1
|
Cao TP, Shahine A, Cox LR, Besra GS, Moody DB, Rossjohn J. A structural perspective of how T cell receptors recognize the CD1 family of lipid antigen-presenting molecules. J Biol Chem 2024; 300:107511. [PMID: 38945451 DOI: 10.1016/j.jbc.2024.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024] Open
Abstract
The CD1 family of antigen-presenting molecules adopt a major histocompatibility complex class I (MHC-I) fold. Whereas MHC molecules present peptides, the CD1 family has evolved to bind self- and foreign-lipids. The CD1 family of antigen-presenting molecules comprises four members-CD1a, CD1b, CD1c, and CD1d-that differ in their architecture around the lipid-binding cleft, thereby enabling diverse lipids to be accommodated. These CD1-lipid complexes are recognized by T cell receptors (TCRs) expressed on T cells, either through dual recognition of CD1 and lipid or in a new model whereby the TCR directly contacts CD1, thereby triggering an immune response. Chemical syntheses of lipid antigens, and analogs thereof, have been crucial in understanding the underlying specificity of T cell-mediated lipid immunity. This review will focus on our current understanding of how TCRs interact with CD1-lipid complexes, highlighting how it can be fundamentally different from TCR-MHC-peptide corecognition.
Collapse
Affiliation(s)
- Thinh-Phat Cao
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK.
| |
Collapse
|
2
|
Boonchalermvichian C, Yan H, Gupta B, Rubin A, Baker J, Negrin RS. invariant Natural Killer T cell therapy as a novel therapeutic approach in hematological malignancies. FRONTIERS IN TRANSPLANTATION 2024; 3:1353803. [PMID: 38993780 PMCID: PMC11235242 DOI: 10.3389/frtra.2024.1353803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 07/13/2024]
Abstract
Invariant Natural Killer T cell therapy is an emerging platform of immunotherapy for cancer treatment. This unique cell population is a promising candidate for cell therapy for cancer treatment because of its inherent cytotoxicity against CD1d positive cancers as well as its ability to induce host CD8 T cell cross priming. Substantial evidence supports that iNKT cells can modulate myelomonocytic populations in the tumor microenvironment to ameliorate immune dysregulation to antagonize tumor progression. iNKT cells can also protect from graft-versus-host disease (GVHD) through several mechanisms, including the expansion of regulatory T cells (Treg). Ultimately, iNKT cell-based therapy can retain antitumor activity while providing protection against GVHD simultaneously. Therefore, these biological properties render iNKT cells as a promising "off-the-shelf" therapy for diverse hematological malignancies and possible solid tumors. Further the introduction of a chimeric antigen recetor (CAR) can further target iNKT cells and enhance function. We foresee that improved vector design and other strategies such as combinatorial treatments with small molecules or immune checkpoint inhibitors could improve CAR iNKT in vivo persistence, functionality and leverage anti-tumor activity along with the abatement of iNKT cell dysfunction or exhaustion.
Collapse
|
3
|
Tsuji M, Nair MS, Masuda K, Castagna C, Chong Z, Darling TL, Seehra K, Hwang Y, Ribeiro ÁL, Ferreira GM, Corredor L, Coelho-Dos-Reis JGA, Tsuji Y, Mori M, Boon ACM, Diamond MS, Huang Y, Ho DD. An immunostimulatory glycolipid that blocks SARS-CoV-2, RSV, and influenza infections in vivo. Nat Commun 2023; 14:3959. [PMID: 37402814 DOI: 10.1038/s41467-023-39738-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
Prophylactic vaccines for SARS-CoV-2 have lowered the incidence of severe COVID-19, but emergence of viral variants that are antigenically distinct from the vaccine strains are of concern and additional, broadly acting preventive approaches are desirable. Here, we report on a glycolipid termed 7DW8-5 that exploits the host innate immune system to enable rapid control of viral infections in vivo. This glycolipid binds to CD1d on antigen-presenting cells and thereby stimulates NKT cells to release a cascade of cytokines and chemokines. The intranasal administration of 7DW8-5 prior to virus exposure significantly blocked infection by three different authentic variants of SARS-CoV-2, as well as by respiratory syncytial virus and influenza virus, in mice or hamsters. We also found that this protective antiviral effect is both host-directed and mechanism-specific, requiring both the CD1d molecule and interferon-[Formula: see text]. A chemical compound like 7DW8-5 that is easy to administer and cheap to manufacture may be useful not only in slowing the spread of COVID-19 but also in responding to future pandemics long before vaccines or drugs are developed.
Collapse
Affiliation(s)
- Moriya Tsuji
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Manoj S Nair
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Kazuya Masuda
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Candace Castagna
- Institute of Comparative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Zhenlu Chong
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tamarand L Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kuljeet Seehra
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Youngmin Hwang
- Columbia Center for Human Development, Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Ágata Lopes Ribeiro
- Basic and Applied Virology Laboratory, Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Geovane Marques Ferreira
- Basic and Applied Virology Laboratory, Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laura Corredor
- Institute of Comparative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - Yukiko Tsuji
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Munemasa Mori
- Columbia Center for Human Development, Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Creemers JHA, Pawlitzky I, Grosios K, Gileadi U, Middleton MR, Gerritsen WR, Mehra N, Rivoltini L, Walters I, Figdor CG, Ottevanger PB, de Vries IJM. Assessing the safety, tolerability and efficacy of PLGA-based immunomodulatory nanoparticles in patients with advanced NY-ESO-1-positive cancers: a first-in-human phase I open-label dose-escalation study protocol. BMJ Open 2021; 11:e050725. [PMID: 34848513 PMCID: PMC8634237 DOI: 10.1136/bmjopen-2021-050725] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION The undiminished need for more effective cancer treatments stimulates the development of novel cancer immunotherapy candidates. The archetypical cancer immunotherapy would induce robust, targeted and long-lasting immune responses while simultaneously circumventing immunosuppression in the tumour microenvironment. For this purpose, we developed a novel immunomodulatory nanomedicine: PRECIOUS-01. As a PLGA-based nanocarrier, PRECIOUS-01 encapsulates a tumour antigen (NY-ESO-1) and an invariant natural killer T cell activator to target and augment specific antitumour immune responses in patients with NY-ESO-1-expressing advanced cancers. METHODS AND ANALYSIS This open-label, first-in-human, phase I dose-escalation trial investigates the safety, tolerability and immune-modulatory activity of increasing doses of PRECIOUS-01 administered intravenously in subjects with advanced NY-ESO-1-expressing solid tumours. A total of 15 subjects will receive three intravenous infusions of PRECIOUS-01 at a 3-weekly interval in three dose-finding cohorts. The trial follows a 3+3 design for the dose-escalation steps to establish a maximum tolerated dose (MTD) and/or recommended phase II dose (RP2D). Depending on the toxicity, the two highest dosing cohorts will be extended to delineate the immune-related parameters as a readout for pharmacodynamics. Subjects will be monitored for safety and the occurrence of dose-limiting toxicities. If the MTD is not reached in the planned dose-escalation cohorts, the RP2D will be based on the observed safety and immune-modulatory activity as a pharmacodynamic parameter supporting the RP2D. The preliminary efficacy will be evaluated as an exploratory endpoint using the best overall response rate, according to Response Evaluation Criteria in Solid Tumors V.1.1. ETHICS AND DISSEMINATION The Dutch competent authority (CCMO) reviewed the trial application and the medical research ethics committee (CMO Arnhem-Nijmegen) approved the trial under registration number NL72876.000.20. The results will be disseminated via (inter)national conferences and submitted for publication to a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT04751786.
Collapse
Affiliation(s)
- Jeroen H A Creemers
- Department of Tumor Immunology, Radboudumc, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | | | | | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Mark R Middleton
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | | | - Niven Mehra
- Department of Medical Oncology, Radboudumc, Nijmegen, The Netherlands
| | - Licia Rivoltini
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Lombardia, Italy
| | | | - Carl G Figdor
- Department of Tumor Immunology, Radboudumc, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | | | | |
Collapse
|
5
|
Dölen Y, Gileadi U, Chen JL, Valente M, Creemers JHA, Van Dinther EAW, van Riessen NK, Jäger E, Hruby M, Cerundolo V, Diken M, Figdor CG, de Vries IJM. PLGA Nanoparticles Co-encapsulating NY-ESO-1 Peptides and IMM60 Induce Robust CD8 and CD4 T Cell and B Cell Responses. Front Immunol 2021; 12:641703. [PMID: 33717196 PMCID: PMC7947615 DOI: 10.3389/fimmu.2021.641703] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor-specific neoantigens can be highly immunogenic, but their identification for each patient and the production of personalized cancer vaccines can be time-consuming and prohibitively expensive. In contrast, tumor-associated antigens are widely expressed and suitable as an off the shelf immunotherapy. Here, we developed a PLGA-based nanoparticle vaccine that contains both the immunogenic cancer germline antigen NY-ESO-1 and an α-GalCer analog IMM60, as a novel iNKT cell agonist and dendritic cell transactivator. Three peptide sequences (85-111, 117-143, and 157-165) derived from immunodominant regions of NY-ESO-1 were selected. These peptides have a wide HLA coverage and were efficiently processed and presented by dendritic cells via various HLA subtypes. Co-delivery of IMM60 enhanced CD4 and CD8 T cell responses and antibody levels against NY-ESO-1 in vivo. Moreover, the nanoparticles have negligible systemic toxicity in high doses, and they could be produced according to GMP guidelines. Together, we demonstrated the feasibility of producing a PLGA-based nanovaccine containing immunogenic peptides and an iNKT cell agonist, that is activating DCs to induce antigen-specific T cell responses.
Collapse
Affiliation(s)
- Yusuf Dölen
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands.,Oncode Institute, Nijmegen, Netherlands
| | - Uzi Gileadi
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ji-Li Chen
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael Valente
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands.,Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Jeroen H A Creemers
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands.,Oncode Institute, Nijmegen, Netherlands
| | - Eric A W Van Dinther
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands.,Oncode Institute, Nijmegen, Netherlands
| | - N Koen van Riessen
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Eliezer Jäger
- Institute of Macromolecular Chemistry v. v. i., Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Martin Hruby
- Institute of Macromolecular Chemistry v. v. i., Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands.,Oncode Institute, Nijmegen, Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| |
Collapse
|
6
|
Abstract
Personalized cancer vaccines (PCVs) are reinvigorating vaccine strategies in cancer immunotherapy. In contrast to adoptive T-cell therapy and checkpoint blockade, the PCV strategy modulates the innate and adaptive immune systems with broader activation to redeploy antitumor immunity with individualized tumor-specific antigens (neoantigens). Following a sequential scheme of tumor biopsy, mutation analysis, and epitope prediction, the administration of neoantigens with synthetic long peptide (SLP) or mRNA formulations dramatically improves the population and activity of antigen-specific CD4+ and CD8+ T cells. Despite the promising prospect of PCVs, there is still great potential for optimizing prevaccination procedures and vaccine potency. In particular, the arduous development of tumor-associated antigen (TAA)-based vaccines provides valuable experience and rational principles for augmenting vaccine potency which is expected to advance PCV through the design of adjuvants, delivery systems, and immunosuppressive tumor microenvironment (TME) reversion since current personalized vaccination simply admixes antigens with adjuvants. Considering the broader application of TAA-based vaccine design, these two strategies complement each other and can lead to both personalized and universal therapeutic methods. Chemical strategies provide vast opportunities for (1) exploring novel adjuvants, including synthetic molecules and materials with optimizable activity, (2) constructing efficient and precise delivery systems to avoid systemic diffusion, improve biosafety, target secondary lymphoid organs, and enhance antigen presentation, and (3) combining bioengineering methods to innovate improvements in conventional vaccination, "smartly" re-educate the TME, and modulate antitumor immunity. As chemical strategies have proven versatility, reliability, and universality in the design of T cell- and B cell-based antitumor vaccines, the union of such numerous chemical methods in vaccine construction is expected to provide new vigor and vitality in cancer treatment.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
7
|
Lechuga-Vieco AV, Latorre-Pellicer A, Johnston IG, Prota G, Gileadi U, Justo-Méndez R, Acín-Pérez R, Martínez-de-Mena R, Fernández-Toro JM, Jimenez-Blasco D, Mora A, Nicolás-Ávila JA, Santiago DJ, Priori SG, Bolaños JP, Sabio G, Criado LM, Ruíz-Cabello J, Cerundolo V, Jones NS, Enríquez JA. Cell identity and nucleo-mitochondrial genetic context modulate OXPHOS performance and determine somatic heteroplasmy dynamics. SCIENCE ADVANCES 2020; 6:eaba5345. [PMID: 32832682 PMCID: PMC7439646 DOI: 10.1126/sciadv.aba5345] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/17/2020] [Indexed: 05/02/2023]
Abstract
Heteroplasmy, multiple variants of mitochondrial DNA (mtDNA) in the same cytoplasm, may be naturally generated by mutations but is counteracted by a genetic mtDNA bottleneck during oocyte development. Engineered heteroplasmic mice with nonpathological mtDNA variants reveal a nonrandom tissue-specific mtDNA segregation pattern, with few tissues that do not show segregation. The driving force for this dynamic complex pattern has remained unexplained for decades, challenging our understanding of this fundamental biological problem and hindering clinical planning for inherited diseases. Here, we demonstrate that the nonrandom mtDNA segregation is an intracellular process based on organelle selection. This cell type-specific decision arises jointly from the impact of mtDNA haplotypes on the oxidative phosphorylation (OXPHOS) system and the cell metabolic requirements and is strongly sensitive to the nuclear context and to environmental cues.
Collapse
Affiliation(s)
- Ana Victoria Lechuga-Vieco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- CIBERES: C/ Melchor Fernández-Almagro 3, 28029 Madrid, Spain
| | - Ana Latorre-Pellicer
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, IIS Aragon, E-50009 Zaragoza, Spain
| | - Iain G. Johnston
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway
| | - Gennaro Prota
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Raquel Justo-Méndez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Rebeca Acín-Pérez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | | | | - Daniel Jimenez-Blasco
- IBFG, Universidad de Salamanca, Salamanca, Spain
- IBSAL, Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
- CIBERFES, C/Melchor Fernández-Almagro 3, 28029 Madrid, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | | - Demetrio J. Santiago
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Silvia G. Priori
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Juan Pedro Bolaños
- IBFG, Universidad de Salamanca, Salamanca, Spain
- IBSAL, Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
- CIBERFES, C/Melchor Fernández-Almagro 3, 28029 Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Luis Miguel Criado
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Jesús Ruíz-Cabello
- CIBERES: C/ Melchor Fernández-Almagro 3, 28029 Madrid, Spain
- CIC biomaGUNE 20014 Donostia/San Sebastián, Gipuzkoa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Universidad Complutense Madrid, Madrid, Spain
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nick S. Jones
- EPSRC Centre for the Mathematics of Precision Healthcare, Department of Mathematics, Imperial College London, London SW7 2BB, UK
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- CIBERFES, C/Melchor Fernández-Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
8
|
Dölen Y, Valente M, Tagit O, Jäger E, Van Dinther EAW, van Riessen NK, Hruby M, Gileadi U, Cerundolo V, Figdor CG. Nanovaccine administration route is critical to obtain pertinent iNKt cell help for robust anti-tumor T and B cell responses. Oncoimmunology 2020; 9:1738813. [PMID: 33457086 PMCID: PMC7790498 DOI: 10.1080/2162402x.2020.1738813] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nanovaccines, co-delivering antigen and invariant natural killer T (iNKT) cell agonists, proved to be very effective in inducing anti-tumor T cell responses due to their exceptional helper function. However, it is known that iNKT cells are not equally present in all lymphoid organs and nanoparticles do not get evenly distributed to all immune compartments. In this study, we evaluated the effect of the vaccination route on iNKT cell help to T and B cell responses for the first time in an antigen and agonist co-delivery setting. Intravenous administration of PLGA nanoparticles was mainly targeting liver and spleen where iNKT1 cells are abundant and induced the highest serum IFN-y levels, T cell cytotoxicity, and Th-1 type antibody responses. In comparison, after subcutaneous or intranodal injections, nanoparticles mostly drained or remained in regional lymph nodes where iNKT17 cells were abundant. After subcutaneous and intranodal injections, antigen-specific IgG2 c production was hampered and IFN-y production, as well as cytotoxic T cell responses, depended on sporadic systemic drainage. Therapeutic anti-tumor experiments also demonstrated a clear advantage of intravenous injection over intranodal or subcutaneous vaccinations. Moreover, tumor control could be further improved by PD-1 immune checkpoint blockade after intravenous vaccination, but not by intranodal vaccination. Anti PD-1 antibody combination mainly exerts its effect by prolonging the cytotoxicity of T cells. Nanovaccines also demonstrated synergism with anti-4-1BB agonistic antibody treatment in controlling tumor growth. We conclude that nanovaccines containing iNKT cell agonists shall be preferentially administered intravenously, to optimally reach cellular partners for inducing effective anti-tumor immune responses.
Collapse
Affiliation(s)
- Yusuf Dölen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - Michael Valente
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - Oya Tagit
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - Eliezer Jäger
- Institute of Macromolecular Chemistry V.v.i., Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | - Eric A W Van Dinther
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - N Koen van Riessen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - Martin Hruby
- Institute of Macromolecular Chemistry V.v.i., Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Bedard M, Shrestha D, Priestman DA, Wang Y, Schneider F, Matute JD, Iyer SS, Gileadi U, Prota G, Kandasamy M, Veerapen N, Besra G, Fritzsche M, Zeissig S, Shevchenko A, Christianson JC, Platt FM, Eggeling C, Blumberg RS, Salio M, Cerundolo V. Sterile activation of invariant natural killer T cells by ER-stressed antigen-presenting cells. Proc Natl Acad Sci U S A 2019; 116:23671-23681. [PMID: 31690657 PMCID: PMC6876220 DOI: 10.1073/pnas.1910097116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Invariant NKT (iNKT) cells have the unique ability to shape immunity during antitumor immune responses and other forms of sterile and nonsterile inflammation. Recent studies have highlighted a variety of classes of endogenous and pathogen-derived lipid antigens that can trigger iNKT cell activation under sterile and nonsterile conditions. However, the context and mechanisms that drive the presentation of self-lipid antigens in sterile inflammation remain unclear. Here we report that endoplasmic reticulum (ER)-stressed myeloid cells, via signaling events modulated by the protein kinase RNA-like ER kinase (PERK) pathway, increase CD1d-mediated presentation of immunogenic endogenous lipid species, which results in enhanced iNKT cell activation both in vitro and in vivo. In addition, we demonstrate that actin cytoskeletal reorganization during ER stress results in an altered distribution of CD1d on the cell surface, which contributes to enhanced iNKT cell activation. These results define a previously unidentified mechanism that controls iNKT cell activation during sterile inflammation.
Collapse
Affiliation(s)
- Melissa Bedard
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Dilip Shrestha
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - David A Priestman
- Department of Pharmacology, University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Yuting Wang
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Falk Schneider
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Juan D Matute
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115
- Division of Neonatology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Shankar S Iyer
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115
| | - Uzi Gileadi
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Gennaro Prota
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Matheswaran Kandasamy
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, B15 2TT Egdbaston, United Kingdom
| | - Gurdyal Besra
- School of Biosciences, University of Birmingham, B15 2TT Egdbaston, United Kingdom
| | - Marco Fritzsche
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
- Kennedy Institute for Rheumatology, University of Oxford, OX3 7LF Oxford, United Kingdom
| | - Sebastian Zeissig
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Medicine I, University Medical Center Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - John C Christianson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, OX3 7LD Oxford, United Kingdom
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Christian Eggeling
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
- Institute of Applied Optics and Biophysics, 07743 Jena, Germany
- Department of Biophysical Imaging, Leibniz Institute of Photonic Technologies e.V., 07745 Jena, Germany
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom;
| |
Collapse
|
10
|
Fereidouni M, Derakhshani A, Exley MA. iNKT cells and hematopoietic stem cell transplantation: Two-phase activation of iNKT cells may improve outcome. Clin Immunol 2019; 207:43-48. [PMID: 31128279 DOI: 10.1016/j.clim.2019.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/22/2023]
Abstract
Invariant natural killer T cells (iNKT) produce large amounts of different cytokines which can influence differentiation, polarization and activation of immune cells, particularly NK and T cells. iNKT have been shown to suppress GvHD and promote anti-tumor and anti-pathogen immunity. There are highly specific and safe synthetic ligands such as alpha-galactosylceramide (α-GalCer) and C20:2 which activate iNKT cells toward relatively Th1 and Th2 pathways, respectively. Bone marrow transplantation (BMT) or 'hematopoietic stem cell transplantation' (HSCT) is effective for leukemia and lymphoma through 'graft-versus-leukemia' (GVL) immunity. However, frequent serious complications include graft-versus-host-disease (GVHD), opportunistic infections and relapse. Both GVHD and GVL are mediated by T cells. Manipulating iNKT by different lipid analogues in early and late phases after transplantation may suppress GVHD and graft rejection and enhance GVL effect, as well as resistance to opportunistic infections and so, could be a novel and effective strategy for improving HSCT outcome.
Collapse
Affiliation(s)
- Mohammad Fereidouni
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Asthma, Allergy & Immunology Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Afshin Derakhshani
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Asthma, Allergy & Immunology Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mark A Exley
- Division of Gastroenterology, Endoscopy, and Hepatology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK.
| |
Collapse
|
11
|
Humeniuk P, Geiselhart S, Battin C, Webb T, Steinberger P, Paster W, Hoffmann-Sommergruber K. Generation of a Jurkat-based fluorescent reporter cell line to evaluate lipid antigen interaction with the human iNKT cell receptor. Sci Rep 2019; 9:7426. [PMID: 31092850 PMCID: PMC6520406 DOI: 10.1038/s41598-019-43529-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/23/2019] [Indexed: 12/27/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a specialized subset of T cells contributing to both, the innate and adaptive immune responses. In contrast to conventional T lymphocytes they recognize lipid antigens. The aim of the project is to establish a novel model system, to study iNKT-TCR - ligand interaction. An iNKT reporter cell line (JE6-1REP-iNKT) was engineered by introducing the human iNKT-TCR into a human leukemic T cell line carrying an NF-κB-driven fluorescent transcriptional reporter construct. Antigen presenting BWSTIM cells expressing human CD1d and CD80 were generated. Reporter induction in JE6-1REP-iNKT cells was assessed by flow cytometry. CRISPR/Cas9 was used for β2M knock out in JE6-1REP-iNKT cells to abrogate CD1d expression and thus excluding antigen self-presentation. Reporter cells were shown to specifically react with iNKT antigens presented via CD1d. Their sensitivity towards α-GalCer was comparable to a murine iNKT hybridoma cell line. In conclusion, we created a novel iNKT reporter platform which, compared to traditional iNKT cell assays, is characterized by a shorter turnaround time and lower costs. It thus facilitates the identification of antigenic structures that drive the activation of iNKT cells in health and disease.
Collapse
Affiliation(s)
- Piotr Humeniuk
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Sabine Geiselhart
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Claire Battin
- Institute of Immunology, Division of Immune Receptors and T cell Activation, Medical University of Vienna, Vienna, Austria
| | - Tonya Webb
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Peter Steinberger
- Institute of Immunology, Division of Immune Receptors and T cell Activation, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Paster
- Institute of Immunology, Division of Immune Receptors and T cell Activation, Medical University of Vienna, Vienna, Austria.
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria.
| | | |
Collapse
|
12
|
Koerner J, Horvath D, Groettrup M. Harnessing Dendritic Cells for Poly (D,L-lactide- co-glycolide) Microspheres (PLGA MS)-Mediated Anti-tumor Therapy. Front Immunol 2019; 10:707. [PMID: 31024545 PMCID: PMC6460768 DOI: 10.3389/fimmu.2019.00707] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
With emerging success in fighting off cancer, chronic infections, and autoimmune diseases, immunotherapy has become a promising therapeutic approach compared to conventional therapies such as surgery, chemotherapy, radiation therapy, or immunosuppressive medication. Despite the advancement of monoclonal antibody therapy against immune checkpoints, the development of safe and efficient cancer vaccine formulations still remains a pressing medical need. Anti-tumor immunotherapy requires the induction of antigen-specific CD8+ cytotoxic T lymphocyte (CTL) responses which recognize and specifically destroy tumor cells. Due to the crucial role of dendritic cells (DCs) in initiating anti-tumor immunity, targeting tumor antigens to DCs has become auspicious in modern vaccine research. Over the last two decades, micron- or nanometer-sized particulate delivery systems encapsulating tumor antigens and immunostimulatory molecules into biodegradable polymers have shown great promise for the induction of potent, specific and long-lasting anti-tumor responses in vivo. Enhanced vaccine efficiency of the polymeric micro/nanoparticles has been attributed to controlled and continuous release of encapsulated antigens, efficient targeting of antigen presenting cells (APCs) such as DCs and subsequent induction of CTL immunity. Poly (D, L-lactide-co-glycolide) (PLGA), as one of these polymers, has been extensively studied for the design and development of particulate antigen delivery systems in cancer therapy. This review provides an overview of the current state of research on the application of PLGA microspheres (PLGA MS) as anti-tumor cancer vaccines in activating and potentiating immune responses attempting to highlight their potential in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
13
|
Bedard M, Salio M, Cerundolo V. Harnessing the Power of Invariant Natural Killer T Cells in Cancer Immunotherapy. Front Immunol 2017; 8:1829. [PMID: 29326711 PMCID: PMC5741693 DOI: 10.3389/fimmu.2017.01829] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a distinct subset of innate-like lymphocytes bearing an invariant T-cell receptor, through which they recognize lipid antigens presented by monomorphic CD1d molecules. Upon activation, iNKT cells are capable of not only having a direct effector function but also transactivating NK cells, maturing dendritic cells, and activating B cells, through secretion of several cytokines and cognate TCR-CD1d interaction. Endowed with the ability to orchestrate an all-encompassing immune response, iNKT cells are critical in shaping immune responses against pathogens and cancer cells. In this review, we examine the critical role of iNKT cells in antitumor responses from two perspectives: (i) how iNKT cells potentiate antitumor immunity and (ii) how CD1d+ tumor cells may modulate their own expression of CD1d molecules. We further explore hypotheses to explain iNKT cell activation in the context of cancer and how the antitumor effects of iNKT cells can be exploited in different forms of cancer immunotherapy, including their role in the development of cancer vaccines.
Collapse
Affiliation(s)
- Melissa Bedard
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Nair S, Dhodapkar MV. Natural Killer T Cells in Cancer Immunotherapy. Front Immunol 2017; 8:1178. [PMID: 29018445 PMCID: PMC5614937 DOI: 10.3389/fimmu.2017.01178] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/06/2017] [Indexed: 12/27/2022] Open
Abstract
Natural killer T (NKT) cells are specialized CD1d-restricted T cells that recognize lipid antigens. Following stimulation, NKT cells lead to downstream activation of both innate and adaptive immune cells in the tumor microenvironment. This has impelled the development of NKT cell-targeted immunotherapies for treating cancer. In this review, we provide a brief overview of the stimulatory and regulatory functions of NKT cells in tumor immunity as well as highlight preclinical and clinical studies based on NKT cells. Finally, we discuss future perspectives to better harness the potential of NKT cells for cancer therapy.
Collapse
Affiliation(s)
- Shiny Nair
- Yale University, New Haven, CT, United States
| | | |
Collapse
|
15
|
Salio M, Gasser O, Gonzalez-Lopez C, Martens A, Veerapen N, Gileadi U, Verter JG, Napolitani G, Anderson R, Painter G, Besra GS, Hermans IF, Cerundolo V. Activation of Human Mucosal-Associated Invariant T Cells Induces CD40L-Dependent Maturation of Monocyte-Derived and Primary Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:2631-2638. [PMID: 28877992 PMCID: PMC5632842 DOI: 10.4049/jimmunol.1700615] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/10/2017] [Indexed: 12/30/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate T cells that recognize intermediates of the vitamin B2 biosynthetic pathway presented by the monomorphic MR1 molecule. It remains unclear whether, in addition to their cytolytic activity that is important in antimicrobial defense, MAIT cells have immune-modulatory functions that could enhance dendritic cell (DC) maturation. In this study, we investigated the molecular mechanisms dictating the interactions between human MAIT cells and DCs and demonstrate that human MAIT cells mature monocyte-derived and primary DCs in an MR1- and CD40L-dependent manner. Furthermore, we show that MAIT cell–derived signals synergize with microbial stimuli to induce secretion of bioactive IL-12 by DCs. Activation of human MAIT cells in whole blood leads to MR1- and cytokine-dependent NK cell transactivation. Our results underscore an important property of MAIT cells, which can be of translational relevance to rapidly orchestrate adaptive immunity through DC maturation.
Collapse
Affiliation(s)
- Mariolina Salio
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom;
| | - Olivier Gasser
- Malaghan Institute of Medical Research, School of Biological Sciences, Victoria University of Wellington, Wellington 6242, New Zealand
| | - Claudia Gonzalez-Lopez
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Anne Martens
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Birmingham B11 2TT, United Kingdom
| | - Uzi Gileadi
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Jacob G Verter
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Giorgio Napolitani
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Regan Anderson
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5046, New Zealand; and
| | - Gavin Painter
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5046, New Zealand; and
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham B11 2TT, United Kingdom
| | - Ian F Hermans
- Malaghan Institute of Medical Research, School of Biological Sciences, Victoria University of Wellington, Wellington 6242, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1042, New Zealand
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
16
|
Galactosylsphingamides: new α-GalCer analogues to probe the F'-pocket of CD1d. Sci Rep 2017; 7:4276. [PMID: 28655912 PMCID: PMC5487351 DOI: 10.1038/s41598-017-04461-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/16/2017] [Indexed: 01/08/2023] Open
Abstract
Invariant Natural Killer T-cells (iNKT-cells) are an attractive target for immune response modulation, as upon CD1d-mediated stimulation with KRN7000, a synthetic α-galactosylceramide, they produce a vast amount of cytokines. Here we present a synthesis that allows swift modification of the phytosphingosine side chain by amidation of an advanced methyl ester precursor. The resulting KRN7000 derivatives, termed α-galactosylsphingamides, were evaluated for their capacity to stimulate iNKT-cells. While introduction of the amide-motif in the phytosphingosine chain is tolerated for CD1d binding and TCR recognition, the studied α-galactosylsphingamides showed compromised antigenic properties.
Collapse
|