1
|
Caudell DL, Dugan GO, Babitzki G, Schubert C, Braendli-Baiocco A, Wasserman K, Acona G, Stern M, Passioukov A, Cline JM, Charo J. Systemic immune response to a CD40 agonist antibody in nonhuman primates. J Leukoc Biol 2024; 115:1084-1093. [PMID: 38372596 DOI: 10.1093/jleuko/qiae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/13/2023] [Accepted: 11/30/2023] [Indexed: 02/20/2024] Open
Abstract
The cell surface molecule CD40 is a member of the tumor necrosis factor receptor superfamily and is broadly expressed by immune cells including B cells, dendritic cells, and monocytes, as well as other normal cells and some malignant cells. CD40 is constitutively expressed on antigen-presenting cells, and ligation promotes functional maturation, leading to an increase in antigen presentation and cytokine production, and a subsequent increase in the activation of antigen-specific T cells. It is postulated that CD40 agonists can mediate both T cell-dependent and T cell-independent immune mechanisms of tumor regression in mice and patients. In addition, it is believed that CD40 activation also promotes apoptotic death of tumor cells and that the presence of the molecule on the surface of cancer cells is an important factor in the generation of tumor-specific T cell responses that contribute to tumor cell elimination. Notably, CD40 agonistic therapies were evaluated in patients with solid tumors and hematologic malignancies with reported success as a single agent. Preclinical studies have shown that subcutaneous administration of CD40 agonistic antibodies reduces systemic toxicity and elicits a stronger and localized pharmacodynamic response. Two independent studies in cynomolgus macaque (Macaca fascicularis) were performed to further evaluate potentially immunotoxicological effects associated with drug-induced adverse events seen in human subjects. Studies conducted in monkeys showed that when selicrelumab is administered at doses currently used in clinical trial patients, via subcutaneous injection, it is safe and effective at stimulating a systemic immune response.
Collapse
Affiliation(s)
- David L Caudell
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - Gregory O Dugan
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - Galina Babitzki
- Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Diagnostics GmbH, F. Hoffmann-La Roche AG, Staffelseestrasse 2-8, 81477 Munich, Germany
| | - Christine Schubert
- Pharmaceutical Research and Early Development, Pharmaceutical Science, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Annamaria Braendli-Baiocco
- Pharmaceutical Research and Early Development, Pharmaceutical Science, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Ken Wasserman
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, 3900 Reservoir Rd NW #337, Washington, DC 20007, United States
| | - Gonzalo Acona
- Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Zurich, F. Hoffmann-La Roche AG, Wagistrasse 10, 8952 Schlieren, Zurich, Switzerland
| | - Martin Stern
- Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Alexandre Passioukov
- Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Zurich, F. Hoffmann-La Roche AG, Wagistrasse 10, 8952 Schlieren, Zurich, Switzerland
| | - J Mark Cline
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - Jehad Charo
- Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Zurich, F. Hoffmann-La Roche AG, Wagistrasse 10, 8952 Schlieren, Zurich, Switzerland
| |
Collapse
|
2
|
Goyal P, Malviya R. Advances in nuclei targeted delivery of nanoparticles for the management of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188881. [PMID: 36965678 DOI: 10.1016/j.bbcan.2023.188881] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
A carrier is inserted into the appropriate organelles (nucleus) in successful medication transport, crucial to achieving very effective illness treatment. Cell-membrane targeting is the major focus of using nuclei to localize delivery. It has been demonstrated that high quantities of anticancer drugs can be injected directly into the nuclei of cancer cells, causing the cancer cells to die and increasing the effectiveness of chemotherapy. There are several effective ways to functionalize Nanoparticles (NPs), including changing their chemical makeup or attaching functional groups to their surface to increase their ability to target organelles. To cause tumor cells to apoptosis, released medicines must engage with molecular targets on particular organelles when their concentration is high enough. Targeted medication delivery studies will increasingly focus on organelle-specific delivery.
Collapse
Affiliation(s)
- Priyanshi Goyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
3
|
Chawda C, McMorrow R, Gaspar N, Zambito G, Mezzanotte L. Monitoring Immune Cell Function Through Optical Imaging: a Review Highlighting Transgenic Mouse Models. Mol Imaging Biol 2022; 24:250-263. [PMID: 34735680 PMCID: PMC8983637 DOI: 10.1007/s11307-021-01662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022]
Abstract
Transgenic mouse models have facilitated research of human diseases and validation of therapeutic approaches. Inclusion of optical reporter genes (fluorescent or bioluminescent genes) in the targeting vectors used to develop such models makes in vivo imaging of cellular and molecular events possible, from the microscale to the macroscale. In particular, transgenic mouse models expressing optical reporter genes allowed accurately distinguishing immune cell types from trafficking in vivo using intravital microscopy or whole-body optical imaging. Besides lineage tracing and trafficking of different subsets of immune cells, the ability to monitor the function of immune cells is of pivotal importance for investigating the effects of immunotherapies against cancer. Here, we introduce the reader to state-of-the-art approaches to develop transgenics, optical imaging techniques, and several notable examples of transgenic mouse models developed for immunology research by critically highlighting the models that allow the following of immune cell function.
Collapse
Affiliation(s)
- Chintan Chawda
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Roisin McMorrow
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
- Percuros B.V, Leiden, The Netherlands
| | - Natasa Gaspar
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
- Percuros B.V, Leiden, The Netherlands
| | - Giorgia Zambito
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Laura Mezzanotte
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
CD28 Co-Stimulus Achieves Superior CAR T Cell Effector Function against Solid Tumors Than 4-1BB Co-Stimulus. Cancers (Basel) 2021; 13:cancers13051050. [PMID: 33801448 PMCID: PMC7958604 DOI: 10.3390/cancers13051050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/02/2023] Open
Abstract
Spacer or co-stimulatory components in chimeric antigen receptor (CAR) design influence CAR T cell effector function. Few preclinical mouse models optimally support CAR candidate pre-selection for clinical development. Here we use a model in which murine CAR T cells can be exploited with human tumor xenografts. This mouse-in-mouse approach avoids limitations caused by species-specific factors crucial for CAR T cell survival, trafficking and function. We compared trafficking, expansion and tumor control for T cells expressing different CAR construct designs targeting two antigens (L1CAM or HER2), structurally identical except for spacer (long or short) or co-stimulatory (4-1BB or CD28) domains to be evaluated. Using monoclonal, murine-derived L1CAM-specific CAR T cells in Rag-/- mice harboring established xenografted tumors from a human neuroblastoma cell line revealed a clear superiority in CAR T cell trafficking using CD28 co-stimulation. L1CAM-targeting short spacer-CD28/ζ CAR T cells expanded the most at the tumor site and induced initial tumor regression. Treating patient-derived neuroblastoma xenografts with human L1CAM-targeting CAR T cells confirmed the superiority of CD28 co-stimulus. CD28 superiority was also demonstrated with HER2-specific CAR T cells (targeting ovarian carcinoma xenografts). Our findings encourage incorporating CD28 signaling into CAR design for adoptive T cell treatment of solid tumors.
Collapse
|
5
|
Inderberg-Suso EM, Trachsel S, Lislerud K, Rasmussen AM, Gaudernack G. Widespread CD4+ T-cell reactivity to novel hTERT epitopes following vaccination of cancer patients with a single hTERT peptide GV1001. Oncoimmunology 2021; 1:670-686. [PMID: 22934259 PMCID: PMC3429571 DOI: 10.4161/onci.20426] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Understanding the basis of a successful clinical response after treatment with therapeutic cancer vaccines is essential for the development of more efficacious therapy. After vaccination with the single telomerase (hTERT) 16-mer peptide, GV1001, some patients experienced clinical responses and long-term survival. This study reports in-depth immunological analysis of the T-cell response against telomerase (hTERT) in clinically responding patients compared with clinical non-responders following vaccination with the single hTERT 16-mer peptide, GV1001. Extensive characterization of CD4+ T-cell clones specific for GV1001 generated from a lung cancer patient in complete remission after vaccination demonstrated a very broad immune response to this single peptide vaccine with differences in fine specificity, HLA restriction, affinity and function. Some CD4+ T-cell clones were cytotoxic against peptide-loaded target cells and also recognized processed recombinant hTERT protein. Furthermore, T-cell responses against several unrelated hTERT epitopes, some of which are novel, were detected, indicating extensive epitope spreading which was confirmed in other clinical responders. In contrast, patients responding immunologically, but not clinically, after vaccination did not display this intramolecular epitope spreading. Multifunctional CD4+ T-cell clones specific for novel hTERT epitopes were generated and shown to recognize a melanoma cell line. Pentamer analysis of T cells in peripheral blood also demonstrated the presence of an important CD8+ T-cell response recognizing an HLA-B7 epitope embedded in GV1001 not previously described. These results indicate that the highly diverse hTERT-specific T-cell response, integrating both T helper and CTL responses, is essential for tumor regression and the generation of long-term T-cell memory.
Collapse
Affiliation(s)
- Else-Marit Inderberg-Suso
- Unit for Immunotherapy; Section for Immunology; Institute for Cancer Research; Oslo University Hospital; Norwegian Radium Hospital; Oslo, Norway
| | | | | | | | | |
Collapse
|
6
|
Brunsvig PF, Guren TK, Nyakas M, Steinfeldt-Reisse CH, Rasch W, Kyte JA, Juul HV, Aamdal S, Gaudernack G, Inderberg EM. Long-Term Outcomes of a Phase I Study With UV1, a Second Generation Telomerase Based Vaccine, in Patients With Advanced Non-Small Cell Lung Cancer. Front Immunol 2020; 11:572172. [PMID: 33324397 PMCID: PMC7726017 DOI: 10.3389/fimmu.2020.572172] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/30/2020] [Indexed: 01/22/2023] Open
Abstract
Human telomerase reverse transcriptase (hTERT) is a target antigen for cancer immunotherapy in patients with non-small cell lung cancer (NSCLC). We have tested a novel hTERT vaccine, UV1, designed to give high population coverage. UV1 is composed of three synthetic long peptides containing multiple epitopes identified by epitope spreading data from long-term survivors from previous hTERT vaccination trials. Eighteen non-HLA-typed patients with stage III/IV NSCLC with no evidence of progression after prior treatments, were enrolled in a phase I dose-escalation study of UV1 vaccination with GM-CSF as adjuvant, evaluating safety, immune response, and long-term clinical outcome. Treatment with UV1 was well tolerated with no serious adverse events observed. Seventeen patients were evaluable for tumor response; 15 patients had stable disease as best response. The median progression free survival (PFS) was 10.7 months, and the median overall survival (OS) was 28.2 months. The OS at 4 years was 39% (7/18). Five patients are alive (median survival 5.6 years), and none of these are known to have received checkpoint therapy after vaccination. UV1 induced specific T-cell responses in the majority (67%) of patients. Immune responses were dynamic and long lasting. Both immune response (IR) and OS were dose related. More patients in the highest UV1 dosage group (700 μg) developed IRs compared to the other groups, and the IRs were stronger and occurred earlier. Patients in this group had a 4-year OS of 83%. The safety and clinical outcome data favor 700 μg as the preferred UV1 dose in this patient population. These results provide a rationale for further clinical studies in NSCLC with UV1 vaccination in combination with immune checkpoint blockade. Clinical Trial Registration https://www.clinicaltrials.gov, identifier NCT0178909.
Collapse
Affiliation(s)
- Paal F Brunsvig
- Department of Clinical Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Tormod Kyrre Guren
- Department of Clinical Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Marta Nyakas
- Department of Clinical Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | | | | | - Jon Amund Kyte
- Department of Clinical Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Hedvig Vidarsdotter Juul
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | | | | | - Else Marit Inderberg
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
7
|
Dimond A, Van de Pette M, Fisher AG. Illuminating Epigenetics and Inheritance in the Immune System with Bioluminescence. Trends Immunol 2020; 41:994-1005. [PMID: 33036908 DOI: 10.1016/j.it.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022]
Abstract
The remarkable process of light emission by living organisms has fascinated mankind for thousands of years. A recent expansion in the repertoire of catalytic luciferase enzymes, coupled with the discovery of the genes and pathways that encode different luciferin substrates, means that bioluminescence imaging (BLI) is set to revolutionize longitudinal and dynamic studies of gene control within biomedicine, including the regulation of immune responses. In this review article, we summarize recent advances in bioluminescence-based imaging approaches that promise to enlighten our understanding of in vivo gene and epigenetic control within the immune system.
Collapse
Affiliation(s)
- Andrew Dimond
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Mathew Van de Pette
- Epigenetic Mechanisms of Toxicity, MRC Toxicology Unit, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
8
|
Parihar R, Rivas C, Huynh M, Omer B, Lapteva N, Metelitsa LS, Gottschalk SM, Rooney CM. NK Cells Expressing a Chimeric Activating Receptor Eliminate MDSCs and Rescue Impaired CAR-T Cell Activity against Solid Tumors. Cancer Immunol Res 2019; 7:363-375. [PMID: 30651290 DOI: 10.1158/2326-6066.cir-18-0572] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/05/2018] [Accepted: 01/11/2019] [Indexed: 12/13/2022]
Abstract
Solid tumors are refractory to cellular immunotherapies in part because they contain suppressive immune effectors such as myeloid-derived suppressor cells (MDSCs) that inhibit cytotoxic lymphocytes. Strategies to reverse the suppressive tumor microenvironment (TME) should also attract and activate immune effectors with antitumor activity. To address this need, we developed gene-modified natural killer (NK) cells bearing a chimeric receptor in which the activating receptor NKG2D is fused to the cytotoxic ζ-chain of the T-cell receptor (NKG2D.ζ). NKG2D.ζ-NK cells target MDSCs, which overexpress NKG2D ligands within the TME. We examined the ability of NKG2D.ζ-NK cells to eliminate MDSCs in a xenograft TME model and improve the antitumor function of tumor-directed chimeric antigen receptor (CAR)-modified T cells. We show that NKG2D.ζ-NK cells are cytotoxic against MDSCs, but spare NKG2D ligand-expressing normal tissues. NKG2D.ζ-NK cells, but not unmodified NK cells, secrete proinflammatory cytokines and chemokines in response to MDSCs at the tumor site and improve infiltration and antitumor activity of subsequently infused CAR-T cells, even in tumors for which an immunosuppressive TME is an impediment to treatment. Unlike endogenous NKG2D, NKG2D.ζ is not susceptible to TME-mediated downmodulation and thus maintains its function even within suppressive microenvironments. As clinical confirmation, NKG2D.ζ-NK cells generated from patients with neuroblastoma killed autologous intratumoral MDSCs capable of suppressing CAR-T function. A combination therapy for solid tumors that includes both NKG2D.ζ-NK cells and CAR-T cells may improve responses over therapies based on CAR-T cells alone.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Chemokines/metabolism
- Cytotoxicity, Immunologic
- Female
- Humans
- Immunotherapy, Adoptive
- K562 Cells
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Ligands
- Mice
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- NK Cell Lectin-Like Receptor Subfamily K/genetics
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- Neuroblastoma/immunology
- Neuroblastoma/pathology
- Neuroblastoma/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Robin Parihar
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas.
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Charlotte Rivas
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Mai Huynh
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas
| | - Bilal Omer
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Natalia Lapteva
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas
| | - Leonid S Metelitsa
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Division of Immunology, Baylor College of Medicine, Houston, Texas
| | | | - Cliona M Rooney
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Division of Immunology, Baylor College of Medicine, Houston, Texas
- Department of Molecular Virology and Immunology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
9
|
Kleinovink JW, Mezzanotte L, Zambito G, Fransen MF, Cruz LJ, Verbeek JS, Chan A, Ossendorp F, Löwik C. A Dual-Color Bioluminescence Reporter Mouse for Simultaneous in vivo Imaging of T Cell Localization and Function. Front Immunol 2019; 9:3097. [PMID: 30671062 PMCID: PMC6333049 DOI: 10.3389/fimmu.2018.03097] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022] Open
Abstract
Non-invasive imaging technologies to visualize the location and functionality of T cells are of great value in immunology. Here, we describe the design and generation of a transgenic mouse in which all T cells constitutively express green-emitting click-beetle luciferase (CBG99) while expression of the red-emitting firefly luciferase (PpyRE9) is induced by Nuclear Factor of Activated T cells (NFAT) such as during T cell activation, which allows multicolor bioluminescence imaging of T cell location and function. This dual-luciferase mouse, which we named TbiLuc, showed high constitutive luciferase expression in lymphoid organs such as lymph nodes and the spleen. Ex vivo purified CD8+ and CD4+ T cells both constitutively expressed luciferase, whereas B cells showed no detectable signal. We cross-bred TbiLuc mice to T cell receptor-transgenic OT-I mice to obtain luciferase-expressing naïve CD8+ T cells with defined antigen-specificity. TbiLuc*OT-I T cells showed a fully antigen-specific induction of the T cell activation-dependent luciferase. In vaccinated mice, we visualized T cell localization and activation in vaccine-draining lymph nodes with high sensitivity using two distinct luciferase substrates, D-luciferin and CycLuc1, of which the latter specifically reacts with the PpyRE9 enzyme. This dual-luciferase T cell reporter mouse can be applied in many experimental models studying the location and functional state of T cells.
Collapse
Affiliation(s)
- Jan Willem Kleinovink
- Department of Immunohematology and Blood Transfusion, Tumor Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Laura Mezzanotte
- Department of Radiology and Nuclear Medicine, Optical Molecular Imaging, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Molecular Genetics, Erasmus Medical Center Rotterdam, Netherlands
| | - Giorgia Zambito
- Department of Radiology and Nuclear Medicine, Optical Molecular Imaging, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Molecular Genetics, Erasmus Medical Center Rotterdam, Netherlands.,Medres, Cologne, Germany
| | - Marieke F Fransen
- Department of Immunohematology and Blood Transfusion, Tumor Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Alan Chan
- Percuros B.V., Enschede, Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Tumor Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Clemens Löwik
- Department of Radiology and Nuclear Medicine, Optical Molecular Imaging, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Molecular Genetics, Erasmus Medical Center Rotterdam, Netherlands.,Department of Oncology, CHUV Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
10
|
Emami-Shahri N, Foster J, Kashani R, Gazinska P, Cook C, Sosabowski J, Maher J, Papa S. Clinically compliant spatial and temporal imaging of chimeric antigen receptor T-cells. Nat Commun 2018. [PMID: 29540684 PMCID: PMC5852048 DOI: 10.1038/s41467-018-03524-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The unprecedented efficacy of chimeric antigen receptor (CAR) T-cell immunotherapy of CD19+ B-cell malignancy has established a new therapeutic pillar of hematology–oncology. Nonetheless, formidable challenges remain for the attainment of comparable success in patients with solid tumors. To accelerate progress and rapidly characterize emerging toxicities, systems that permit the repeated and non-invasive assessment of CAR T-cell bio-distribution would be invaluable. An ideal solution would entail the use of a non-immunogenic reporter that mediates specific uptake of an inexpensive, non-toxic and clinically established imaging tracer by CAR T cells. Here we show the utility of the human sodium iodide symporter (hNIS) for the temporal and spatial monitoring of CAR T-cell behavior in a cancer-bearing host. This system provides a clinically compliant toolkit for high-resolution serial imaging of CAR T cells in vivo, addressing a fundamental unmet need for future clinical development in the field. Adoptive transfer of chimeric antigen receptor (CAR) T cells has shown promising anticancer results in clinical trials. Here the authors use the human sodium iodide symporter (hNIS) as a reporter gene to image human CAR T cells in cancer-bearing mice using broadly available tracers and imaging platforms.
Collapse
Affiliation(s)
- Nia Emami-Shahri
- ImmunoEngineering Group, King's College London, Division of Cancer Studies, 3rd Floor Bermondsey Wing, King's Health Partners Integrated Cancer Centre, Great Maze Pond, Guy's Hospital, London, SE1 9RT, UK
| | - Julie Foster
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Roxana Kashani
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Patrycja Gazinska
- Breast Cancer Now, Division of Cancer Studies, Guy's Cancer Centre, Great Maze Pond, London, SE1 9RT, UK
| | - Celia Cook
- ImmunoEngineering Group, King's College London, Division of Cancer Studies, 3rd Floor Bermondsey Wing, King's Health Partners Integrated Cancer Centre, Great Maze Pond, Guy's Hospital, London, SE1 9RT, UK
| | - Jane Sosabowski
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - John Maher
- CAR Mechanics Group, King's College London, Division of Cancer Studies, 3rd Floor Bermondsey Wing, King's Health Partners Integrated Cancer Centre, Great Maze Pond, Guy's Hospital, London, SE1 9RT, UK.,Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, SE5 9RS, UK.,Department of Immunology, Eastbourne Hospital, King's Drive, Eastbourne, BN21 2UD, UK
| | - Sophie Papa
- ImmunoEngineering Group, King's College London, Division of Cancer Studies, 3rd Floor Bermondsey Wing, King's Health Partners Integrated Cancer Centre, Great Maze Pond, Guy's Hospital, London, SE1 9RT, UK. .,Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
11
|
Szyska M, Herda S, Althoff S, Heimann A, Russ J, D'Abundo D, Dang TM, Durieux I, Dörken B, Blankenstein T, Na IK. A Transgenic Dual-Luciferase Reporter Mouse for Longitudinal and Functional Monitoring of T Cells In Vivo. Cancer Immunol Res 2017; 6:110-120. [PMID: 29259004 DOI: 10.1158/2326-6066.cir-17-0256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/28/2017] [Accepted: 11/28/2017] [Indexed: 11/16/2022]
Abstract
Adoptive T-cell therapy (ATT) efficacy is limited when targeting large solid tumors. The evaluation of ATT outcomes using accessory treatment would greatly benefit from an in vivo monitoring tool, allowing the detection of functional parameters of transferred T cells. Here, we generated transgenic bioluminescence imaging of T cells (BLITC) mice expressing an NFAT-dependent click-beetle luciferase and a constitutive Renilla luciferase, which supports concomitant in vivo analysis of migration and activation of T cells. Rapid transferability of our system to preestablished tumor models was demonstrated in the SV40-large T antigen model via both crossbreeding of BLITC mice into a T-cell receptor (TCR)-transgenic background and TCR transduction of BLITC T cells. We observed rapid tumor infiltration of BLITC CD8+ T cells followed by a burst-like activation that mirrored rejection kinetics. Using the BLITC reporter in the clinically relevant H-Y model, we performed female to male transfers and detected H-Y-specific alloreactivity (graft-versus-host disease) in vivo In an H-Y solid tumor model, we found migration of adoptively transferred H-Y TCR-transgenic CD4+ T cells into the tumor, marked by transient activation. This suggests a rapid inactivation of infiltrating T cells by the tumor microenvironment, as confirmed by their expression of inhibitory receptors. In summary, the BLITC reporter system facilitates analysis of therapeutic parameters for ATT, is rapidly transferable to models of interest not restricted to tumor research, and is suitable for rapid screening of TCR clones for tumor rejection kinetics, as well as off-target effects. Cancer Immunol Res; 6(1); 110-20. ©2018 AACR.
Collapse
Affiliation(s)
- Martin Szyska
- Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Stefanie Herda
- Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Stefanie Althoff
- Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Andreas Heimann
- Experimental and Clinical Research Center (ECRC), Berlin, Germany.,Berlin Institute of Health (BIH), Germany
| | - Josefine Russ
- Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Daniele D'Abundo
- Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Tra My Dang
- Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Isabell Durieux
- Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Bernd Dörken
- Experimental and Clinical Research Center (ECRC), Berlin, Germany.,Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.,Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
| | - Thomas Blankenstein
- Berlin Institute of Health (BIH), Germany.,Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany.,Institute of Immunology, Charité, Campus Berlin Buch, Germany
| | - Il-Kang Na
- Experimental and Clinical Research Center (ECRC), Berlin, Germany. .,Berlin Institute of Health (BIH), Germany.,Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| |
Collapse
|
12
|
Anders K, Kershaw O, Larue L, Gruber AD, Blankenstein T. The immune system prevents recurrence of transplanted but not autochthonous antigenic tumors after oncogene inactivation therapy. Int J Cancer 2017; 141:2551-2561. [PMID: 28833076 DOI: 10.1002/ijc.31009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022]
Abstract
Targeted oncogene inactivation by small molecule inhibitors can be very effective but tumor recurrence is a frequent problem in the clinic. Therapy by inactivation of the cancer-driving oncogene in transplanted tumors was shown to be augmented in the presence of T cells. However, these experiments did not take into account the long-term, usually tolerogenic, interaction of de novo malignancies with the immune system. Here, we employed mice, in which SV40 large T (Tag) and firefly luciferase (Luc) as fusion protein (TagLuc) could be regulated with the Tet-on system and upon activation resulted in tumors after a long latency. TagLuc inactivation induced profound tumor regression, demonstrating sustained oncogene addiction. While tumor relapse after TagLuc inactivation was prevented in immunocompetent mice bearing transplanted tumors, autochthonous tumors relapsed or recurred after therapy discontinuation indicating that the immune system that coevolved with the malignancy over an extended period of time lost the potency to mount an efficient anti-tumor immune response. By contrast, adoptively transferred CD8+ T cells targeting the cancer-driving oncogene eradicated recurrent autochthonous tumors, highlighting a suitable therapy option in a clinically relevant model.
Collapse
Affiliation(s)
| | | | - Lionel Larue
- Normal and Pathological Development of Melanocytes, 91405 Orsay, France.,Centre National de la Recherche Scientifique (CNRS) UMR3347, 91405 Orsay, France.,INSERM U1021, 91405 Orsay, France.,Equipe Labellisee e Ligue Nationale contre le Cancer, 91405 Orsay, France
| | | | - Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Institute of Immunology, Charité Campus Berlin Buch, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
13
|
Lilleby W, Gaudernack G, Brunsvig PF, Vlatkovic L, Schulz M, Mills K, Hole KH, Inderberg EM. Phase I/IIa clinical trial of a novel hTERT peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer Immunol Immunother 2017; 66:891-901. [PMID: 28391357 PMCID: PMC11028648 DOI: 10.1007/s00262-017-1994-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
Abstract
In newly diagnosed metastatic hormone-naive prostate cancer (mPC), telomerase-based immunotherapy with the novel hTERT peptide vaccine UV1 can induce immune responses with potential clinical benefit. This phase I dose escalation study of UV1 evaluated safety, immune response, effects on prostate-specific antigen (PSA) levels, and preliminary clinical outcome. Twenty-two patients with newly diagnosed metastatic hormone-naïve PC (mPC) were enrolled; all had started androgen deprivation therapy and had no visceral metastases. Bone metastases were present in 17 (77%) patients and 16 (73%) patients had affected lymph nodes. Three dose levels of UV1 were given as intradermal injections combined with GM-CSF (Leukine®). Twenty-one patients in the intention-to-treat population (95%) received conformal radiotherapy. Adverse events reported were predominantly grade 1, most frequently injection site pruritus (86.4%). Serious adverse events considered possibly related to UV1 and/or GM-CSF included anaphylactic reaction in two patients and thrombocytopenia in one patient. Immune responses against UV1 peptides were confirmed in 18/21 evaluable patients (85.7%), PSA declined to <0.5 ng/mL in 14 (64%) patients and in ten patients (45%) no evidence of persisting tumour was seen on MRI in the prostatic gland. At the end of the nine-month reporting period for the study, 17 patients had clinically stable disease. Treatment with UV1 and GM-CSF gave few adverse events and induced specific immune responses in a large proportion of patients unselected for HLA type. The intermediate dose of 0.3 mg UV1 resulted in the highest proportion of, and most rapid UV1-specific immune responses with an acceptable safety profile. These results warrant further clinical studies in mPC.
Collapse
Affiliation(s)
- Wolfgang Lilleby
- Department of Oncology and Radiotherapy, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway.
| | - Gustav Gaudernack
- Section for Cancer Immunology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Ultimovacs AS, Oslo, Norway
| | - Paal F Brunsvig
- Department for Clinical Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Ljiljana Vlatkovic
- Department of Pathology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Melanie Schulz
- Department for Clinical Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Kate Mills
- Department of Oncology and Radiotherapy, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway
| | - Knut Håkon Hole
- Department of Radiology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Else Marit Inderberg
- Department of Cellular Therapy, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| |
Collapse
|
14
|
Melzer MK, Lopez-Martinez A, Altomonte J. Oncolytic Vesicular Stomatitis Virus as a Viro-Immunotherapy: Defeating Cancer with a "Hammer" and "Anvil". Biomedicines 2017; 5:E8. [PMID: 28536351 PMCID: PMC5423493 DOI: 10.3390/biomedicines5010008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/17/2022] Open
Abstract
Oncolytic viruses have gained much attention in recent years, due, not only to their ability to selectively replicate in and lyse tumor cells, but to their potential to stimulate antitumor immune responses directed against the tumor. Vesicular stomatitis virus (VSV), a negative-strand RNA virus, is under intense development as an oncolytic virus due to a variety of favorable properties, including its rapid replication kinetics, inherent tumor specificity, and its potential to elicit a broad range of immunomodulatory responses to break immune tolerance in the tumor microenvironment. Based on this powerful platform, a multitude of strategies have been applied to further improve the immune-stimulating potential of VSV and synergize these responses with the direct oncolytic effect. These strategies include: 1. modification of endogenous virus genes to stimulate interferon induction; 2. virus-mediated expression of cytokines or immune-stimulatory molecules to enhance anti-tumor immune responses; 3. vaccination approaches to stimulate adaptive immune responses against a tumor antigen; 4. combination with adoptive immune cell therapy for potentially synergistic therapeutic responses. A summary of these approaches will be presented in this review.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Arturo Lopez-Martinez
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Jennifer Altomonte
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
15
|
Li A, Wu Y, Linnoila J, Pulli B, Wang C, Zeller M, Ali M, Lewandrowski GK, Li J, Tricot B, Keliher E, Wojtkiewicz GR, Fulci G, Feng X, Tannous BA, Yao Z, Chen JW. Surface biotinylation of cytotoxic T lymphocytes for in vivo tracking of tumor immunotherapy in murine models. Cancer Immunol Immunother 2016; 65:1545-1554. [PMID: 27722909 DOI: 10.1007/s00262-016-1911-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
Abstract
Currently, there is no stable and flexible method to label and track cytotoxic T lymphocytes (CTLs) in vivo in CTL immunotherapy. We aimed to evaluate whether the sulfo-hydroxysuccinimide (NHS)-biotin-streptavidin (SA) platform could chemically modify the cell surface of CTLs for in vivo tracking. CD8+ T lymphocytes were labeled with sulfo-NHS-biotin under different conditions and then incubated with SA-Alexa647. Labeling efficiency was proportional to sulfo-NHS-biotin concentration. CD8+ T lymphocytes could be labeled with higher efficiency with sulfo-NHS-biotin in DPBS than in RPMI (P < 0.05). Incubation temperature was not a key factor. CTLs maintained sufficient labeling for at least 72 h (P < 0.05), without altering cell viability. After co-culturing labeled CTLs with mouse glioma stem cells (GSCs) engineered to present biotin on their surface, targeting CTLs could specifically target biotin-presenting GSCs and inhibited cell proliferation (P < 0.01) and tumor spheres formation. In a biotin-presenting GSC brain tumor model, targeting CTLs could be detected in biotin-presenting gliomas in mouse brains but not in the non-tumor-bearing contralateral hemispheres (P < 0.05). In vivo fluorescent molecular tomography imaging in a subcutaneous U87 mouse model confirmed that targeting CTLs homed in on the biotin-presenting U87 tumors but not the control U87 tumors. PET imaging with 89Zr-deferoxamine-biotin and SA showed a rapid clearance of the PET signal over 24 h in the control tumor, while only minimally decreased in the targeted tumor. Thus, sulfo-NHS-biotin-SA labeling is an efficient method to noninvasively track the migration of adoptive transferred CTLs and does not alter CTL viability or interfere with CTL-mediated cytotoxic activity.
Collapse
Affiliation(s)
- Anning Li
- Department of Radiology, Huashan Hospital, Fudan University, 12 Urumchi Road, Shanghai, 200040, China.,Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA.,Department of Radiology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, China
| | - Yue Wu
- Department of Radiology, Huashan Hospital, Fudan University, 12 Urumchi Road, Shanghai, 200040, China.,Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Jenny Linnoila
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Benjamin Pulli
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA.,Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Cuihua Wang
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Matthias Zeller
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Muhammad Ali
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Grant K Lewandrowski
- Molecular Neurogenetics Unit, Neuroscience Center, 149 13th St., Charlestown, MA, 02129, USA
| | - Jinghui Li
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Benoit Tricot
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Edmund Keliher
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Giulia Fulci
- Brain Tumor Research Center, Simches Research Building, Neurosurgery Service, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Xiaoyuan Feng
- Department of Radiology, Huashan Hospital, Fudan University, 12 Urumchi Road, Shanghai, 200040, China
| | - Bakhos A Tannous
- Molecular Neurogenetics Unit, Neuroscience Center, 149 13th St., Charlestown, MA, 02129, USA
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, 12 Urumchi Road, Shanghai, 200040, China.
| | - John W Chen
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA. .,Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
16
|
Textor A, Schmidt K, Kloetzel PM, Weißbrich B, Perez C, Charo J, Anders K, Sidney J, Sette A, Schumacher TNM, Keller C, Busch DH, Seifert U, Blankenstein T. Preventing tumor escape by targeting a post-proteasomal trimming independent epitope. J Exp Med 2016; 213:2333-2348. [PMID: 27697836 PMCID: PMC5068242 DOI: 10.1084/jem.20160636] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/31/2016] [Indexed: 02/05/2023] Open
Abstract
Blankenstein and colleagues describe a novel strategy to avoid tumor escape from adoptive T cell therapy. Adoptive T cell therapy (ATT) can achieve regression of large tumors in mice and humans; however, tumors frequently recur. High target peptide-major histocompatibility complex-I (pMHC) affinity and T cell receptor (TCR)-pMHC affinity are thought to be critical to preventing relapse. Here, we show that targeting two epitopes of the same antigen in the same cancer cells via monospecific T cells, which have similar pMHC and pMHC-TCR affinity, results in eradication of large, established tumors when targeting the apparently subdominant but not the dominant epitope. Only the escape but not the rejection epitope required postproteasomal trimming, which was regulated by IFN-γ, allowing IFN-γ–unresponsive cancer variants to evade. The data describe a novel immune escape mechanism and better define suitable target epitopes for ATT.
Collapse
Affiliation(s)
- Ana Textor
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Karin Schmidt
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany.,Institute for Biochemistry, Charité, Campus Mitte, 10117 Berlin, Germany
| | - Peter-M Kloetzel
- Institute for Biochemistry, Charité, Campus Mitte, 10117 Berlin, Germany.,Berlin Institute of Health, 10117 Berlin, Germany
| | - Bianca Weißbrich
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University, 81675 Munich, Germany
| | - Cynthia Perez
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Jehad Charo
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Kathleen Anders
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Ton N M Schumacher
- The Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Christin Keller
- Institute for Biochemistry, Charité, Campus Mitte, 10117 Berlin, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University, 81675 Munich, Germany
| | - Ulrike Seifert
- Institute for Biochemistry, Charité, Campus Mitte, 10117 Berlin, Germany.,Institute for Molecular and Clinical Immunology, Otto-von-Guericke-Universität, 39120 Magdeburg, Germany.,Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany .,Berlin Institute of Health, 10117 Berlin, Germany.,Institute of Immunology, Charité, Campus Buch, 13125 Berlin, Germany
| |
Collapse
|
17
|
Deiser K, Stoycheva D, Bank U, Blankenstein T, Schüler T. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells. PLoS One 2016; 11:e0159690. [PMID: 27447484 PMCID: PMC4957759 DOI: 10.1371/journal.pone.0159690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/05/2016] [Indexed: 01/04/2023] Open
Abstract
The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT) of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7) is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+) host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7) therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols.
Collapse
Affiliation(s)
- Katrin Deiser
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Immunology, Charité-Universitaetsmedizin Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany
| | - Diana Stoycheva
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Immunology, Charité-Universitaetsmedizin Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany
| | - Ute Bank
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Thomas Blankenstein
- Institute of Immunology, Charité-Universitaetsmedizin Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Immunology, Charité-Universitaetsmedizin Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany
- * E-mail:
| |
Collapse
|
18
|
Ramasawmy R, Johnson SP, Roberts TA, Stuckey DJ, David AL, Pedley RB, Lythgoe MF, Siow B, Walker-Samuel S. Monitoring the Growth of an Orthotopic Tumour Xenograft Model: Multi-Modal Imaging Assessment with Benchtop MRI (1T), High-Field MRI (9.4T), Ultrasound and Bioluminescence. PLoS One 2016; 11:e0156162. [PMID: 27223614 PMCID: PMC4880291 DOI: 10.1371/journal.pone.0156162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/10/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Research using orthotopic and transgenic models of cancer requires imaging methods to non-invasively quantify tumour burden. As the choice of appropriate imaging modality is wide-ranging, this study aimed to compare low-field (1T) magnetic resonance imaging (MRI), a novel and relatively low-cost system, against established preclinical techniques: bioluminescence imaging (BLI), ultrasound imaging (US), and high-field (9.4T) MRI. METHODS A model of colorectal metastasis to the liver was established in eight mice, which were imaged with each modality over four weeks post-implantation. Tumour burden was assessed from manually segmented regions. RESULTS All four imaging systems provided sufficient contrast to detect tumours in all of the mice after two weeks. No significant difference was detected between tumour doubling times estimated by low-field MRI, ultrasound imaging or high-field MRI. A strong correlation was measured between high-field MRI estimates of tumour burden and all the other modalities (p < 0.001, Pearson). CONCLUSION These results suggest that both low-field MRI and ultrasound imaging are accurate modalities for characterising the growth of preclinical tumour models.
Collapse
Affiliation(s)
- Rajiv Ramasawmy
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, United Kingdom
- UCL Cancer Institute, London, United Kingdom
| | - S. Peter Johnson
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, United Kingdom
- UCL Cancer Institute, London, United Kingdom
| | - Thomas A. Roberts
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, United Kingdom
| | - Daniel J. Stuckey
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, United Kingdom
| | - Anna L. David
- UCL Institute for Women’s Health, London, United Kingdom
| | | | - Mark F. Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, United Kingdom
| | - Bernard Siow
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, United Kingdom
| | - Simon Walker-Samuel
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, United Kingdom
| |
Collapse
|
19
|
TCR-engineered T cells to treat tumors: Seeing but not touching? Semin Immunol 2016; 28:10-21. [PMID: 26997556 DOI: 10.1016/j.smim.2016.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 12/17/2022]
Abstract
Adoptive transfer of T cells gene-engineered with T cell receptors (TCRs) has proven its feasibility and therapeutic potential in the treatment of malignant tumors. To ensure further clinical development of TCR gene therapy, it is necessary to accurately select TCRs that demonstrate antigen-selective responses that are restricted to tumor cells and, at the same time, include strategies that restore or enhance the entry, migration and local accumulation of T cells in tumor tissues. Here, we present the current standing of TCR-engineered T cell therapy, discuss and propose procedures to select TCRs as well as strategies to sensitize the tumor to T cell trafficking, and provide a rationale for combination therapies with TCR-engineered T cells.
Collapse
|
20
|
Durymanov MO, Rosenkranz AA, Sobolev AS. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines. Theranostics 2015; 5:1007-20. [PMID: 26155316 PMCID: PMC4493538 DOI: 10.7150/thno.11742] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/09/2015] [Indexed: 12/22/2022] Open
Abstract
The ability of nanoparticles and macromolecules to passively accumulate in solid tumors and enhance therapeutic effects in comparison with conventional anticancer agents has resulted in the development of various multifunctional nanomedicines including liposomes, polymeric micelles, and magnetic nanoparticles. Further modifications of these nanoparticles have improved their characteristics in terms of tumor selectivity, circulation time in blood, enhanced uptake by cancer cells, and sensitivity to tumor microenvironment. These "smart" systems have enabled highly effective delivery of drugs, genes, shRNA, radioisotopes, and other therapeutic molecules. However, the resulting therapeutically relevant local concentrations of anticancer agents are often insufficient to cause tumor regression and complete elimination. Poor perfusion of inner regions of solid tumors as well as vascular barrier, high interstitial fluid pressure, and dense intercellular matrix are the main intratumoral barriers that impair drug delivery and impede uniform distribution of nanomedicines throughout a tumor. Here we review existing methods and approaches for improving tumoral uptake and distribution of nano-scaled therapeutic particles and macromolecules (i.e. nanomedicines). Briefly, these strategies include tuning physicochemical characteristics of nanomedicines, modulating physiological state of tumors with physical impacts or physiologically active agents, and active delivery of nanomedicines using cellular hitchhiking.
Collapse
|
21
|
Blachère NE, Orange DE, Santomasso BD, Doerner J, Foo PK, Herre M, Fak J, Monette S, Gantman EC, Frank MO, Darnell RB. T cells targeting a neuronal paraneoplastic antigen mediate tumor rejection and trigger CNS autoimmunity with humoral activation. Eur J Immunol 2015; 44:3240-51. [PMID: 25103845 DOI: 10.1002/eji.201444624] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/17/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022]
Abstract
Paraneoplastic neurologic diseases (PND) involving immune responses directed toward intracellular antigens are poorly understood. Here, we examine immunity to the PND antigen Nova2, which is expressed exclusively in central nervous system (CNS) neurons. We hypothesized that ectopic expression of neuronal antigen in the periphery could incite PND. In our C57BL/6 mouse model, CNS antigen expression limits antigen-specific CD4+ and CD8+ T-cell expansion. Chimera experiments demonstrate that this tolerance is mediated by antigen expression in nonhematopoietic cells. CNS antigen expression does not limit tumor rejection by adoptively transferred transgenic T cells but does limit the generation of a memory population that can be expanded upon secondary challenge in vivo. Despite mediating cancer rejection, adoptively transferred transgenic T cells do not lead to paraneoplastic neuronal targeting. Preliminary experiments suggest an additional requirement for humoral activation to induce CNS autoimmunity. This work provides evidence that the requirements for cancer immunity and neuronal autoimmunity are uncoupled. Since humoral immunity was not required for tumor rejection, B-cell targeting therapy, such as rituximab, may be a rational treatment option for PND that does not hamper tumor immunity.
Collapse
Affiliation(s)
- Nathalie E Blachère
- Laboratory of Neuro-Oncology, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Perez C, Jukica A, Listopad JJ, Anders K, Kühl AA, Loddenkemper C, Blankenstein T, Charo J. Permissive expansion and homing of adoptively transferred T cells in tumor-bearing hosts. Int J Cancer 2015; 137:359-71. [PMID: 25530110 DOI: 10.1002/ijc.29401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 11/25/2014] [Indexed: 12/14/2022]
Abstract
Activated T cells expressing endogenous or transduced TCRs are two cell types currently used in clinical adoptive T-cell therapy. The ability of these cells to recognize their antigen, expand and traffic to the tumor site are the initial steps necessary for successful therapy. In this study, we used in vivo bioluminescent imaging (BLI) of Renilla luciferase (RLuc) expressing T cells to evaluate the ability of adoptively transferred T cells to survive, expand and home to tumor site in vivo. Using this method, termed RT-Rack (Rluc T cell tracking), we followed T-cell response against tumors in vivo. Expansion and homing of adoptively transferred T cells were antigen dependent, but independent of the host immune status. Moreover, we successfully detected T-cell response to small and large tumors, including autochthonous liver tumors. The adoptively transferred T cells were not ignorant or excluded in a partially tolerant host, which expressed low level of the target in the periphery. Using T cell receptor (TCR)-engineered T cells, we showed the ability of these cells to respond in tumor-bearing hosts by expanding and homing to the tumor site. In all these models, the host immune status, the nature of the tumor or of the antigen, the tumor size and the presence of the targeted antigen in the periphery did not prevent the adoptively transferred T cells from responding by expanding and homing to the tumor. However, T cells had higher expression of the inhibitory receptor PD1 and reduced functional activity when a self-antigen was targeted.
Collapse
Affiliation(s)
- C Perez
- Max-Delbrück-Center for Molecular Medicine, Berlin, 13125, Germany
| | - A Jukica
- Max-Delbrück-Center for Molecular Medicine, Berlin, 13125, Germany
| | - J J Listopad
- Max-Delbrück-Center for Molecular Medicine, Berlin, 13125, Germany
| | - K Anders
- Max-Delbrück-Center for Molecular Medicine, Berlin, 13125, Germany
| | - A A Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology, Berlin, 12200, Germany
| | - C Loddenkemper
- Institute of Pathology, Charité Campus Benjamin Franklin, Berlin, 12200, Germany
| | - T Blankenstein
- Max-Delbrück-Center for Molecular Medicine, Berlin, 13125, Germany.,Institute of Immunology, Charité Campus Buch, Berlin, 13125, Germany
| | - J Charo
- Max-Delbrück-Center for Molecular Medicine, Berlin, 13125, Germany
| |
Collapse
|
23
|
Govers C, Sebestyén Z, Roszik J, van Brakel M, Berrevoets C, Szöőr Á, Panoutsopoulou K, Broertjes M, Van T, Vereb G, Szöllősi J, Debets R. TCRs Genetically Linked to CD28 and CD3ε Do Not Mispair with Endogenous TCR Chains and Mediate Enhanced T Cell Persistence and Anti-Melanoma Activity. THE JOURNAL OF IMMUNOLOGY 2014; 193:5315-26. [DOI: 10.4049/jimmunol.1302074] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Textor A, Listopad JJ, Wührmann LL, Perez C, Kruschinski A, Chmielewski M, Abken H, Blankenstein T, Charo J. Efficacy of CAR T-cell therapy in large tumors relies upon stromal targeting by IFNγ. Cancer Res 2014; 74:6796-805. [PMID: 25297631 DOI: 10.1158/0008-5472.can-14-0079] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adoptive T-cell therapy using chimeric antigen receptor-modified T cells (CAR-T therapy) has shown dramatic efficacy in patients with circulating lymphoma. However, eradication of solid tumors with CAR-T therapy has not been reported yet to be efficacious. In solid tumors, stroma destruction, due to MHC-restricted cross-presentation of tumor antigens to T cells, may be essential. However, CAR-Ts recognize antigens in an MHC-independent manner on cancer cells but not stroma cells. In this report, we show how CAR-Ts can be engineered to eradicate large established tumors with provision of a suitable CD28 costimulatory signal. In an HER2-dependent tumor model, tumor rejection by HER2-specific CAR-Ts was associated with sustained influx and proliferation of the adoptively transferred T cells. Interestingly, tumor rejection did not involve natural killer cells but was associated instead with a marked increase in the level of M1 macrophages and a requirement for IFNγ receptor expression on tumor stroma cells. Our results argue that CAR-T therapy is capable of eradicating solid tumors through a combination of antigen-independent stroma destruction and antigen-specific tumor cell targeting.
Collapse
Affiliation(s)
- Ana Textor
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | - Cynthia Perez
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Markus Chmielewski
- Department I of Internal Medicine, Tumor Genetics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Hinrich Abken
- Department I of Internal Medicine, Tumor Genetics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany. Institute of Immunology, Charite Campus Buch, Berlin, Germany
| | - Jehad Charo
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
25
|
Liu Z, Li Z. Molecular imaging in tracking tumor-specific cytotoxic T lymphocytes (CTLs). Am J Cancer Res 2014; 4:990-1001. [PMID: 25157278 PMCID: PMC4142291 DOI: 10.7150/thno.9268] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/30/2014] [Indexed: 01/15/2023] Open
Abstract
Despite the remarkable progress of adoptive T cell therapy in cancer treatment, there remains an urgent need for the noninvasive tracking of the transfused T cells in patients to determine their biodistribution, viability, and functionality. With emerging molecular imaging technologies and cell-labeling methods, noninvasive in vivo cell tracking is experiencing impressive progress toward revealing the mechanisms and functions of these cells in real time in preclinical and clinical studies. Such cell tracking methods have an important role in developing effective T cell therapeutic strategies and steering decision-making process in clinical trials. On the other hand, they could provide crucial information to accelerate the regulatory approval process on the T cell therapy. In this review, we revisit the advances in tracking the tumor-specific CTLs, highlighting the latest development in human studies and the key challenges.
Collapse
|
26
|
Chervin AS, Stone JD, Soto CM, Engels B, Schreiber H, Roy EJ, Kranz DM. Design of T-cell receptor libraries with diverse binding properties to examine adoptive T-cell responses. Gene Ther 2012; 20:634-44. [PMID: 23052828 PMCID: PMC5330764 DOI: 10.1038/gt.2012.80] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adoptive T cell therapies have shown significant promise in the treatment of cancer and viral diseases. One approach, that introduces antigen-specific T cell receptors (TCRs) into ex vivo activated T cells, is designed to overcome central tolerance mechanisms that prevent responses by endogenous T cell repertoires. Studies have suggested that use of higher affinity TCRs against class I MHC antigens could drive the activity of both CD4+ and CD8+ T cells, but the rules that govern the TCR binding optimal for in vivo activity are unknown. Here we describe a high-throughput platform of “reverse biochemistry” whereby a library of TCRs with a wide range of binding properties to the same antigen is introduced into T cells and adoptively transferred into mice with antigen-positive tumors. Extraction of RNA from tumor-infiltrating lymphocytes or lymphoid organs allowed high-throughput sequencing to determine which TCRs were selected in vivo. The results showed that CD8+ T cells expressing the highest affinity TCR variants were deleted in both the tumor infiltrating lymphocyte population and in peripheral lymphoid tissues. In contrast, these same high-affinity TCR variants were preferentially expressed within CD4+ T cells in the tumor, suggesting they played a role in antigen-specific tumor control. The findings thus revealed that the affinity of the transduced TCRs controlled the survival and tumor infiltration of the transferred T cells. Accordingly, the TCR library strategy enables rapid assessment of TCR binding properties that promote peripheral T cell survival and tumor elimination.
Collapse
Affiliation(s)
- A S Chervin
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|