs perpetuating local inflammation and contributing to the pathogenesis of autoimmune diseases by triggering activation of infiltrating monocytes or tissue macrophages in vivo.
Collapse
Affiliation(s)
- Lulu Hu
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiaomin Hu
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Kai Long
- Department of Immunology, Peking University Health Science Center, Beijing, China.,Department of Physiology, Jiujiang College, Jiangxi Province, China
| | - Chenhui Gao
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Hong-Liang Dong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Qiao Zhong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| | - Fang-Yuan Gong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Sniping the scout: Targeting the key molecules in dendritic cell functions for treatment of autoimmune diseases. Pharmacol Res 2016; 107:27-41. [DOI: 10.1016/j.phrs.2016.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
|
7
|
Breakdown of Immune Tolerance in Systemic Lupus Erythematosus by Dendritic Cells. J Immunol Res 2016; 2016:6269157. [PMID: 27034965 PMCID: PMC4789470 DOI: 10.1155/2016/6269157] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/15/2016] [Accepted: 02/07/2016] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DC) play an important role in the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease with multiple tissue manifestations. In this review, we summarize recent studies on the roles of conventional DC and plasmacytoid DC in the development of both murine lupus and human SLE. In the past decade, studies using selective DC depletions have demonstrated critical roles of DC in lupus progression. Comprehensive in vitro and in vivo studies suggest activation of DC by self-antigens in lupus pathogenesis, followed by breakdown of immune tolerance to self. Potential treatment strategies targeting DC have been developed. However, many questions remain regarding the mechanisms by which DC modulate lupus pathogenesis that require further investigations.
Collapse
|
8
|
Mu Q, Zhang H, Luo XM. SLE: Another Autoimmune Disorder Influenced by Microbes and Diet? Front Immunol 2015; 6:608. [PMID: 26648937 PMCID: PMC4663251 DOI: 10.3389/fimmu.2015.00608] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease. Despite years of study, the etiology of SLE is still unclear. Both genetic and environmental factors have been implicated in the disease mechanisms. In the past decade, a growing body of evidence has indicated an important role of gut microbes in the development of autoimmune diseases, including type 1 diabetes, rheumatoid arthritis, and multiple sclerosis. However, such knowledge on SLE is little, though we have already known that environmental factors can trigger the development of lupus. Several recent studies have suggested that alterations of the gut microbial composition may be correlated with SLE disease manifestations, while the exact roles of either symbiotic or pathogenic microbes in this disease remain to be explored. Elucidation of the roles of gut microbes - as well as the roles of diet that can modulate the composition of gut microbes - in SLE will shed light on how this autoimmune disorder develops, and provide opportunities for improved biomarkers of the disease and the potential to probe new therapies. In this review, we aim to compile the available evidence on the contributions of diet and gut microbes to SLE occurrence and pathogenesis.
Collapse
Affiliation(s)
- Qinghui Mu
- Department of Biomedical Sciences and Pathobiology, Virginia Tech , Blacksburg, VA , USA
| | - Husen Zhang
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, VA , USA
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Tech , Blacksburg, VA , USA
| |
Collapse
|
9
|
Regulatory dendritic cells in autoimmunity: A comprehensive review. J Autoimmun 2015; 63:1-12. [PMID: 26255250 DOI: 10.1016/j.jaut.2015.07.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/17/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APC) with significant phenotypic heterogeneity and functional plasticity. DCs play crucial roles in initiating effective adaptive immune responses for elimination of invading pathogens and also in inducing immune tolerance toward harmless components to maintain immune homeostasis. The regulatory capacity of DCs depends on their immature state and distinct subsets, yet not restricted to the immature state and one specialized subset. The tolerogenicity of DC is controlled by a complex network of environmental signals and cellular intrinsic mechanisms. Regulatory DCs play an important role in the maintenance of immunological tolerance via the induction of T cell unresponsiveness or apoptosis, and generation of regulatory T cells. DCs play essential roles in driving autoimmunity via promoting the activation of effector T cells such as T helper 1 and T helper 17 cells, and/or suppressing the generation of regulatory T cells. Besides, a breakdown of DCs-mediated tolerance due to abnormal environmental signals or breakdown of intrinsic regulatory mechanisms is closely linked with the pathogenesis of autoimmune diseases. Novel immunotherapy taking advantage of the tolerogenic potential of regulatory DCs is being developed for treatment of autoimmune diseases. In this review, we will describe the current understanding on the generation of regulatory DC and the role of regulatory DCs in promoting tolerogenic immune responses and suppressing autoimmune responses. The emerging roles of DCs dysfunction in the pathogenesis of autoimmune diseases and the potential application of regulatory DCs in the treatment of autoimmune diseases will also be discussed.
Collapse
|
10
|
Jiang W, Zhang L, Lang R, Li Z, Gilkeson G. Sex differences in monocyte activation in systemic lupus erythematosus (SLE). PLoS One 2014; 9:e114589. [PMID: 25485543 PMCID: PMC4259347 DOI: 10.1371/journal.pone.0114589] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/06/2014] [Indexed: 01/14/2023] Open
Abstract
Introduction TLR7/8 and TLR9 signaling pathways have been extensively studied in systemic lupus erythematosus (SLE) as possible mediators of disease. Monocytes are a major source of pro-inflammatory cytokines and are understudied in SLE. In the current project, we investigated sex differences in monocyte activation and its implications in SLE disease pathogenesis. Methods Human blood samples from 27 healthy male controls, 32 healthy female controls, and 25 female patients with SLE matched for age and race were studied. Monocyte activation was tested by flow cytometry and ELISA, including subset proportions, CD14, CD80 and CD86 expression, the percentage of IL-6-producing monocytes, plasma levels of sCD14 and IL-6, and urine levels of creatinine. Results Monocytes were significantly more activated in women compared to men and in patients with SLE compared to controls in vivo. We observed increased proportions of non-classic monocytes, decreased proportions of classic monocytes, elevated levels of plasma sCD14 as well as reduced surface expression of CD14 on monocytes comparing women to men and lupus patients to controls. Plasma levels of IL-6 were positively related to sCD14 and serum creatinine. Conclusion Monocyte activation and TLR4 responsiveness are altered in women compared to men and in patients with SLE compared to controls. These sex differences may allow persistent systemic inflammation and resultant enhanced SLE susceptibility.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, United States of America
- * E-mail:
| | - Lumin Zhang
- Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, United States of America
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zihai Li
- Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, United States of America
| | - Gary Gilkeson
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, United States of America
| |
Collapse
|
11
|
Rogers NM, Ferenbach DA, Isenberg JS, Thomson AW, Hughes J. Dendritic cells and macrophages in the kidney: a spectrum of good and evil. Nat Rev Nephrol 2014; 10:625-43. [PMID: 25266210 PMCID: PMC4922410 DOI: 10.1038/nrneph.2014.170] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Renal dendritic cells (DCs) and macrophages represent a constitutive, extensive and contiguous network of innate immune cells that provide sentinel and immune-intelligence activity; they induce and regulate inflammatory responses to freely filtered antigenic material and protect the kidney from infection. Tissue-resident or infiltrating DCs and macrophages are key factors in the initiation and propagation of renal disease, as well as essential contributors to subsequent tissue regeneration, regardless of the aetiological and pathogenetic mechanisms. The identification, and functional and phenotypic distinction of these cell types is complex and incompletely understood, and the same is true of their interplay and relationships with effector and regulatory cells of the adaptive immune system. In this Review, we discuss the common and distinct characteristics of DCs and macrophages, as well as key advances that have identified the renal-specific functions of these important phagocytic, antigen-presenting cells, and their roles in potentiating or mitigating intrinsic kidney disease. We also identify remaining issues that are of priority for further investigation, and highlight the prospects for translational and therapeutic application of the knowledge acquired.
Collapse
Affiliation(s)
- Natasha M Rogers
- Vascular Medicine Institute and Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, W1544 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - David A Ferenbach
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jeffrey S Isenberg
- Vascular Medicine Institute and Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, W1544 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Angus W Thomson
- Vascular Medicine Institute and Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, W1544 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Jeremy Hughes
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
12
|
Jiang W, Gilkeson G. Sex Differences in monocytes and TLR4 associated immune responses; implications for systemic lupus erythematosus (SLE). ACTA ACUST UNITED AC 2014; 1:1. [PMID: 25309746 DOI: 10.7243/2055-2394-1-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has been shown that TLR7 and TLR9 signaling play a role in SLE pathogenesis. Our recent study revealed that estrogen receptor α knockout mice have impaired inflammatory responses to TLR3, TLR4, TLR7 and TLR9 ligand stimulation in DCs, B cells and whole spleen cells. These findings indicate that estrogen receptor mediated signaling may impact universal TLR responsiveness. Whether estrogen has a direct or indirect effect on TLR responsiveness by immune cells is not clear. There is evidence of a role of TLR4 in SLE disease pathogenesis, such as the kidney damage, the induction of CD40 and autoantibodies, the suppression of regulatory T cells, and the role of pro-inflammatory cytokines (e.g., IL-6, IL-1β, TNF-α) in SLE pathogenesis that can be induced by TLR4-mediated monocyte activation, suggesting that TLR4 and TLR4 responsiveness are also important for SLE disease. This review will focus on TLR4 responses and monocytes, which are understudied in systemic autoimmune diseases such as SLE.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina
| | - Gary Gilkeson
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina
| |
Collapse
|
13
|
Majai G, Kiss E, Tarr T, Zahuczky G, Hartman Z, Szegedi G, Fésüs L. Decreased apopto-phagocytic gene expression in the macrophages of systemic lupus erythematosus patients. Lupus 2013; 23:133-45. [PMID: 24285095 DOI: 10.1177/0961203313511557] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The clearance of apoptotic cells has an important role in the maintenance of tissue homeostasis and in the protection of tissues from the inflammatory and immunogenic contents of dying cells. A defect in the recognition and phagocytosis of apoptotic cells contributes to the development of chronic inflammation and autoimmune disorders. We have observed that compared with healthy donors, differentiated macrophages from patients with untreated systemic lupus erythematosus (SLE) showed decreased phagocytosis of apoptotic neutrophils. A TaqMan Low Density Array was designed to determine the mRNA expression levels of 95 apopto-phagocytic genes in differentiated non-phagocytosing and phagocytosing macrophages. In the macrophages of clinically and immunoserologically active SLE patients, 39 genes were expressed at lower levels than in the control macrophages. When inactive patients were compared with those with minor immunoserological abnormalities or patients in an immunoserologically active state, a relationship was observed between the altered gene expression profile and the disease state. In the macrophages of patients with engulfing apoptotic cells, an upregulation of genes involved in inflammation, autophagy, and signaling was observed. These results indicate that novel immune-pathological pathways are involved in SLE and suggest targets for potential therapeutic modulation.
Collapse
Affiliation(s)
- G Majai
- 1Department of Biochemistry and Molecular Biology, Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
14
|
Mimoto F, Katada H, Kadono S, Igawa T, Kuramochi T, Muraoka M, Wada Y, Haraya K, Miyazaki T, Hattori K. Engineered antibody Fc variant with selectively enhanced FcγRIIb binding over both FcγRIIa(R131) and FcγRIIa(H131). Protein Eng Des Sel 2013; 26:589-98. [PMID: 23744091 PMCID: PMC3785249 DOI: 10.1093/protein/gzt022] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/24/2013] [Accepted: 05/08/2013] [Indexed: 12/02/2022] Open
Abstract
Engaging inhibitory FcγRIIb by Fc region has been recently reported to be an attractive approach for improving the efficacy of antibody therapeutics. However, the previously reported S267E/L328F variant with enhanced binding affinity to FcγRIIb, also enhances binding affinity to FcγRIIa(R131) allotype to a similar degree because FcγRIIb and FcγRIIa(R131) are structurally similar. In this study, we applied comprehensive mutagenesis and structure-guided design based on the crystal structure of the Fc/FcγRIIb complex to identify a novel Fc variant with selectively enhanced FcγRIIb binding over both FcγRIIa(R131) and FcγRIIa(H131). This novel variant has more than 200-fold stronger binding affinity to FcγRIIb than wild-type IgG1, while binding affinity to FcγRIIa(R131) and FcγRIIa(H131) is comparable with or lower than wild-type IgG1. This selectivity was achieved by conformational change of the C(H)2 domain by mutating Pro to Asp at position 238. Fc variant with increased binding to both FcγRIIb and FcγRIIa induced platelet aggregation and activation in an immune complex form in vitro while our novel variant did not. When applied to agonistic anti-CD137 IgG1 antibody, our variant greatly enhanced the agonistic activity. Thus, the selective enhancement of FcγRIIb binding achieved by our Fc variant provides a novel tool for improving the efficacy of antibody therapeutics.
Collapse
Affiliation(s)
| | | | | | - T. Igawa
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Callaghan CJ, Win TS, Motallebzadeh R, Conlon TM, Chhabra M, Harper I, Sivaganesh S, Bolton EM, Bradley JA, Brownlie RJ, Smith KGC, Pettigrew GJ. Regulation of allograft survival by inhibitory FcγRIIb signaling. THE JOURNAL OF IMMUNOLOGY 2012; 189:5694-702. [PMID: 23150718 DOI: 10.4049/jimmunol.1202084] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fcγ receptors (FcγR) provide important immunoregulation. Targeting inhibitory FcγRIIb may therefore prolong allograft survival, but its role in transplantation has not been addressed. FcγRIIb signaling was examined in murine models of acute or chronic cardiac allograft rejection by transplanting recipients that either lacked FcγRIIb expression (FcγRIIb(-/-)) or overexpressed FcγRIIb on B cells (B cell transgenic [BTG]). Acute heart allograft rejection occurred at the same tempo in FcγRIIb(-/-) C57BL/6 (B6) recipients as wild type recipients, with similar IgG alloantibody responses. In contrast, chronic rejection of MHC class II-mismatched bm12 cardiac allografts was accelerated in FcγRIIb(-/-) mice, with development of more severe transplant arteriopathy and markedly augmented effector autoantibody production. Autoantibody production was inhibited and rejection was delayed in BTG recipients. Similarly, whereas MHC class I-mismatched B6.K(d) hearts survived indefinitely and remained disease free in B6 mice, much stronger alloantibody responses and progressive graft arteriopathy developed in FcγRIIb(-/-) recipients. Notably, FcγRIIb-mediated inhibition of B6.K(d) heart graft rejection was abrogated by increasing T cell help through transfer of additional H2.K(d)-specific CD4 T cells. Thus, inhibitory FcγRIIb signaling regulates chronic but not acute rejection, most likely because the supra-optimal helper CD4 T cell response in acute rejection overcomes FcγRIIb-mediated inhibition of the effector B cell population. Immunomodulation of FcγRIIb in clinical transplantation may hold potential for inhibiting progression of transplant arteriopathy and prolonging transplant survival.
Collapse
Affiliation(s)
- Chris J Callaghan
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Genetics of SLE: functional relevance for monocytes/macrophages in disease. Clin Dev Immunol 2012; 2012:582352. [PMID: 23227085 PMCID: PMC3511832 DOI: 10.1155/2012/582352] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 08/24/2012] [Accepted: 09/25/2012] [Indexed: 01/13/2023]
Abstract
Genetic studies in the last 5 years have greatly facilitated our understanding of how the dysregulation of diverse components of the innate immune system contributes to pathophysiology of SLE. A role for macrophages in the pathogenesis of SLE was first proposed as early as the 1980s following the discovery that SLE macrophages were defective in their ability to clear apoptotic cell debris, thus prolonging exposure of potential autoantigens to the adaptive immune response. More recently, there is an emerging appreciation of the contribution both monocytes and macrophages play in orchestrating immune responses with perturbations in their activation or regulation leading to immune dysregulation. This paper will focus on understanding the relevance of genes identified as being associated with innate immune function of monocytes and macrophages and development of SLE, particularly with respect to their role in (1) immune complex (IC) recognition and clearance, (2) nucleic acid recognition via toll-like receptors (TLRs) and downstream signalling, and (3) interferon signalling. Particular attention will be paid to the functional consequences these genetic associations have for disease susceptibility or pathogenesis.
Collapse
|
17
|
Schmidt SV, Nino-Castro AC, Schultze JL. Regulatory dendritic cells: there is more than just immune activation. Front Immunol 2012; 3:274. [PMID: 22969767 PMCID: PMC3432880 DOI: 10.3389/fimmu.2012.00274] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/10/2012] [Indexed: 12/11/2022] Open
Abstract
The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34(+) stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic conditions such as chronic inflammation or malignancies.
Collapse
Affiliation(s)
- Susanne V Schmidt
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn Bonn, Germany
| | | | | |
Collapse
|
18
|
Mekhaiel DNA, Daniel-Ribeiro CT, Cooper PJ, Pleass RJ. Do regulatory antibodies offer an alternative mechanism to explain the hygiene hypothesis? Trends Parasitol 2011; 27:523-9. [PMID: 21943801 DOI: 10.1016/j.pt.2011.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 12/24/2022]
Abstract
The 'hygiene hypothesis', or lack of microbial and parasite exposure during early life, is postulated as an explanation for the recent increase in autoimmune and allergic diseases in developed countries. The favored mechanism is that microbial and parasite-derived products interact directly with pathogen recognition receptors to subvert proinflammatory signaling via T regulatory cells, thereby inducing anti-inflammatory effects and control of autoimmune disease. Parasites, such as helminths, are considered to have a major role in the induction of immune regulatory mechanisms among children living in developing countries. Invoking Occam's razor, we believe we can select an alternative mechanism to explain the hygiene hypothesis, based on antibody-mediated inhibition of immune responses that may more simply explain the available evidence.
Collapse
Affiliation(s)
- David N A Mekhaiel
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | | | | |
Collapse
|