1
|
Mihalić A, Železnjak J, Lisnić B, Jonjić S, Juranić Lisnić V, Brizić I. Immune surveillance of cytomegalovirus in tissues. Cell Mol Immunol 2024; 21:959-981. [PMID: 39134803 PMCID: PMC11364667 DOI: 10.1038/s41423-024-01186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 09/01/2024] Open
Abstract
Cytomegalovirus (CMV), a representative member of the Betaherpesvirinae subfamily of herpesviruses, is common in the human population, but immunocompetent individuals are generally asymptomatic when infected with this virus. However, in immunocompromised individuals and immunologically immature fetuses and newborns, CMV can cause a wide range of often long-lasting morbidities and even death. CMV is not only widespread throughout the population but it is also widespread in its hosts, infecting and establishing latency in nearly all tissues and organs. Thus, understanding the pathogenesis of and immune responses to this virus is a prerequisite for developing effective prevention and treatment strategies. Multiple arms of the immune system are engaged to contain the infection, and general concepts of immune control of CMV are now reasonably well understood. Nonetheless, in recent years, tissue-specific immune responses have emerged as an essential factor for resolving CMV infection. As tissues differ in biology and function, so do immune responses to CMV and pathological processes during infection. This review discusses state-of-the-art knowledge of the immune response to CMV infection in tissues, with particular emphasis on several well-studied and most commonly affected organs.
Collapse
Affiliation(s)
- Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Železnjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
2
|
Bubeníkova J, Futas J, Oppelt J, Plasil M, Vodicka R, Burger PA, Horin P. The natural cytotoxicity receptor (NCR) genes in the family Felidae. HLA 2022; 100:597-609. [PMID: 36056773 DOI: 10.1111/tan.14803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Abstract
Natural killer (NK) cells belong to the innate immune system. The germline-encoded natural killer cell receptors represent activating and inhibitory receptors regulating multiple NK cell activities. The natural cytotoxicity receptors (NCRs) are activating natural cytotoxicity triggering receptors 1, 2 and 3 (NKp46, NKp44, and NKp30), encoded by the genes NCR1, NCR2, and NCR3, respectively. NCRs may be expressed in different cell types engaged in mechanisms of innate and adaptive immunity. The family Felidae, comprising the domestic cat and a wide variety of free-ranging species represents a well-suited model for biomedical and evolutionary studies. We characterized the NCR1, NCR2 and NCR3 genes in a panel of felid species. We confirmed the presence of potentially functional genes NCR1, NCR2 and NCR3 in all species. All three genes are conserved within the family and are similar to other phylogenetically related mammalian families. The NCR1 and NCR2 phylogenetic trees based on both nucleotide and protein sequences corresponded to the current zoological taxonomy, with some exceptions suggesting effects of different selection pressures in some species. Highly conserved NCR3 sequences did not allow a robust phylogenetic analysis. Most interspecific differences both at the nucleotide and protein level were found in NCR2. Within species, the most polymorphic CDS was detected in NCR1. Selection analyses indicated the effects of purifying selection on individual amino acid sites in all three genes. In stray cats, a rather high intraspecific diversity was observed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jana Bubeníkova
- Dept. of Animal Genetics, VETUNI Brno, Brno, Czech Republic.,Research Group Animal Immunogenomics, CEITEC - VETUNI Brno, Brno, Czech Republic
| | - Jan Futas
- Dept. of Animal Genetics, VETUNI Brno, Brno, Czech Republic.,Research Group Animal Immunogenomics, CEITEC - VETUNI Brno, Brno, Czech Republic
| | - Jan Oppelt
- Research Group Animal Immunogenomics, CEITEC - VETUNI Brno, Brno, Czech Republic
| | - Martin Plasil
- Research Group Animal Immunogenomics, CEITEC - VETUNI Brno, Brno, Czech Republic
| | | | - Pamela A Burger
- Research Institute of Wildlife Ecology, VETMEDUNI Vienna, Vienna, Austria
| | - Petr Horin
- Dept. of Animal Genetics, VETUNI Brno, Brno, Czech Republic.,Research Group Animal Immunogenomics, CEITEC - VETUNI Brno, Brno, Czech Republic
| |
Collapse
|
3
|
Brdovčak MC, Materljan J, Šustić M, Ravlić S, Ružić T, Lisnić B, Miklić K, Brizić I, Matešić MP, Lisnić VJ, Halassy B, Rončević D, Knežević Z, Štefan L, Bertoglio F, Schubert M, Čičin-Šain L, Markotić A, Jonjić S, Krmpotić A. ChAdOx1-S adenoviral vector vaccine applied intranasally elicits superior mucosal immunity compared to the intramuscular route of vaccination. Eur J Immunol 2022; 52:936-945. [PMID: 35304741 PMCID: PMC9087383 DOI: 10.1002/eji.202249823] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/09/2022]
Abstract
COVID-19 vaccines prevent severe forms of the disease, but do not warrant complete protection against breakthrough infections. This could be due to suboptimal mucosal immunity at the site of virus entry, given that all currently approved vaccines are administered via the intramuscular route. In this study we assessed humoral and cellular immune responses in BALB/c mice after intranasal and intramuscular immunization with adenoviral vector ChAdOx1-S expressing full-length Spike protein of SARS-CoV-2. We showed that both routes of vaccination induced a potent IgG antibody response, as well as robust neutralizing capacity, but intranasal vaccination elicited a superior IgA antibody titer in the sera and in the respiratory mucosa. Bronchoalveolar lavage from intranasally immunized mice efficiently neutralized SARS-CoV-2, which has not been the case in intramuscularly immunized group. Moreover, substantially higher percentages of epitope-specific CD8 T cells exhibiting a tissue resident phenotype were found in the lungs of intranasally immunized animals. Finally, both intranasal and intramuscular vaccination with ChAdOx1-S efficiently protected the mice after the challenge with recombinant herpesvirus expressing the Spike protein. Our results demonstrate that intranasal application of adenoviral vector ChAdOx1-S induces superior mucosal immunity and therefore could be a promising strategy for putting the COVID-19 pandemic under control. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Maja Cokarić Brdovčak
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, 51000, Croatia
| | - Jelena Materljan
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, 51000, Croatia.,Department of Histology and Embryology, University of Rijeka, Rijeka, 51000, Croatia
| | - Marko Šustić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, 51000, Croatia
| | - Sanda Ravlić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - Tina Ružić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, 51000, Croatia
| | - Berislav Lisnić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, 51000, Croatia
| | - Karmela Miklić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, 51000, Croatia
| | - Ilija Brizić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, 51000, Croatia
| | | | - Vanda Juranić Lisnić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, 51000, Croatia
| | - Beata Halassy
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | | | | | - Leo Štefan
- JGL d.d. Jadran Galenski Laboratorij, Rijeka, 51 000, Croatia
| | - Federico Bertoglio
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, 38106, Germany
| | - Maren Schubert
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, 38106, Germany
| | - Luka Čičin-Šain
- Helmholtz Center for Infection Research, Department of Viral Immunology, Braunschweig, 38124, Germany
| | - Alemka Markotić
- University Hospital for Infectious Diseases "Fran Mihaljević", Zagreb, 10000, Croatia
| | - Stipan Jonjić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, 51000, Croatia
| | - Astrid Krmpotić
- Department of Histology and Embryology, University of Rijeka, Rijeka, 51000, Croatia
| |
Collapse
|
4
|
Angulo G, Zeleznjak J, Martínez-Vicente P, Puñet-Ortiz J, Hengel H, Messerle M, Oxenius A, Jonjic S, Krmpotić A, Engel P, Angulo A. Cytomegalovirus restricts ICOSL expression on antigen-presenting cells disabling T cell co-stimulation and contributing to immune evasion. eLife 2021; 10:59350. [PMID: 33459589 PMCID: PMC7840182 DOI: 10.7554/elife.59350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Viral infections are controlled, and very often cleared, by activated T lymphocytes. The inducible co-stimulator (ICOS) mediates its functions by binding to its ligand ICOSL, enhancing T-cell activation and optimal germinal center (GC) formation. Here, we show that ICOSL is heavily downmodulated during infection of antigen-presenting cells by different herpesviruses. We found that, in murine cytomegalovirus (MCMV), the immunoevasin m138/fcr-1 physically interacts with ICOSL, impeding its maturation and promoting its lysosomal degradation. This viral protein counteracts T-cell responses, in an ICOS-dependent manner, and limits virus control during the acute MCMV infection. Additionally, we report that blockade of ICOSL in MCMV-infected mice critically regulates the production of MCMV-specific antibodies due to a reduction of T follicular helper and GC B cells. Altogether, these findings reveal a novel mechanism evolved by MCMV to counteract adaptive immune surveillance, and demonstrates a role of the ICOS:ICOSL axis in the host defense against herpesviruses.
Collapse
Affiliation(s)
- Guillem Angulo
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Jelena Zeleznjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Pablo Martínez-Vicente
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Joan Puñet-Ortiz
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Hartmut Hengel
- Institute of Virology, University Medical Center, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Stipan Jonjic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Astrid Krmpotić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
5
|
Barrow AD, Martin CJ, Colonna M. The Natural Cytotoxicity Receptors in Health and Disease. Front Immunol 2019; 10:909. [PMID: 31134055 PMCID: PMC6514059 DOI: 10.3389/fimmu.2019.00909] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
The Natural Cytotoxicity Receptors (NCRs), NKp46, NKp44, and NKp30, were some of the first human activating Natural Killer (NK) cell receptors involved in the non-MHC-restricted recognition of tumor cells to be cloned over 20 years ago. Since this time many host- and pathogen-encoded ligands have been proposed to bind the NCRs and regulate the cytotoxic and cytokine-secreting functions of tissue NK cells. This diverse set of NCR ligands can manifest on the surface of tumor or virus-infected cells or can be secreted extracellularly, suggesting a remarkable NCR polyfunctionality that regulates the activity of NK cells in different tissue compartments during steady state or inflammation. Moreover, the NCRs can also be expressed by other innate and adaptive immune cell subsets under certain tissue conditions potentially conferring NK recognition programs to these cells. Here we review NCR biology in health and disease with particular reference to how this important class of receptors regulates the functions of tissue NK cells as well as confer NK cell recognition patterns to other innate and adaptive lymphocyte subsets. Finally, we highlight how NCR biology is being harnessed for novel therapeutic interventions particularly for enhanced tumor surveillance.
Collapse
Affiliation(s)
- Alexander David Barrow
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Claudia Jane Martin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
6
|
Pallmer K, Barnstorf I, Baumann NS, Borsa M, Jonjic S, Oxenius A. NK cells negatively regulate CD8 T cells via natural cytotoxicity receptor (NCR) 1 during LCMV infection. PLoS Pathog 2019; 15:e1007725. [PMID: 30995287 PMCID: PMC6469806 DOI: 10.1371/journal.ppat.1007725] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 03/21/2019] [Indexed: 11/23/2022] Open
Abstract
Besides their function in recognizing cancerous and virally infected cells, natural killer (NK) cells have the potential to shape adaptive immune responses. However, the mechanisms employed by NK cells to negatively regulate virus-specific CD8 T cell responses remain to be fully defined. Using activating receptor natural cytotoxicity receptor (NCR) 1 deficient (NCR1gfp/gfp) mice, we found increased numbers of virus-specific CD8 T cells, leading to enhanced virus control during acute LCMV infection. Furthermore, virus-specific CD8 T cells were more activated in the absence of NCR1, resulting in exacerbated immunopathology, documented by weight loss, and superior virus control early during chronic LCMV infection. Transfer experiments of virus-specific CD8 T cells into NCR1 deficient hosts revealed a direct cross talk between NK and CD8 T cells. Studies on the splenic microarchitecture revealed pronounced disorganization of T cells in infected NCR1gfp/gfp mice, resulting in enhanced immunopathology and disruption of the T cell niche upon chronic LCMV infection. Our data show a novel pathway employed by NK cells to regulate antiviral CD8 T cell responses, namely direct recognition and elimination of activated CD8 T cells via NCR1 early during infection to protect the host from an overshooting T cell response. LCMV, which is part of the Arenaviridae family, is a well-established mouse model for acute and chronic virus infections, and it has allowed the identification of many immunological principles that were subsequently confirmed in human infections, such as CTL escape or CD8 T cell exhaustion. NK cells belong to the first line defense, being activated early following infection or exposure to malignant cells, and mediate their antiviral or anti-tumoral effect by direct cytotoxicity and inflammatory cytokine secretion. While NK cells are dispensable for control of LCMV, NK cells have the potential to shape adaptive immunity by regulating T cell responses. The absence of NK cells leads to increased T cell immunity and thereby, to faster eradication of the virus. However, the detailed mechanisms of how NK cells control antiviral T cell responses is still poorly defined. Here, we identified the activating NK cell receptor NCR1 to be involved in the regulation of CD8 T cell responses during acute and chronic LCMV infection. The absence of NCR1 led to a more robust CD4 and CD8 T cell response and to superior viral control in acute and chronic LCMV infections. However, the increased CD8 T cell responses led to severe immunopathology in the setting of chronic infection. Hence, NK cells curtail CD8 T cell responses to protect the host from immunopathological damage in an NCR1 dependent manner.
Collapse
Affiliation(s)
| | | | | | - Mariana Borsa
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, Rijeka, Croatia
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
7
|
Almeida FF, Tognarelli S, Marçais A, Kueh AJ, Friede ME, Liao Y, Willis SN, Luong K, Faure F, Mercier FE, Galluso J, Firth M, Narni-Mancinelli E, Rais B, Scadden DT, Spallotta F, Weil S, Giannattasio A, Kalensee F, Zöller T, Huntington ND, Schleicher U, Chiocchetti AG, Ugolini S, Herold MJ, Shi W, Koch J, Steinle A, Vivier E, Walzer T, Belz GT, Ullrich E. A point mutation in the Ncr1 signal peptide impairs the development of innate lymphoid cell subsets. Oncoimmunology 2018; 7:e1475875. [PMID: 30288342 PMCID: PMC6169588 DOI: 10.1080/2162402x.2018.1475875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/01/2018] [Accepted: 05/07/2018] [Indexed: 01/06/2023] Open
Abstract
NKp46 (CD335) is a surface receptor shared by both human and mouse natural killer (NK) cells and innate lymphoid cells (ILCs) that transduces activating signals necessary to eliminate virus-infected cells and tumors. Here, we describe a spontaneous point mutation of cysteine to arginine (C14R) in the signal peptide of the NKp46 protein in congenic Ly5.1 mice and the newly generated NCRB6C14R strain. Ly5.1C14R NK cells expressed similar levels of Ncr1 mRNA as C57BL/6, but showed impaired surface NKp46 and reduced ability to control melanoma tumors in vivo. Expression of the mutant NKp46C14R in 293T cells showed that NKp46 protein trafficking to the cell surface was compromised. Although Ly5.1C14R mice had normal number of NK cells, they showed an increased number of early maturation stage NK cells. CD49a+ILC1s were also increased but these cells lacked the expression of TRAIL. ILC3s that expressed NKp46 were not detectable and were not apparent when examined by T-bet expression. Thus, the C14R mutation reveals that NKp46 is important for NK cell and ILC differentiation, maturation and function. Significance Innate lymphoid cells (ILCs) play important roles in immune protection. Various subsets of ILCs express the activating receptor NKp46 which is capable of recognizing pathogen derived and tumor ligands and is necessary for immune protection. Here, we describe a spontaneous point mutation in the signal peptide of the NKp46 protein in congenic Ly5.1 mice which are widely used for tracking cells in vivo. This Ncr1 C14R mutation impairs NKp46 surface expression resulting in destabilization of Ncr1 and accumulation of NKp46 in the endoplasmic reticulum. Loss of stable NKp46 expression impaired the maturation of NKp46+ ILCs and altered the expression of TRAIL and T-bet in ILC1 and ILC3, respectively.
Collapse
Affiliation(s)
- Francisca F Almeida
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sara Tognarelli
- Division of Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Johann Wolfgang Goethe University Hospital, Frankfurt am Main, Germany.,LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon 1, Lyon, France
| | - Andrew J Kueh
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Miriam E Friede
- Institute for Molecular Medicine, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Yang Liao
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Simon N Willis
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kylie Luong
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Fabrice Faure
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon 1, Lyon, France
| | | | - Justine Galluso
- CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Matthew Firth
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Emilie Narni-Mancinelli
- CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Bushra Rais
- Division of Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Johann Wolfgang Goethe University Hospital, Frankfurt am Main, Germany.,LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | - Francesco Spallotta
- Division of Cardiovascular Epigenetics, Department of Cardiology, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Sandra Weil
- Georg Speyer Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, Mainz, Germany
| | - Ariane Giannattasio
- Georg Speyer Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, Mainz, Germany
| | - Franziska Kalensee
- Division of Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Johann Wolfgang Goethe University Hospital, Frankfurt am Main, Germany.,LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Tobias Zöller
- Institute for Molecular Medicine, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Nicholas D Huntington
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ulrike Schleicher
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität Erlangen-Nürnberg und Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas G Chiocchetti
- Molecular Genetics Laboratory, Department for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Sophie Ugolini
- CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Marco J Herold
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Wei Shi
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Joachim Koch
- Georg Speyer Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, Mainz, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Eric Vivier
- CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Aix Marseille University, Marseille, France.,Innate Pharma, Marseille, France.,Service d'Immunologie, Hôpital de la Timone, Marseille Immunopole, Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon 1, Lyon, France
| | - Gabrielle T Belz
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Evelyn Ullrich
- LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.,Division of Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Johann Wolfgang Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|