1
|
Sheikhlary S, Lopez DH, Moghimi S, Sun B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024; 14:503. [PMID: 38672519 PMCID: PMC11048403 DOI: 10.3390/biom14040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.
Collapse
Affiliation(s)
- Sara Sheikhlary
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Humberto Lopez
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Sophia Moghimi
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| |
Collapse
|
2
|
Role of Damage-Associated Molecular Pattern/Cell Death Pathways in Vaccine-Induced Immunity. Viruses 2021; 13:v13122340. [PMID: 34960608 PMCID: PMC8708515 DOI: 10.3390/v13122340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Immune responses induced by natural infection and vaccination are known to be initiated by the recognition of microbial patterns by cognate receptors, since microbes and most vaccine components contain pathogen-associated molecular patterns. Recent discoveries on the roles of damage-associated molecular patterns (DAMPs) and cell death in immunogenicity have improved our understanding of the mechanism underlying vaccine-induced immunity. DAMPs are usually immunologically inert, but can transform into alarming signals to activate the resting immune system in response to pathogenic infection, cellular stress and death, or tissue damage. The activation of DAMPs and cell death pathways can trigger local inflammation, occasionally mediating adaptive immunity, including antibody- and cell-mediated immune responses. Emerging evidence indicates that the components of vaccines and adjuvants induce immunogenicity via the stimulation of DAMP/cell death pathways. Furthermore, strategies for targeting this pathway to enhance immunogenicity are being investigated actively. In this review, we describe various DAMPs and focus on the roles of DAMP/cell death pathways in the context of vaccines for infectious diseases and cancer.
Collapse
|
3
|
Safety Profile of a Multi-Antigenic DNA Vaccine Against Hepatitis C Virus. Vaccines (Basel) 2020; 8:vaccines8010053. [PMID: 32013228 PMCID: PMC7158683 DOI: 10.3390/vaccines8010053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/17/2022] Open
Abstract
Despite direct acting antivirals (DAAs) curing >95% of individuals infected with hepatitis C (HCV), in order to achieve the World Health Organization HCV Global Elimination Goals by 2030 there are still major challenges that need to be overcome. DAAs alone are unlikely to eliminate HCV in the absence of a vaccine that can limit viral transmission. Consequently, a prophylactic HCV vaccine is necessary to relieve the worldwide burden of HCV disease. DNA vaccines are a promising vaccine platform due to their commercial viability and ability to elicit robust T-cell-mediated immunity (CMI). We have developed a novel cytolytic DNA vaccine that encodes non-structural HCV proteins and a truncated mouse perforin (PRF), which is more immunogenic than the respective canonical DNA vaccine lacking PRF. Initially we assessed the ability of the HCV pNS3-PRF and pNS4/5-PRF DNA vaccines to elicit robust long-term CMI without any adverse side-effects in mice. Interferon-γ (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assay was used to evaluate CMI against NS3, NS4 and NS5B in a dose-dependent manner. This analysis showed a dose-dependent bell-curve of HCV-specific responses in vaccinated animals. We then thoroughly examined the effects associated with reactogenicity of cytolytic DNA vaccination with the multi-antigenic HCV DNA vaccine (pNS3/4/5B). Hematological, biochemical and histological studies were performed in male Sprague Dawley rats with a relative vaccine dose 10–20-fold higher than the proposed dose in Phase I clinical studies. The vaccine was well tolerated, and no toxicity was observed. Thus, the cytolytic multi-antigenic DNA vaccine is safe and elicits broad memory CMI.
Collapse
|
4
|
Grubor-Bauk B, Wijesundara DK, Masavuli M, Abbink P, Peterson RL, Prow NA, Larocca RA, Mekonnen ZA, Shrestha A, Eyre NS, Beard MR, Gummow J, Carr J, Robertson SA, Hayball JD, Barouch DH, Gowans EJ. NS1 DNA vaccination protects against Zika infection through T cell-mediated immunity in immunocompetent mice. SCIENCE ADVANCES 2019; 5:eaax2388. [PMID: 31844662 PMCID: PMC6905874 DOI: 10.1126/sciadv.aax2388] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/08/2019] [Indexed: 05/08/2023]
Abstract
The causal association of Zika virus (ZIKV) with microcephaly, congenital malformations in infants, and Guillain-Barré syndrome in adults highlights the need for effective vaccines. Thus far, efforts to develop ZIKV vaccines have focused on the viral envelope. ZIKV NS1 as a vaccine immunogen has not been fully explored, although it can circumvent the risk of antibody-dependent enhancement of ZIKV infection, associated with envelope antibodies. Here, we describe a novel DNA vaccine encoding a secreted ZIKV NS1, that confers rapid protection from systemic ZIKV infection in immunocompetent mice. We identify novel NS1 T cell epitopes in vivo and show that functional NS1-specific T cell responses are critical for protection against ZIKV infection. We demonstrate that vaccine-induced anti-NS1 antibodies fail to confer protection in the absence of a functional T cell response. This highlights the importance of using NS1 as a target for T cell-based ZIKV vaccines.
Collapse
Affiliation(s)
- B. Grubor-Bauk
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
- Corresponding author.
| | - D. K. Wijesundara
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - M. Masavuli
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - P. Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - R. L. Peterson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - N. A. Prow
- Experimental Therapeutics Laboratory, Cancer Research Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
- Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - R. A. Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Z. A. Mekonnen
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - A. Shrestha
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - N. S. Eyre
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - M. R. Beard
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - J. Gummow
- Gene Silencing and Expression Core Facility, Adelaide Health and Medical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - J. Carr
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - S. A. Robertson
- Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - J. D. Hayball
- Experimental Therapeutics Laboratory, Cancer Research Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia
- Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - D. H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - E. J. Gowans
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Rezaei T, Khalili S, Baradaran B, Mosafer J, Rezaei S, Mokhtarzadeh A, de la Guardia M. Recent advances on HIV DNA vaccines development: Stepwise improvements to clinical trials. J Control Release 2019; 316:116-137. [PMID: 31669566 DOI: 10.1016/j.jconrel.2019.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/10/2023]
Abstract
According to WHO (World Health Organization) reports, more than 770,000 people died from HIV and almost 1.7 million people becoming newly infected in the worldwide in 2018. Therefore, many attempts should be done to produce a forceful vaccine to control the AIDS. DNA-based vaccines have been investigated for HIV vaccination by researches during the recent 20 years. The DNA vaccines are novel approach for induction of both type of immune responses (cellular and humoral) in the host cells and have many advantages including high stability, fast and easy of fabrication and absence of severe side effects when compared with other vaccination methods. Recent studies have been focused on vaccine design, immune responses and on the use of adjuvants as a promising strategy for increased level of responses, delivery approaches by viral and non-viral methods and vector design for different antigens of HIV virus. In this review, we outlined the aforementioned advances on HIV DNA vaccines. Then we described the future trends in clinical trials as a strong strategy even in healthy volunteers and the potential developments in control and prevention of HIV.
Collapse
Affiliation(s)
- Tayebeh Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Faculty of Sciences, Shahid Rajee Teacher Training University, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Sarah Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
6
|
Shrestha AC, Wijesundara DK, Masavuli MG, Mekonnen ZA, Gowans EJ, Grubor-Bauk B. Cytolytic Perforin as an Adjuvant to Enhance the Immunogenicity of DNA Vaccines. Vaccines (Basel) 2019; 7:vaccines7020038. [PMID: 31052178 PMCID: PMC6630607 DOI: 10.3390/vaccines7020038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022] Open
Abstract
DNA vaccines present one of the most cost-effective platforms to develop global vaccines, which have been tested for nearly three decades in preclinical and clinical settings with some success in the clinic. However, one of the major challenges for the development of DNA vaccines is their poor immunogenicity in humans, which has led to refinements in DNA delivery, dosage in prime/boost regimens and the inclusion of adjuvants to enhance their immunogenicity. In this review, we focus on adjuvants that can enhance the immunogenicity of DNA encoded antigens and highlight the development of a novel cytolytic DNA platform encoding a truncated mouse perforin. The application of this innovative DNA technology has considerable potential in the development of effective vaccines.
Collapse
Affiliation(s)
- Ashish C Shrestha
- Virology Laboratory, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research and University of Adelaide, Adelaide 5011, Australia.
| | - Danushka K Wijesundara
- Virology Laboratory, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research and University of Adelaide, Adelaide 5011, Australia.
| | - Makutiro G Masavuli
- Virology Laboratory, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research and University of Adelaide, Adelaide 5011, Australia.
| | - Zelalem A Mekonnen
- Virology Laboratory, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research and University of Adelaide, Adelaide 5011, Australia.
| | - Eric J Gowans
- Virology Laboratory, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research and University of Adelaide, Adelaide 5011, Australia.
| | - Branka Grubor-Bauk
- Virology Laboratory, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research and University of Adelaide, Adelaide 5011, Australia.
| |
Collapse
|
7
|
Kelly M, McNeel D, Fisch P, Malkovsky M. Immunological considerations underlying heat shock protein-mediated cancer vaccine strategies. Immunol Lett 2017; 193:1-10. [PMID: 29129721 DOI: 10.1016/j.imlet.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 12/31/2022]
Abstract
The success of active immunotherapies in the prevention of many infectious diseases over the course of over 200 years has lead scientists to wonder if the same principles could be applied to cancer. Antigen-specific active immunotherapies for the treatment of cancer have been researched for over two decades, however, the overwhelming majority of these studies have failed to stimulate robust clinical responses. It is clear that current active immunotherapy research should incorporate methods to increase the immunostimulatory capacity of these therapies. To directly address this need, we propose the addition of the immunostimulatory heat shock proteins (HSPs) to active immunotherapeutic strategies to augment their efficacy. Heat shock proteins are a family of highly conserved intracellular chaperone proteins, and are the most abundant family proteins inside cells. This ubiquity, and their robust immunostimulatory capacity, points to their importance in regulation of intracellular processes and, therefore, indicators of loss of cellular integrity if found extracellularly. Thus, we emphasize the importance of taking into consideration the location of vaccine-derived HSP/tumor-antigen complexes when designing active immunotheraputic strategies.
Collapse
Affiliation(s)
- Matthew Kelly
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Douglas McNeel
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Paul Fisch
- Universitätsklinikum Freiburg, Institut für Pathologie, Freiburg, Germany
| | - Miroslav Malkovsky
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
8
|
Chebotareva N, Bobkova I, Shilov E. Heat shock proteins and kidney disease: perspectives of HSP therapy. Cell Stress Chaperones 2017; 22:319-343. [PMID: 28409327 PMCID: PMC5425374 DOI: 10.1007/s12192-017-0790-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/11/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022] Open
Abstract
Heat shock proteins (HSPs) mediate a diverse range of cellular functions, prominently including folding and regulatory processes of cellular repair. A major property of these remarkable proteins, dependent on intracellular or extracellular location, is their capacity for immunoregulation that optimizes immune activity while avoiding hyperactivated inflammation. In this review, recent investigations are described, which examine roles of HSPs in protection of kidney tissue from various traumatic influences and demonstrate their potential for clinical management of nephritic disease. The HSP70 class is particularly attractive in this respect due to its multiple protective effects. The review also summarizes current understanding of HSP bioactivity in the pathophysiology of various kidney diseases, including acute kidney injury, diabetic nephropathy, chronic glomerulonephritis, and lupus nephritis-along with other promising strategies for their remediation, such as DNA vaccination.
Collapse
Affiliation(s)
- Natalia Chebotareva
- I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya st., Moscow, Russia, 119992.
| | - Irina Bobkova
- I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya st., Moscow, Russia, 119992
| | - Evgeniy Shilov
- I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya st., Moscow, Russia, 119992
| |
Collapse
|
9
|
Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. Biotechnol Adv 2017; 35:375-389. [PMID: 28288861 DOI: 10.1016/j.biotechadv.2017.03.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 01/07/2023]
Abstract
Traditional vaccination approaches (e.g. live attenuated or killed microorganisms) are among the most effective means to prevent the spread of infectious diseases. These approaches, nevertheless, have failed to yield successful vaccines against many important pathogens. To overcome this problem, methods have been developed to identify microbial components, against which protective immune responses can be elicited. Subunit antigens identified by these approaches enable the production of defined vaccines, with improved safety profiles. However, they are generally poorly immunogenic, necessitating their administration with potent immunostimulatory adjuvants. Since few safe and effective adjuvants are currently used in vaccines approved for human use, with those available displaying poor potency, or an inability to stimulate the types of immune responses required for vaccines against specific diseases (e.g. cytotoxic lymphocytes (CTLs) to treat cancers), the development of new vaccines will be aided by the availability of characterized platforms of new adjuvants, improving our capacity to rationally select adjuvants for different applications. One such approach, involves the addition of microbial components (pathogen-associated molecular patterns; PAMPs), that can stimulate strong immune responses, into subunit vaccine formulations. The conjugation of PAMPs to subunit antigens provides a means to greatly increase vaccine potency, by targeting immunostimulation and antigen to the same antigen presenting cell. Thus, methods that enable the efficient, and inexpensive production of antigen-adjuvant fusions represent an exciting mean to improve immunity towards subunit antigens. Herein we review four protein-based adjuvants (flagellin, bacterial lipoproteins, the extra domain A of fibronectin (EDA), and heat shock proteins (Hsps)), which can be genetically fused to antigens to enable recombinant production of antigen-adjuvant fusion proteins, with a focus on their mechanisms of action, structural or sequence requirements for activity, sequence modifications to enhance their activity or simplify production, adverse effects, and examples of vaccines in preclinical or human clinical trials.
Collapse
|
10
|
Tomusange K, Wijesundara D, Gummow J, Wesselingh S, Suhrbier A, Gowans EJ, Grubor-Bauk B. Mucosal vaccination with a live recombinant rhinovirus followed by intradermal DNA administration elicits potent and protective HIV-specific immune responses. Sci Rep 2016; 6:36658. [PMID: 27853256 PMCID: PMC5113119 DOI: 10.1038/srep36658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/18/2016] [Indexed: 01/30/2023] Open
Abstract
Mucosal immunity is deemed crucial to control sexual transmission of human immunodeficiency virus (HIV). Herein we report the efficacy of a mucosal HIV vaccine strategy comprising intranasal (IN) vaccination with a cocktail of live recombinant human rhinoviruses (HRVs) encoding overlapping fragments of HIV Gag and full length Tat (rHRV-Gag/Tat) followed by intradermal (ID) vaccination with DNA vaccines encoding HIV Gag and Tat (pVAX-Gag-Tat). This heterologous prime-boost strategy will be referred to hereafter as rHRV-DNA. As a control, IN vaccination with wild type (wt)-HRV-A1 followed by a single ID dose of pVAX (wt-HRV-A1/pVAX vaccination) was included. rHRV-DNA vaccination elicited superior multi-functional CD8+T cell responses in lymphocytes harvested from mesenteric lymph nodes and spleens, and higher titres of Tat-specific antibodies in blood and vaginal lavages, and reduced the viral load more effectively after challenge with EcoHIV, a murine HIV challenge model, in peritoneal macrophages, splenocytes and blood compared compared with wt-HRV-A1/pVAX vaccination or administration of 3 ID doses of pVAX-Gag-Tat (3X pVAX-Gag-Tat vaccination). These data provide the first evidence that a rHRV-DNA vaccination regimen can induce HIV-specific immune responses in the gut, vaginal mucosa and systemically, and supports further testing of this regimen in the development of an effective mucosally-targeted HIV-1 vaccine.
Collapse
Affiliation(s)
- Khamis Tomusange
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Danushka Wijesundara
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Jason Gummow
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Steve Wesselingh
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Tomusange K, Wijesundara D, Gummow J, Garrod T, Li Y, Gray L, Churchill M, Grubor-Bauk B, Gowans EJ. A HIV-Tat/C4-binding protein chimera encoded by a DNA vaccine is highly immunogenic and contains acute EcoHIV infection in mice. Sci Rep 2016; 6:29131. [PMID: 27358023 PMCID: PMC4928126 DOI: 10.1038/srep29131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/15/2016] [Indexed: 12/22/2022] Open
Abstract
DNA vaccines are cost-effective to manufacture on a global scale and Tat-based DNA vaccines have yielded protective outcomes in preclinical and clinical models of human immunodeficiency virus (HIV), highlighting the potential of such vaccines. However, Tat-based DNA vaccines have been poorly immunogenic, and despite the administration of multiple doses and/or the addition of adjuvants, these vaccines are not in general use. In this study, we improved Tat immunogenicity by fusing it with the oligomerisation domain of a chimeric C4-binding protein (C4b-p), termed IMX313, resulting in Tat heptamerisation and linked Tat to the leader sequence of tissue plasminogen activator (TPA) to ensure that the bulk of heptamerised Tat is secreted. Mice vaccinated with secreted Tat fused to IMX313 (pVAX-sTat-IMX313) developed higher titres of Tat-specific serum IgG, mucosal sIgA and cell-mediated immune (CMI) responses, and showed superior control of EcoHIV infection, a surrogate murine HIV challenge model, compared with animals vaccinated with other test vaccines. Given the crucial contribution of Tat to HIV-1 pathogenesis and the precedent of Tat-based DNA vaccines in conferring some level of protection in animal models, we believe that the virologic control demonstrated with this novel multimerised Tat vaccine highlights the promise of this vaccine candidate for humans.
Collapse
Affiliation(s)
- Khamis Tomusange
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Danushka Wijesundara
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Jason Gummow
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Tamsin Garrod
- Royal Australasian College of Surgeons, Adelaide, South Australia, Australia
| | - Yanrui Li
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Lachlan Gray
- Centre for Biomedical Research, Burnet Institute, Melbourne VIC, Australia
- Department of Infectious Diseases, Monash University, Melbourne VIC, Australia
| | - Melissa Churchill
- Centre for Biomedical Research, Burnet Institute, Melbourne VIC, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Eric J. Gowans
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
12
|
Intradermal delivery of DNA encoding HCV NS3 and perforin elicits robust cell-mediated immunity in mice and pigs. Gene Ther 2015; 23:26-37. [PMID: 26262584 DOI: 10.1038/gt.2015.86] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 02/08/2023]
Abstract
Currently, no vaccine is available against hepatitis C virus (HCV), and although DNA vaccines have considerable potential, this has not been realised. Previously, the efficacy of DNA vaccines for human immunodeficiency virus (HIV) and HCV was shown to be enhanced by including the gene for a cytolytic protein, viz. perforin. In this study, we examined the mechanism of cell death by this bicistronic DNA vaccine, which encoded the HCV non-structural protein 3 (NS3) under the control of the CMV promoter and perforin is controlled by the SV40 promoter. Compared with a canonical DNA vaccine and a bicistronic DNA vaccine encoding NS3 and the proapoptotic gene NSP4, the perforin-containing vaccine elicited enhanced cell-mediated immune responses against the NS3 protein in vaccinated mice and pigs, as determined by ELISpot and intracellular cytokine staining, whereas a mouse challenge model suggested that the immunity was CD8(+) T-cell-dependent. The results of the study showed that the inclusion of perforin in the DNA vaccine altered the fate of NS3-positive cells from apoptosis to necrosis, and this resulted in more robust immune responses in mice and pigs, the latter of which represents an accepted large animal model in which to test vaccine efficacy.
Collapse
|
13
|
Duan MM, Xu RM, Yuan CX, Li YY, Liu Q, Cheng GF, Lin JJ, Feng XG. SjHSP70, a recombinant Schistosoma japonicum heat shock protein 70, is immunostimulatory and induces protective immunity against cercarial challenge in mice. Parasitol Res 2015; 114:3415-29. [PMID: 26091761 DOI: 10.1007/s00436-015-4567-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/01/2015] [Indexed: 12/20/2022]
Abstract
High levels of protective immunity can be induced in different animals immunized with radiation-attenuated (RA) Schistosoma cercariae or schistosomula. However, the schistosome-derived molecules responsible for the strong protective effect elicited by RA schistosome larvae have not been identified or characterized. The 70-kDa heat shock proteins of schistosomes are considered major immunogens, and may play an important role in stimulating high levels of innate and adaptive immune responses in an RA schistosome vaccine model. Here, we demonstrate the immunobiological functions of Schistosoma japonicum heat shock protein 70 (SjHSP70) by investigating its expression profile in RA-schistosomula-derived cells, evaluating the protection induced by recombinant SjHSP70 (rSjHSP70) against cercarial challenge, and assaying the humoral and cellular immune responses to rSjHSP70 in BALB/c and C57BL/6 mice. The expression of SjHSP70 on the surfaces of cells from RA or normal schistosomula was determined with flow cytometry. Its expression was significantly higher on early RA schistosomula cells than on the cells from normal parasites. The protection afforded both BALB/c and C57BL/6 mice vaccinated with rSjHSP70 alone, rSj22.6 (a membrane-anchoring protein of S. japonicum) alone, or a combination of rSj22.6 and rSjHSP70 without adjuvant was evaluated. rSjHSP70 alone induced the highest protective effect against S. japonicum cercarial challenge, followed by the rSj22.6 plus rSjHSP70 combination and then rSj22.6 alone, in both mouse strains. Like ISA206 adjuvant, rSjHSP70 enhanced the protective efficacy induced by rSj22.6 in the C57BL/6 mouse strain. Antigen-specific IgG1 and IgG2a responses were detected with enzyme-linked immunosorbent assays in mice immunized with rSjHSP70 alone, rSj22.6 alone, or the rSj22.6 plus rSjHSP70 combination. Immunization with rSjHSP70 or the rSj22.6 plus rSjHSP70 combination induced mixed Th1/Th2-type antibody responses in BALB/c mice and a Th2-type antibody response in C57BL/6 mice. The profiles of cytokine production by splenic lymphocytes in both strains of mice immunized with the antigens described above were detected in vitro using a Cytometric Bead Array. The profiles of the proinflammatory cytokines interferon γ, tumor necrosis factor α, interleukin 6 (IL-6), and IL-17A and the regulatory cytokine IL-10 induced by the rSj22.6 plus rSjHSP70 combination were similar to those induced by rSj22.6 emulsified with the ISA206 adjuvant control. Like the ISA206 adjuvant, rSjHSP70 protein enhanced the proinflammatory and Th2-type or regulatory cytokine production induced by the rSj22.6 antigen. These results indicate that SjHSP70 is exposed on the surfaces of cells from RA schistosomula, and that rSjHSP70 protein is a promising protective antigen with a potential adjuvant function. Thus, SjHSP70 protein might play a key role in the protective immunity elicited by the RA schistosome vaccine.
Collapse
Affiliation(s)
- Ming Ming Duan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang Y, Liang S, Li X, Wang L, Zhang J, Xu J, Huo S, Cao X, Zhong Z, Zhong F. Mutual enhancement of IL-2 and IL-7 on DNA vaccine immunogenicity mainly involves regulations on their receptor expression and receptor-expressing lymphocyte generation. Vaccine 2015; 33:3480-7. [PMID: 26055295 DOI: 10.1016/j.vaccine.2015.05.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/28/2015] [Accepted: 05/26/2015] [Indexed: 01/22/2023]
Abstract
Our previous study showed that IL-2 and IL-7 could mutually enhance the immunogenicity of canine parvovirus VP2 DNA vaccine, although the underlying mechanism remained unknown. Here, we used the OVA gene as a DNA vaccine in a mouse model to test their enhancement on DNA vaccine immunogenicity and to explore the molecular mechanism. Results showed that both IL-2 and IL-7 genes significantly increased the immunogenicity of OVA DNA vaccine in mice. Co-administration of IL-2 and IL-7 genes with OVA DNA significantly increased OVA-specific antibody titers, T cell proliferation and IFN-γ production compared with IL-2 or IL-7 alone, confirming that IL-2 and IL-7 mutually enhanced DNA vaccine immunogenicity. Mechanistically, we have shown that IL-2 significantly stimulated generation of IL-7 receptor-expressing lymphocytes, and that IL-7 significantly induced IL-2 receptor expression. These results contribute to an explanation of the mechanism of the mutual effects of IL-2 and IL-7 on enhancing DNA vaccine immunogenicity and provided a basis for further investigation on their mutual effects on adjuvant activity and immune regulation.
Collapse
Affiliation(s)
- Yonghong Zhang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071000, China
| | - Shuang Liang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Xiujin Li
- Department of Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Liyue Wang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071000, China
| | - Jianlou Zhang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071000, China
| | - Jian Xu
- Department of Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shanshan Huo
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071000, China
| | - Xuebin Cao
- Department of Cardiology, 252 Hospital of Chinese PLA, Baoding 071000, Hebei, China
| | - Zhenyu Zhong
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, San Diego, CA 92093, USA.
| | - Fei Zhong
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071000, China.
| |
Collapse
|
15
|
A Multiantigenic DNA Vaccine That Induces Broad Hepatitis C Virus-Specific T-Cell Responses in Mice. J Virol 2015; 89:7991-8002. [PMID: 26018154 DOI: 10.1128/jvi.00803-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/15/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising "multiantigen" vaccine that elicits robust CMI. IMPORTANCE Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is currently available, and treatment is costly and often results in side effects, limiting the number of patients who are treated. Despite recent advances in treatment, prevention remains the key to efficient control and elimination of this virus. Here, we describe a novel DNA vaccine against hepatitis C virus that is capable of inducing robust cell-mediated immune responses in mice and is a promising vaccine candidate for humans.
Collapse
|
16
|
Tomusange K, Yu W, Suhrbier A, Wijesundara D, Grubor-Bauk B, Gowans EJ. Engineering human rhinovirus serotype-A1 as a vaccine vector. Virus Res 2015; 203:72-6. [PMID: 25869880 DOI: 10.1016/j.virusres.2015.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/28/2015] [Accepted: 04/01/2015] [Indexed: 01/30/2023]
Abstract
Herein we describe the construction of recombinant human rhinoviruses (rHRVs) encoding HIV Gag or Tat by inserting the full length tat gene or regions of the gag gene flanked by sequences encoding the HRV 2A protease cleavage site into the junction between HRV genes encoding structural (P1) and non-structural (P2) proteins. Most recombinants were unstable, but this was corrected by mutation of the flanking cleavage sites. Thereafter, all rHRV constructs retained the inserts throughout six passages. Such constructs may find utility as vaccine vectors to generate mucosal immunity.
Collapse
Affiliation(s)
- Khamis Tomusange
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Wenbo Yu
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Danushka Wijesundara
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
17
|
Garrod T, Grubor-Bauk B, Yu S, Gargett T, Gowans EJ. Encoded novel forms of HSP70 or a cytolytic protein increase DNA vaccine potency. Hum Vaccin Immunother 2014; 10:2679-83. [PMID: 25483501 DOI: 10.4161/hv.29527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, DNA vaccines have failed to demonstrate the equivalent levels of immunogenicity that were shown in smaller animals. Previous studies have encoded adjuvants, predominantly cytokines, within these vaccines in an attempt to increase antigen-specific immune responses. However, these strategies have lacked breadth of innate immune activation and have led to disappointing results in clinical trials. Damage associated molecular patterns (DAMPs) have been identified as pattern recognition receptor (PRR) agonists. DAMPs can bind to a wide range of PRRs on dendritic cells (DCs) and thus our studies have aimed to utilize this characteristic to act as an adjuvant in a DNA vaccine approach. Specifically, HSP70 has been identified as a DAMP, but has been limited by its lack of accessibility to PRRs in and on DCs. Here, we discuss the promising results achieved with the inclusion of membrane-bound or secreted HSP70 into a DNA vaccine encoding HIV gag as the model immunogen.
Collapse
Affiliation(s)
- Tamsin Garrod
- a Discipline of Surgery ; the University of Adelaide; Basil Hetzel Institute ; Adelaide , SA Australia
| | | | | | | | | |
Collapse
|
18
|
Garrod TJ, Gargett T, Yu W, Major L, Burrell CJ, Wesselingh S, Suhrbier A, Grubor-Bauk B, Gowans EJ. Loss of long term protection with the inclusion of HIV pol to a DNA vaccine encoding gag. Virus Res 2014; 192:25-33. [PMID: 25152448 DOI: 10.1016/j.virusres.2014.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 11/29/2022]
Abstract
Traditional vaccine strategies that induce antibody responses have failed to protect against HIV infection in clinical trials, and thus cell-mediated immunity is now an additional criterion. Recent clinical trials that aimed to induce strong T cell responses failed to do so. Therefore, to enhance induction of protective T cell responses, it is crucial that the optimum antigen combination is chosen. Limited research has been performed into the number of antigens selected for an HIV vaccine. This study aimed to compare DNA vaccines encoding either a single HIV antigen or a combination of two antigens, using intradermal vaccination of C57BL/6 mice. Immune assays were performed on splenocytes, and in vivo protection was examined by challenge with a chimeric virus, EcoHIV, able to infect mouse but not human leukocytes, at 10 days (short term) and 60 days (long term) post final vaccination. At 60 days there was significantly lower frequency of induced antigen-specific CD8(+) T cells in the spleens of pCMVgag-pol-vaccinated mice compared with mice which received pCMVgag only. Most importantly, short term viral control of EcoHIV was similar for pCMVgag and pCMVgag-pol-vaccinated mice at day 10, but only the pCMVgag-vaccinated significantly controlled EcoHIV at day 60 compared with pCMV-vaccinated mice, showing that control was reduced with the inclusion of the HIV pol gene.
Collapse
Affiliation(s)
- Tamsin J Garrod
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia.
| | - Tessa Gargett
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia
| | - Wenbo Yu
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia
| | - Lee Major
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Steven Wesselingh
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andreas Suhrbier
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia
| |
Collapse
|
19
|
Virginio VG, Gonchoroski T, Paes JA, Schuck DC, Zaha A, Ferreira HB. Immune responses elicited by Mycoplasma hyopneumoniae recombinant antigens and DNA constructs with potential for use in vaccination against porcine enzootic pneumonia. Vaccine 2014; 32:5832-8. [PMID: 25148775 DOI: 10.1016/j.vaccine.2014.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/10/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (PEP) and causes major economic losses to the pig industry worldwide. Commercially available vaccines provide only partial protection and are relatively expensive. In this study, we assessed the humoral and cellular immune responses to three recombinant antigens of M. hyopneumoniae. Immune responses to selected domains of the P46, HSP70 and MnuA antigens (P46102-253, HSP70212-601 and MnuA182-378), delivered as recombinant subunit or DNA vaccines, were evaluated in BALB/c mice. All purified recombinant antigens and two DNA vaccines, pcDNA3.1(+)/HSP70212-601 and pcDNA3.1(+)/MnuA182-378, elicited a strong humoral immune response, indicated by high IgG levels in the serum. The cellular immune response was assessed by detection of IFN-γ, IL-10 and IL-4 in splenocyte culture supernatants. The recombinant subunit and DNA vaccines induced Th1-polarized immune responses, as evidenced by increased levels of IFN-γ. All recombinant subunit vaccines and the pcDNA3.1(+)/MnuA182-378 vaccine also induced the secretion of IL-10, a Th2-type cytokine, in large quantities. The mixed Th1/Th2-type response may elicit an effective immune response against M. hyopneumoniae, suggesting that P46102-253, HSP70212-601 and MnuA182-378 are potential novel and promising targets for the development of vaccines against PEP.
Collapse
Affiliation(s)
- Veridiana Gomes Virginio
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Taylor Gonchoroski
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Desirée Cigaran Schuck
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, RS, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Gargett T, Grubor-Bauk B, Miller D, Garrod T, Yu S, Wesselingh S, Suhrbier A, Gowans EJ. Increase in DNA vaccine efficacy by virosome delivery and co-expression of a cytolytic protein. Clin Transl Immunology 2014; 3:e18. [PMID: 25505966 PMCID: PMC4232068 DOI: 10.1038/cti.2014.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 01/05/2023] Open
Abstract
The potential of DNA vaccines has not been realised due to suboptimal delivery, poor antigen expression and the lack of localised inflammation, essential for antigen presentation and an effective immune response to the immunogen. Initially, we examined the delivery of a DNA vaccine encoding a model antigen, luciferase (LUC), to the respiratory tract of mice by encapsulation in a virosome. Virosomes that incorporated influenza virus haemagglutinin effectively delivered DNA to cells in the mouse respiratory tract and resulted in antigen expression and systemic and mucosal immune responses to the immunogen after an intranasal (IN) prime/intradermal (ID) boost regimen, whereas a multidose ID regimen only generated systemic immunity. We also examined systemic immune responses to LUC after ID vaccination with a DNA vaccine, which also encoded one of the several cytolytic or toxic proteins. Although the herpes simplex virus thymidine kinase, in the presence of the prodrug, ganciclovir, resulted in cell death, this failed to increase the humoral or cell-mediated immune responses. In contrast, the co-expression of LUC with the rotavirus non-structural protein 4 (NSP4) protein or a mutant form of mouse perforin, proteins which are directly cytolytic, resulted in increased LUC-specific humoral and cell-mediated immunity. On the other hand, co-expression of LUC with diphtheria toxin subunit A or overexpression of perforin or NSP4 resulted in a lower level of immunity. In summary, the efficacy of DNA vaccines can be improved by targeted IN delivery of DNA or by the induction of cell death in vaccine-targeted cells after ID delivery.
Collapse
Affiliation(s)
- Tessa Gargett
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute , Adelaide, South Australia, Australia
| | - Branka Grubor-Bauk
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute , Adelaide, South Australia, Australia
| | - Darren Miller
- Division of Information Technology, Engineering and the Environment, School of Engineering, University of South Australia , Adelaide, South Australia, Australia
| | - Tamsin Garrod
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute , Adelaide, South Australia, Australia
| | - Stanley Yu
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute , Adelaide, South Australia, Australia
| | - Steve Wesselingh
- South Australian Health and Medical Research Institute, North Terrace , Adelaide, South Australia, Australia
| | - Andreas Suhrbier
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute , Brisbane, Queensland, Australia
| | - Eric J Gowans
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute , Adelaide, South Australia, Australia
| |
Collapse
|