1
|
Forkhead O Transcription Factor 4 Restricts HBV Covalently Closed Circular DNA Transcription and HBV Replication through Genetic Downregulation of Hepatocyte Nuclear Factor 4 Alpha and Epigenetic Suppression of Covalently Closed Circular DNA via Interacting with Promyelocytic Leukemia Protein. J Virol 2022; 96:e0054622. [PMID: 35695580 PMCID: PMC9278149 DOI: 10.1128/jvi.00546-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear located hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) remains the key obstacle to cure chronic hepatitis B (CHB). In our previous investigation, it was found that FoxO4 could inhibit HBV core promoter activity through downregulating the expression of HNF4α. However, the exact mechanisms whereby FoxO4 inhibits HBV replication, especially its effect on cccDNA, remain unclear. Here, our data further revealed that FoxO4 could effectively inhibit cccDNA mediated transcription and HBV replication without affecting cccDNA level. Mechanistic study showed that FoxO4 could cause epigenetic suppression of cccDNA. Although FoxO4-mediated downregulation of HNF4α contributed to inhibiting HBV core promoter activity, it had little effect on cccDNA epigenetic regulation. Further, it was found that FoxO4 could colocalize within promyelocytic leukemia protein (PML) nuclear bodies and interact with PML. Of note, PML was revealed to be critical for FoxO4-mediated inhibition of cccDNA epigenetic modification and of the following cccDNA transcription and HBV replication. Furthermore, FoxO4 was found to be downregulated in HBV-infected hepatocytes and human liver tissues, and it was negatively correlated with cccDNA transcriptional activity in CHB patients. Together, these findings highlight the role of FoxO4 in suppressing cccDNA transcription and HBV replication via genetic downregulation of HNF4α and epigenetic suppression of cccDNA through interacting with PML. Targeting FoxO4 may present as a new therapeutic strategy against chronic HBV infection. IMPORTANCE HBV cccDNA is a determining factor for viral persistence and the main obstacle for a cure of chronic hepatitis B. Strategies that target cccDNA directly are therefore of great importance in controlling persistent HBV infection. In present investigation, we found that FoxO4 could efficiently suppress cccDNA transcription and HBV replication without affecting the level of cccDNA itself. Further, our data revealed that FoxO4 might inhibit cccDNA function via a two-part mechanism: one is to epigenetically suppress cccDNA transcription via interacting with PML, and the other is to inhibit HBV core promoter activity via the genetic downregulation of HNF4α. Of note, HBV might dampen the expression of FoxO4 for its own persistent infection. We propose that manipulation of FoxO4 may present as a potential therapeutic strategy against chronic HBV infection.
Collapse
|
2
|
Dubey AR, Jagtap YA, Kumar P, Patwa SM, Kinger S, Kumar A, Singh S, Prasad A, Jana NR, Mishra A. Biochemical strategies of E3 ubiquitin ligases target viruses in critical diseases. J Cell Biochem 2021; 123:161-182. [PMID: 34520596 DOI: 10.1002/jcb.30143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/23/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Viruses are known to cause various diseases in human and also infect other species such as animal plants, fungi, and bacteria. Replication of viruses depends upon their interaction with hosts. Human cells are prone to such unwanted viral infections. Disintegration and reconstitution require host machinery and various macromolecules like DNA, RNA, and proteins are invaded by viral particles. E3 ubiquitin ligases are known for their specific function, that is, recognition of their respective substrates for intracellular degradation. Still, we do not understand how ubiquitin proteasome system-based enzymes E3 ubiquitin ligases do their functional interaction with different viruses. Whether E3 ubiquitin ligases help in the elimination of viral components or viruses utilize their molecular capabilities in their intracellular propagation is not clear. The first time our current article comprehends fundamental concepts and new insights on the different viruses and their interaction with various E3 Ubiquitin Ligases. In this review, we highlight the molecular pathomechanism of viruses linked with E3 Ubiquitin Ligases dependent mechanisms. An enhanced understanding of E3 Ubiquitin Ligase-mediated removal of viral proteins may open new therapeutic strategies against viral infections.
Collapse
Affiliation(s)
- Ankur R Dubey
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Yuvraj A Jagtap
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Som M Patwa
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Sarika Singh
- Department of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Nihar R Jana
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Amit Mishra
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
3
|
Wang Y, Wang J, Yang L, Qiu L, Hua Y, Wu S, Zeng S, Yu L, Zheng X. Epigenetic regulation of intestinal peptide transporter PEPT1 as a potential strategy for colorectal cancer sensitization. Cell Death Dis 2021; 12:532. [PMID: 34031358 PMCID: PMC8144210 DOI: 10.1038/s41419-021-03814-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
Human intestinal peptide transporter PEPT1 is commonly repressed in human colorectal cancer (CRC), yet its relationship with sensitivity to the common CRC treatment ubenimex has not previously been elucidated. In this study, we confirmed PEPT1 suppression in CRC using real-time quantitative polymerase chain reaction and western blotting and then investigated the underlying epigenetic pathways involved using bisulfite sequencing, chromatin immunoprecipitation, siRNA knockdown, and reporter gene assays. We found that PEPT1 transcriptional repression was due to both DNMT1-mediated DNA methylation of the proximal promoter region and HDAC1-mediated histone deacetylation, which blocked P300-mediated H3K18/27Ac at the PEPT1 distal promoter. Finally, the effects of the epigenetic activation of PEPT1 on the CRC response to ubenimex were evaluated using sequential combination therapy of decitabine and ubenimex both in vitro and in xenografts. In conclusion, epigenetic silencing of PEPT1 due to increased DNMT1 and HDAC1 expression plays a vital role in the poor response of CRC to ubenimex.
Collapse
Affiliation(s)
- Yanhong Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jiaqi Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Lingrong Yang
- Department of Pharmacy, Hangzhou Cancer Hospital, 310002, Hangzhou, China
| | - Liqing Qiu
- Department of Pharmacy, Hangzhou Cancer Hospital, 310002, Hangzhou, China
| | - Yuhui Hua
- Department of Pharmacy, Hangzhou Cancer Hospital, 310002, Hangzhou, China
| | - Shixiu Wu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518116, Shenzhen, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Xiaoli Zheng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518116, Shenzhen, China.
| |
Collapse
|
4
|
Ednersson SB, Stern M, Fagman H, Nilsson-Ehle H, Hasselblom S, Andersson PO. TBLR1 and CREBBP as potential novel prognostic immunohistochemical biomarkers in diffuse large B-cell lymphoma. Leuk Lymphoma 2020; 61:2595-2604. [PMID: 32546039 DOI: 10.1080/10428194.2020.1775216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recent studies have identified prognostic mutational clusters for diffuse large B-cell lymphoma (DLBCL) patients, both within and outside the original cell-of-origin (COO) classification. For many of these mutations, there is limited information regarding the corresponding protein expression. With the aim to determine the relationship of protein expression and intensity to COO and prognosis, we used digital image analysis to quantitate immunohistochemical staining of CREBBP, IRF8, EZH2, and TBLR1 in 209 DLBCL patients. We found that patients with strong nuclear expression of TBLR1 had inferior progression-free survival (PFS) and overall survival (OS) in univariable analysis and inferior PFS in multivariable analysis. Patients with higher proportion of intermediate to strong nuclear CREBBP expression had a worse PFS and OS in univariable analysis. CREBBP was expressed with stronger intensity in non-GCB patients and the prognostic impact was restricted to this subgroup. These findings suggest that high nuclear protein expression of TBLR1 and CREBBP is negatively associated with prognosis in DLBCL.
Collapse
Affiliation(s)
- Susanne Bram Ednersson
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mimmie Stern
- Department of Medicine, Section of Hematology, South Älvsborg Hospital, Borås, Sweden.,Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Henrik Fagman
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Herman Nilsson-Ehle
- Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Section of Hematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sverker Hasselblom
- Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Research, Development & Education, Region Halland, Halmstad, Sweden
| | - Per-Ola Andersson
- Department of Medicine, Section of Hematology, South Älvsborg Hospital, Borås, Sweden.,Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Zhang J, Xie M, Xia L, Yu T, He F, Zhao C, Qiu W, Zhao D, Liu Y, Gong Y, Yao C, Liu L, Wang Y. Sublytic C5b-9 Induces IL-23 and IL-36a Production by Glomerular Mesangial Cells via PCAF-Mediated KLF4 Acetylation in Rat Thy-1 Nephritis. THE JOURNAL OF IMMUNOLOGY 2018; 201:3184-3198. [PMID: 30404815 DOI: 10.4049/jimmunol.1800719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/01/2018] [Indexed: 11/19/2022]
Abstract
Sublytic C5b-9 formation on glomerular mesangial cells in rat Thy-1 nephritis (Thy-1N), a model of human mesangioproliferative glomerulonephritis, is accompanied by the production of proinflammatory cytokines, but the relationship between sublytic C5b-9 and cytokine synthesis and the underlying mechanism remains unclear. To explore the problems mentioned above, in this study, we first examined the levels of proinflammatory ILs (e.g., IL-23 and IL-36a) as well as transcription factor (KLF4) and coactivator (PCAF) in the renal tissues of Thy-1N rats and in the glomerular mesangial cell line (HBZY-1) stimulated by sublytic C5b-9. Then, we further determined the role of KLF4 and PCAF in sublytic C5b-9-induced IL-23 and IL-36a production as well as the related mechanism. Our results showed that the levels of KLF4, PCAF, IL-23, and IL-36a were obviously elevated. Mechanistic investigation revealed that sublytic C5b-9 stimulation could increase IL-23 and IL-36a synthesis through KLF4 and PCAF upregulation, and KLF4 and PCAF could form a complex, binding to the IL-23 or IL-36a promoter in a KLF4-dependent manner, causing gene transcription. Importantly, KLF4 acetylation by PCAF contributed to sublytic C5b-9-induced IL-23 and IL-36a transcription. Besides, the KLF4 binding regions on IL-23 or IL-36a promoters and the KLF4 lysine site acetylated by PCAF were identified. Furthermore, silencing renal KLF4 or PCAF gene could significantly inhibit IL-23 or IL-36a secretion and tissue damage of Thy-1N rats. Collectively, these findings implicate that the KLF4/PCAF interaction and KLF4 acetylation by PCAF play a pivotal role in the sublytic C5b-9-mediated IL-23 and IL-36a production of Thy-1N rats.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Mengxiao Xie
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Lu Xia
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Tianyi Yu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Fengxia He
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, People's Republic of China; and
| | - Chenhui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Dan Zhao
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Yu Liu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Yajuan Gong
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Chunyan Yao
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Longfei Liu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China;
| |
Collapse
|
6
|
Reactive Oxygen Species-Mediated c-Jun NH 2-Terminal Kinase Activation Contributes to Hepatitis B Virus X Protein-Induced Autophagy via Regulation of the Beclin-1/Bcl-2 Interaction. J Virol 2017; 91:JVI.00001-17. [PMID: 28515304 DOI: 10.1128/jvi.00001-17] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 05/07/2017] [Indexed: 02/08/2023] Open
Abstract
Autophagy is closely associated with the regulation of hepatitis B virus (HBV) replication. HBV X protein (HBx), a multifunctional regulator in HBV-associated biological processes, has been demonstrated to be crucial for autophagy induction by HBV. However, the molecular mechanisms of autophagy induction by HBx, especially the signaling pathways involved, remain elusive. In the present investigation, we demonstrated that HBx induced autophagosome formation independently of the class I phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling pathway. In contrast, the class III PI3K(VPS34)/beclin-1 pathway was revealed to be critical for HBx-induced autophagosome formation. Further study showed that HBx did not affect the level of VPS34 and beclin-1 expression but inhibited beclin-1/Bcl-2 association, and c-Jun NH2-terminal kinase (JNK) signaling was found to be important for this process. Moreover, it was found that HBx treatment led to the generation of reactive oxygen species (ROS), and inhibition of ROS activity abrogated both JNK activation and autophagosome formation. Of importance, ROS-JNK signaling was also revealed to play an important role in HBV-induced autophagosome formation and subsequent HBV replication. These data may provide deeper insight into the mechanisms of autophagy induction by HBx and help in the design of new therapeutic strategies against HBV infection.IMPORTANCE HBx plays a key role in diverse HBV-associated biological processes, including autophagy induction. However, the molecular mechanisms of autophagy induction by HBx, especially the signaling pathways involved, remain elusive. In the present investigation, we found that HBx induced autophagy independently of the class I PI3K/AKT/mTOR signaling pathway, while the class III PI3K(VPS34)/beclin-1 pathway was revealed to be crucial for this process. Further data showed that ROS-JNK activation by HBx resulted in the release of beclin-1 from its association with Bcl-2 to form a complex with VPS34, thus enhancing autophagosome formation. Of importance, ROS-JNK signaling was also demonstrated to be critical for HBV replication via regulation of autophagy induction. These data help to elucidate the molecular mechanisms of autophagy induction by HBx/HBV and might be useful for designing novel therapeutic approaches to HBV infection.
Collapse
|
7
|
Qiu H, Huang F, Gong J, Xiao H, Sun BL, Yang RG. TRIM22 can activate the noncanonical NF-κB pathway by affecting IKKα. J Recept Signal Transduct Res 2015; 35:289-94. [PMID: 25510414 DOI: 10.3109/10799893.2014.977450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tripartite motif 22 (TRIM22) is involved in various cellular processes. It has been reported that TRIM22 can activate nuclear factor-κB (NF-κB) pathway, but the precise mechanism remains unclear. In this study, we explored the exact role of TRIM22 in activating the NF-κB pathway. Different to tumor necrosis factor-α (TNF-α) induction, we found that the overexpression of TRIM22 could induce the processing of p100 to p52 in HEK293T cells. Furthermore, based on the results of co-immunoprecipitation and co-localization experiments, we demonstrated that TRIM22 could interact with IκB kinase (IKK)α but not IKKβ and could increase the level and phosphorylation of IKKα through its really interesting new gene (RING) and spla-ryanodine receptor (SPRY) domains. These results suggest that TRIM22 is able to activate the noncanonical but not the canonical NF-κB pathway by activating IKKα. This finding will aid our understanding of the biological function of TRIM22.
Collapse
Affiliation(s)
- Hui Qiu
- a Research Group of HIV Molecular Epidemiology and Virology, Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan , Hubei , PR China
| | - Fang Huang
- a Research Group of HIV Molecular Epidemiology and Virology, Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan , Hubei , PR China
| | - Jian Gong
- a Research Group of HIV Molecular Epidemiology and Virology, Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan , Hubei , PR China
| | - Han Xiao
- a Research Group of HIV Molecular Epidemiology and Virology, Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan , Hubei , PR China
| | - Bin-Lian Sun
- a Research Group of HIV Molecular Epidemiology and Virology, Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan , Hubei , PR China
| | - Rong-Ge Yang
- a Research Group of HIV Molecular Epidemiology and Virology, Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan , Hubei , PR China
| |
Collapse
|
8
|
Zhong L, Hu J, Shu W, Gao B, Xiong S. Epigallocatechin-3-gallate opposes HBV-induced incomplete autophagy by enhancing lysosomal acidification, which is unfavorable for HBV replication. Cell Death Dis 2015; 6:e1770. [PMID: 25996297 PMCID: PMC4669713 DOI: 10.1038/cddis.2015.136] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 02/06/2023]
Abstract
Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, exhibits diverse beneficial properties, including antiviral activity. Autophagy is a cellular process that is involved in the degradation of long-lived proteins and damaged organelles. Recent evidence indicates that modulation of autophagy is a potential therapeutic strategy for various viral diseases. In the present study, we investigated the effect of EGCG on hepatitis B virus (HBV) replication and the possible involvement of autophagy in this process. Our results showed that HBV induced autophagosome formation, which was required for replication of itself. However, although EGCG efficiently inhibited HBV replication, it enhanced, but not inhibited, autophagosome formation in hepatoma cells. Further study showed that HBV induced an incomplete autophagy, while EGCG, similar to starvation, was able to induce a complete autophagic process, which appeared to be unfavorable for HBV replication. Furthermore, it was found that HBV induced an incomplete autophagy by impairing lysosomal acidification, while it lost this ability in the presence of EGCG. Taken together, these data demonstrated that EGCG treatment opposed HBV-induced incomplete autophagy via enhancing lysosomal acidification, which was unfavorable for HBV replication.
Collapse
Affiliation(s)
- L Zhong
- Institute for Immunobiology, Department of Immunology, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - J Hu
- Institute for Immunobiology, Department of Immunology, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - W Shu
- Institute for Immunobiology, Department of Immunology, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - B Gao
- Institute for Immunobiology, Department of Immunology, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - S Xiong
- Institute for Immunobiology, Department of Immunology, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215006, P.R. China
| |
Collapse
|