1
|
Kocherlakota S, Swinkels D, Van Veldhoven PP, Baes M. Mouse Models to Study Peroxisomal Functions and Disorders: Overview, Caveats, and Recommendations. Methods Mol Biol 2023; 2643:469-500. [PMID: 36952207 DOI: 10.1007/978-1-0716-3048-8_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
During the last three decades many mouse lines were created or identified that are deficient in one or more peroxisomal functions. Different methodologies were applied to obtain global, hypomorph, cell type selective, inducible, and knockin mice. Whereas some models closely mimic pathologies in patients, others strongly deviate or no human counterpart has been reported. Often, mice, apparently endowed with a stronger transcriptional adaptation, have to be challenged with dietary additions or restrictions in order to trigger phenotypic changes. Depending on the inactivated peroxisomal protein, several approaches can be taken to validate the loss-of-function. Here, an overview is given of the available mouse models and their most important characteristics.
Collapse
Affiliation(s)
- Sai Kocherlakota
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniëlle Swinkels
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Paul P Van Veldhoven
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Vejux A, Ghzaiel I, Nury T, Schneider V, Charrière K, Sghaier R, Zarrouk A, Leoni V, Moreau T, Lizard G. Oxysterols and multiple sclerosis: Physiopathology, evolutive biomarkers and therapeutic strategy. J Steroid Biochem Mol Biol 2021; 210:105870. [PMID: 33684483 DOI: 10.1016/j.jsbmb.2021.105870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis is an autoimmune disease that affects the central nervous system. Dysfunction of the immune system leads to lesions that cause motor, sensory, cognitive, visual and/or sphincter disturbances. In the long term, these disorders can progress towards an irreversible handicap. The diagnosis takes time because there are no specific criteria to diagnose multiple sclerosis. To realize the diagnosis, a combination of clinical, biological, and radiological arguments is therefore required. Hence, there is a need to identify multiple sclerosis biomarkers. Some biomarkers target immunity through the detection of oligoclonal bands, the measurement of the IgG index and cytokines. During the physiopathological process, the blood-brain barrier can be broken, and this event can be identified by measuring metalloproteinase activity and diffusion of gadolinium in the brain by magnetic resonance imaging. Markers of demyelination and of astrocyte and microglial activity may also be of interest as well as markers of neuronal damage and mitochondrial status. The measurement of different lipids in the plasma and cerebrospinal fluid can also provide suitable information. These different lipids include fatty acids, fatty acid peroxidation products, phospholipids as well as oxidized derivatives of cholesterol (oxysterols). Oxysterols could constitute new biomarkers providing information on the form of multiple sclerosis, the outcome of the disease and the answer to treatment.
Collapse
Affiliation(s)
- Anne Vejux
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France.
| | - Imen Ghzaiel
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; Faculty of Medicine, LR12ES05, Lab-NAFS "Nutrition - Functional Food & Vascular Health", University of Monastir, Monastir, Tunisia
| | - Thomas Nury
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France
| | - Vincent Schneider
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; University Hospital, Department of Neurology, Dijon, France
| | - Karine Charrière
- Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique, INSERM CIC 1431, 25030, Besançon Cedex, France
| | - Randa Sghaier
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France
| | - Amira Zarrouk
- Faculty of Medicine, LR12ES05, Lab-NAFS "Nutrition - Functional Food & Vascular Health", University of Monastir, Monastir, Tunisia; Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy
| | - Thibault Moreau
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; University Hospital, Department of Neurology, Dijon, France
| | - Gérard Lizard
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France.
| |
Collapse
|
3
|
Yan Y, Mao X, Zhang Q, Ye Y, Dai Y, Bao M, Zeng Y, Huang R, Mo Z. Molecular mechanisms, immune cell infiltration, and potential drugs for prostate cancer. Cancer Biomark 2021; 31:87-96. [PMID: 33780364 DOI: 10.3233/cbm-200939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The molecular mechanisms involved in the prostate cancer and their relationship with immune cell infiltration are not fully understood. The prostate cancer patients undergoing standard androgen deprivation therapy eventually develop castration resistant prostate cancer (CRPC) for which there is no effective treatment currently available, and the hub genes involved in this process remain unclear. OBJECTIVE To study prostate cancer systematically and comprehensively. METHODS Differentially expressed genes (DEGs) of prostate cancer were screened in The Cancer Genome Atlas (TCGA) database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Connectivity Map (Cmap) software was applied to discover potential treatment drugs. A protein-protein interaction (PPI) analysis was performed to obtained the hub genes, and the relationship between hub genes and immune cell infiltration was investigated. Next, RNAseq data of hormone-sensitive prostate cancer samples and CRPC samples obtained from TCGA database was further analyzed to identify DEGs. Finally, a PPI analysis was performed to obtain the hub genes. RESULTS A total of 319 DEGs were identified between prostate cancer samples and normal adjacent samples from TCGA database using comparative analysis. The KEGG pathway analysis showed significant correlations with drug metabolism, metabolism of xenobiotics by cytochrome P450, and chemical carcinogenesis. AMACR, FOLH1 and NPY, three hub genes, were found to be upregulated. FOLH1 was positively correlated with CD8+ T cell infiltration. FOLH1, AMACR, and NPY were negatively correlated with CD4+ T cell infiltration. A total of 426 DEGs were identified from RNAseq data of hormone-sensitive prostate cancer samples and CRPC samples using further comparative analysis. KEGG pathway enrichment analysis showed significant correlations with arachidonic acid metabolism, PPAR signaling pathway, AMPK signaling pathway, and metabolic pathways. The top 10 hub genes in PPI network were screened out, including PPARG, SREBF1, SCD, HMGCR, FASN, PTGS2, HMGCS2, SREBF2, FDFT1, and INSIG1. Among them, SCD and FASN are expected to be the potential therapeutic targets for CRPC. CONCLUSIONS AMACR, FOLH1 and NPY may be effective therapeutic targets and specific diagnostic markers for prostate cancer. AMACR, FOLH1, and NPY are also closely associated with immune cell infiltration in prostate cancer. Moreover, aminoglutethimide and resveratrol were found to be the promising drugs for treating prostate cancer. The progression of hormone-sensitive prostate cancer to CRPC may be related to arachidonic acid metabolism, PPAR signaling pathway, AMPK signaling pathway, and other metabolic pathways. SCD and FASN are expected to be the potential therapeutic targets for CRPC.
Collapse
Affiliation(s)
- Yunkun Yan
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, China.,Department of Urology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xingning Mao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Qingyun Zhang
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, China.,Department of Urology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Ye
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, China.,Department of Urology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Dai
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Mengying Bao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanyu Zeng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Rong Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Zengnan Mo
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, China.,Department of Urology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Blum L, Tafferner N, Spring I, Kurz J, deBruin N, Geisslinger G, Parnham MJ, Schiffmann S. Dietary phytol reduces clinical symptoms in experimental autoimmune encephalomyelitis (EAE) at least partially by modulating NOX2 expression. J Mol Med (Berl) 2018; 96:1131-1144. [PMID: 30151738 DOI: 10.1007/s00109-018-1689-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system. We investigated the effect of phytol in an animal model of MS, experimental autoimmune encephalomyelitis (EAE), as phytol, a plant-derived diterpene alcohol, exerts anti-inflammatory and redox-protective actions. We observed a significant amelioration of clinical symptoms in EAE C57BL/6N mice fed prophylactically with a phytol-enriched diet. Demyelination, DNA damage, and infiltration of immune cells, specifically TH1 cells, into the central nervous system were reduced in phytol-fed EAE mice. Furthermore, phytol reduced T-cell proliferation ex vivo. Phytanic acid - a metabolite of phytol - also reduced T-cell proliferation, specifically that of TH1 cells. Additionally, phytol-enriched diet increased the mRNA expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX) 2 in white blood cells in the lymph nodes. Accordingly, phytol lost its anti-inflammatory effects in chimeric EAE C57BL/6N mice whose peripheral cells lack NOX2, indicating that phytol mediates its effects in peripheral cells via NOX2. Moreover, the effects of phytol on T-cell proliferation were also NOX2-dependent. In contrast, the T-cell subtype alterations and changes in proliferation induced by phytanic acid, the primary metabolite of phytol, were NOX2-independent. In conclusion, phytol supplementation of the diet leads to amelioration of EAE pathology in both a NOX2-dependent and a NOX2-independent manner via yet unknown mechanisms. KEY MESSAGES Phytol diet ameliorates EAE pathology. Phytol diet reduces demyelination, immune cell infiltration, and T-cell proliferation. Phytol diet increases NOX2 mRNA expression in white blood cells in the lymph nodes. Phytol mediates its effects in peripheral cells via NOX2. Effects of phytol on T-cell proliferation were NOX2-dependent.
Collapse
Affiliation(s)
- Leonard Blum
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Nadja Tafferner
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Ilknur Spring
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Jennifer Kurz
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Natasja deBruin
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Michael J Parnham
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Susanne Schiffmann
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany. .,Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| |
Collapse
|