1
|
Navarro-Hernandez IC, Reyes-Huerta RF, Cañez-Hernández M, Torres-Ruiz J, Carrillo-Vázquez DA, Whittall-García LP, Meza-Sánchez DE, Juárez-Vega G, Gómez-Martin D, Hernández-Hernández JM, Maravillas-Montero JL. Urine Extracellular Vesicles Size Subsets as Lupus Nephritis Biomarkers. Diagnostics (Basel) 2024; 14:2271. [PMID: 39451594 PMCID: PMC11507223 DOI: 10.3390/diagnostics14202271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder that often leads to kidney injury, known as lupus nephritis (LN). Although renal biopsy is the primary way to diagnose LN, it is invasive and not practical for regular monitoring. As an alternative, several groups have proposed urinary extracellular vesicles (uEVs) as potential biomarkers for LN, as recent studies have shown their significance in reflecting kidney-related diseases. As a result, we developed a flow cytometry approach that allowed us to determine that LN patients exhibited a significantly higher total uEV concentration compared to SLE patients without kidney involvement. Additionally, an analysis of different-sized uEV subsets revealed that microvesicles ranging from 0.3 to 0.5 μm showed the most promise for distinguishing LN. These findings indicate that evaluating uEV concentration and size distribution could be a valuable diagnostic and monitoring tool for LN, pending further validation in more comprehensive studies.
Collapse
Affiliation(s)
- Itze C. Navarro-Hernandez
- B Cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.C.N.-H.); (D.E.M.-S.)
- Departmento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Raúl F. Reyes-Huerta
- B Cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.C.N.-H.); (D.E.M.-S.)
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mariana Cañez-Hernández
- B Cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.C.N.-H.); (D.E.M.-S.)
| | - Jiram Torres-Ruiz
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Daniel A. Carrillo-Vázquez
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Laura P. Whittall-García
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - David E. Meza-Sánchez
- B Cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.C.N.-H.); (D.E.M.-S.)
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Guillermo Juárez-Vega
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Diana Gómez-Martin
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - José M. Hernández-Hernández
- Departmento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - José L. Maravillas-Montero
- B Cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.C.N.-H.); (D.E.M.-S.)
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
2
|
Maugeri N, Manfredi AA. Platelet HMGB1 steers intravascular immunity and thrombosis. J Thromb Haemost 2024:S1538-7836(24)00486-0. [PMID: 39173879 DOI: 10.1016/j.jtha.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Platelets navigate the fine balance between homeostasis and injury. They regulate vascular homeostasis and drive repair after injury amidst leukocyte extravasation. Crucially, platelets initiate extracellular traps generation and promote immunothrombosis. In chronic human diseases, platelet action often extends beyond its normative role, sparking sustained reciprocal activation of leukocytes and mural cells, culminating in adverse vascular remodeling. Studies in the last decade have spotlighted a novel key player in platelet activation, the high mobility group box 1 (HMGB1) protein. Despite its initial characterization as a chromatin molecule, anucleated platelets express abundant HMGB1, which has emerged as a linchpin in thromboinflammatory risks and microvascular remodeling. We propose that a comprehensive assessment of platelet HMGB1, spanning quantification of content, membrane localization, and accumulation of HMGB1-expressing vesicles in biological fluids should be integral to dissecting and quantifying platelet activation. This review provides evidence supporting this claim and underscores the significance of platelet HMGB1 as a biomarker in conditions associated with heightened thrombotic risks and systemic microvascular involvement, spanning cardiovascular, autoimmune, and infectious diseases.
Collapse
Affiliation(s)
- Norma Maugeri
- Division of Immunology, Transplantation & Infectious Diseases, Istituti di Ricovero e Cura a Carattere Scientifico San Raffaele Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy.
| | - Angelo A Manfredi
- Division of Immunology, Transplantation & Infectious Diseases, Istituti di Ricovero e Cura a Carattere Scientifico San Raffaele Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
3
|
Losada PX, Serrato L, Daza AM, Vanegas-García A, Muñoz CH, Rodriguez D, Diaz JC, Pineda R, Rojas Lopez M, Vásquez G. Circulating extracellular vesicles in Systemic Lupus Erythematosus: physicochemical properties and phenotype. Lupus Sci Med 2024; 11:e001243. [PMID: 39153822 PMCID: PMC11331945 DOI: 10.1136/lupus-2024-001243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/27/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE This study aimed to identify the physicochemical and phenotypic characteristics of circulating Extracellular Vesicles (EVs) in the plasma of patients with SLE, with or without Lupus Nephritis (LN), and their potential utility as disease biomarkers. METHODS Plasma-circulating EVs were concentrated using differential centrifugation from adult female patients (n=38) who met the 'American College of Rheumatology/European Alliance of Associations for Rheumatology 2019' criteria for SLE diagnosis with (LN) or without LN (nLN), confirmed by renal biopsy. Controls (n=18) were healthy volunteers matched by gender and similar age. The structure, size and Energy Dispersion Spectrum (EDS) of EVs were observed by electron microscopy. The surface charge and size distribution were evaluated using dynamic light scattering. The counts and phenotype of EVs from patients (SLE-EVs) and controls (Ctrl-EVs) were obtained using flow cytometry. Non-parametric statistical tests and exploratory analysis of multiple variables were performed. The discriminatory power of some variables as potential biomarkers of the disease was also evaluated. RESULTS Circulating EVs were heterogeneous in morphology and size, but SLE-EVs reached larger diameters than Ctrl-EVs (p<0.0001). Small SLE-EVs and large SLE-EVs were increased compared with Ctrl-EV (p<0.0001 and p<0.05, respectively). Likewise, patients with SLE (LN or nLN) had higher concentrations of large EVs compared with controls (p<0.001 and p<0.0001, respectively). SLE-EVs showed a different EDS (p<0.001) and were less electronegative (p<0.0001) than Ctrl-EVs. EV-CD45+, EV-CD14+ and EV-IgM+ were more frequent in patients with SLE compared with controls (p<0.001, p<0.05 and p<0.001, respectively). The concentrations of large EVs and EV-IgM+ allowed better discrimination of patients from controls. CONCLUSIONS Plasma-circulating EVs from patients with SLE with and without nephritis are increased in peripheral blood and have different physicochemical properties than controls. Characteristics of EVs such as larger size and the presence of IgM on the surface could help discriminate patients from controls.
Collapse
Affiliation(s)
- Paula X Losada
- Universidad de Antioquia Grupo de Inmunología Celular e Inmunogenética, Medellin, Colombia
| | - Lina Serrato
- Universidad de Antioquia Grupo de Inmunología Celular e Inmunogenética, Medellin, Colombia
| | - Ana María Daza
- Universidad de Antioquia Grupo de Inmunología Celular e Inmunogenética, Medellin, Colombia
| | - Adriana Vanegas-García
- Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
- Hospital San Vicente de Paúl, Medellin, Colombia
| | - Carlos H Muñoz
- Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
- Sección Reumatología, Hospital San Vicente de Paúl, Medellin, Colombia
| | | | | | | | - Mauricio Rojas Lopez
- Universidad de Antioquia Grupo de Inmunología Celular e Inmunogenética, Medellin, Colombia
- Unidad de Citometría de Flujo, Universidad de Antioquia, Medellin, Colombia
| | - Gloria Vásquez
- Universidad de Antioquia Grupo de Inmunología Celular e Inmunogenética, Medellin, Colombia
| |
Collapse
|
4
|
Guo Q, Qiao P, Wang J, Zhao L, Guo Z, Li X, Fan X, Yu C, Zhang L. Investigating the value of urinary biomarkers in relation to lupus nephritis histopathology: present insights and future prospects. Front Pharmacol 2024; 15:1421657. [PMID: 39104393 PMCID: PMC11298450 DOI: 10.3389/fphar.2024.1421657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Lupus nephritis (LN), a leading cause of death in Systemic Lupus Erythematosus (SLE) patients, presents significant diagnostic and prognostic challenges. Although renal pathology offers critical insights regarding the diagnosis, classification, and therapy for LN, its clinical utility is constrained by the invasive nature and limited reproducibility of renal biopsies. Moreover, the continuous monitoring of renal pathological changes through repeated biopsies is impractical. Consequently, there is a growing interest in exploring urine as a non-invasive, easily accessible, and dynamic "liquid biopsy" alternative to guide clinical management. This paper examines novel urinary biomarkers from a renal pathology perspective, encompassing cellular components, cytokines, adhesion molecules, auto-antibodies, soluble leukocyte markers, light chain fragments, proteins, small-molecule peptides, metabolomics, urinary exosomes, and ribonucleic acids. We also discuss the application of combined models comprising multiple biomarkers in assessing lupus activity. These innovative biomarkers and models offer insights into LN disease activity, acute and chronic renal indices, fibrosis, thrombotic microangiopathy, podocyte injury, and other pathological changes, potentially improving the diagnosis, management, and prognosis of LN. These urinary biomarkers or combined models may serve as viable alternatives to traditional renal pathology, potentially revolutionizing the method for future LN diagnosis and observation.
Collapse
Affiliation(s)
- Qianyu Guo
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, China
| | - Pengyan Qiao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, China
| | - Juanjuan Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Stem Cell Translational Laboratory, Shanxi Bethune Hospital, Taiyuan, China
| | - Li Zhao
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Zhiying Guo
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, China
| | - Xiaochen Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, China
| | - Xiuying Fan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Office of Drug Clinical Trial Institution, Taiyuan, China
| | - Chong Yu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, China
| | - Liyun Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, China
- Stem Cell Translational Laboratory, Shanxi Bethune Hospital, Taiyuan, China
- Office of Drug Clinical Trial Institution, Taiyuan, China
| |
Collapse
|
5
|
Liu T, Zhao H, Wang Y, Qu P, Wang Y, Wu X, Zhao T, Yang L, Mao H, Peng L, Zhan Y, Li P. Serum high mobility group box 1 as a potential biomarker for the progression of kidney disease in patients with type 2 diabetes. Front Immunol 2024; 15:1334109. [PMID: 38481996 PMCID: PMC10932975 DOI: 10.3389/fimmu.2024.1334109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Background As a damage-associated molecular pattern protein, high mobility group box 1 (HMGB1) is associated with kidney and systemic inflammation. The predictive and therapeutic value of HMGB1 as a biomarker has been confirmed in various diseases. However, its value in diabetic kidney disease (DKD) remains unclear. Therefore, this study aimed to investigate the correlation between serum and urine HMGB1 levels and DKD progression. Methods We recruited 196 patients with type 2 diabetes mellitus (T2DM), including 109 with DKD and 87 T2DM patients without DKD. Additionally, 60 healthy participants without T2DM were also recruited as controls. Serum and urine samples were collected for HMGB1 analysis. Simultaneously, tumor necrosis factor receptor superfamily member 1A (TNFR-1) in serum and kidney injury molecule (KIM-1) in urine samples were evaluated for comparison. Results Serum and urine HMGB1 levels were significantly higher in patients with DKD than in patients with T2DM and healthy controls. Additionally, serum HMGB1 levels significantly and positively correlated with serum TNFR-1 (R 2 = 0.567, p<0.001) and urine KIM-1 levels (R 2 = 0.440, p<0.001), and urine HMGB1 has a similar correlation. In the population with T2DM, the risk of DKD progression increased with an increase in serum HMGB1 levels. Multivariate logistic regression analysis showed that elevated serum HMGB1 level was an independent risk factor for renal function progression in patients with DKD, and regression analysis did not change in the model corrected for multiple variables. The restricted cubic spline depicted a nonlinear relationship between serum HMGB1 and renal function progression in patients with DKD (p-nonlinear=0.007, p<0.001), and this positive effect remained consistent across subgroups. Conclusion Serum HMGB1 was significantly correlated with DKD and disease severity. When the HMGB1 level was ≥27 ng/ml, the risk of renal progression increased sharply, indicating that serum HMGB1 can be used as a potential biomarker for the diagnosis of DKD progression.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hailing Zhao
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Ying Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Qu
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yanmei Wang
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Xiai Wu
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Tingting Zhao
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| |
Collapse
|
6
|
Daza Zapata AM, Álvarez K, Vásquez Duque G, Palacio J, Rojas López M. Janus kinase inhibitors modify the fatty acid profile of extracellular vesicles and modulate the immune response. Heliyon 2024; 10:e24710. [PMID: 38314280 PMCID: PMC10837569 DOI: 10.1016/j.heliyon.2024.e24710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
Background Janus kinase inhibitors (jakinibs) are immunomodulators used for treating malignancies, autoimmune diseases, and immunodeficiencies. However, they induce adverse effects such as thrombosis, lymphocytosis, and neutropenia that could be mediated by extracellular vesicles (EVs). These particles are cell membrane-derived structures that transport cellular and environmental molecules and participate in intercellular communication. Jakinibs can modify the content of EVs and enable them to modulate the activity of different components of the immune response. Objective to evaluate the interactions between immune system components of healthy individuals and EVs derived from monocytic and lymphoid lineage cells generated in the presence of baricitinib (BARI) and itacitinib (ITA) and their possible effects. Methods EVs were isolated from monocytes (M) and lymphocytes (L) of healthy individuals, as well as from U937 (U) and Jurkat (J) cells exposed to non-cytotoxic concentrations of BARI, ITA, and dimethyl sulfoxide (DMSO; vehicle control). The binding to and engulfment of EVs by peripheral blood leukocytes of healthy individuals were analyzed by flow cytometry using CFSE-stained EVs and anti-CD45-PeCy7 mAb-labeled whole blood. The effect of EVs on respiratory burst, T-cell activation and proliferation, cytokine synthesis, and platelet aggregation was evaluated. Respiratory burst was assessed in PMA-stimulated neutrophils by the dihydrorhodamine (DHR) test and flow cytometry. T-cell activation and proliferation and cytokine production were assessed in CFSE-stained PBMC cultures stimulated with PHA; expression of the T-cell activation markers CD25 and CD69 and T-cell proliferation were analyzed by flow cytometry, and the cytokine levels were quantified in culture supernatants by Luminex assays. Platelet aggregation was analyzed in platelet-rich plasma (PRP) samples by light transmission aggregometry. The EVs' fatty acid (FA) profile was analyzed using methyl ester derivatization followed by gas chromatography. Results ITA exposure during the generation of EVs modified the size of the EVs released; however, treatment with DMSO and BARI did not alter the size of EVs generated from U937 and Jurkat cells. Circulating neutrophils, lymphocytes, and monocytes showed a 2-fold greater tendency to internalize ITA-U-EVs than their respective DMSO control. The neutrophil respiratory burst was attenuated in greater extent by M-EVs than by L-EVs. Autologous ITA-M-EVs reduced T-cell proliferation by decreasing IL-2 levels and CD25 expression independently of CD69. A higher accumulation of pro-inflammatory cytokines was observed in PHA-stimulated PBMC cultures exposed to M-EVs than to L-EVs; this difference may be related to the higher myristate content of M-EVs. Platelet aggregation increased in the presence of ITA-L/M-EVs by a mechanism presumably dependent on the high arachidonic acid content of the vesicles. Conclusions Cellular origin and jakinib exposure modify the FA profile of EVs, enabling them, in turn, to modulate neutrophil respiratory burst, T-cell proliferation, and platelet aggregation. The increased T-cell proliferation induced by BARI-L/M-EVs could explain the lymphocytosis observed in patients treated with BARI. The higher proportion of arachidonic acid in the FA content of ITA-L/M-EVs could be related to the thrombosis described in patients treated with ITA. EVs also induced a decrease in the respiratory burst of neutrophils.
Collapse
Affiliation(s)
- Ana María Daza Zapata
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Karen Álvarez
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Gloria Vásquez Duque
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Juliana Palacio
- Grupo De Investigación Ciencia de Los Materiales, Instituto de Química, Facultad de Ciencias Exactas Y Naturales, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Colombia
- Universidad Nacional de Colombia,SedeMedellín, Escuela de Química- Carrera 65 A No 59A-110, Medellín, 4309000, Colombia
| | - Mauricio Rojas López
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
- Unidad de Citometría de Flujo, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| |
Collapse
|
7
|
Luo C, Zha AH, Luo RY, Hu ZL, Shen WY, Dai RP. ProBDNF contributed to patrolling monocyte infiltration and renal damage in systemic lupus erythematosus. Clin Immunol 2024; 259:109880. [PMID: 38142902 DOI: 10.1016/j.clim.2023.109880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Monocyte aberrations have been increasingly recognized as contributors to renal damage in systemic lupus erythematosus (SLE), however, recognition of the underlying mechanisms and modulating strategies is at an early stage. Our studies have demonstrated that brain-derived neurotrophic factor precursor (proBDNF) drives the progress of SLE by perturbing antibody-secreting B cells, and proBDNF facilitates pro-inflammatory responses in monocytes. By utilizing peripheral blood from patients with SLE, GEO database and spontaneous MRL/lpr lupus mice, we demonstrated in the present study that CX3CR1+ patrolling monocytes (PMo) numbers were decreased in SLE. ProBDNF was specifically expressed in CX3CR1+ PMo and was closely correlated with disease activity and the degree of renal injury in SLE patients. In MRL/lpr mice, elevated proBDNF was found in circulating PMo and the kidney, and blockade of proBDNF restored the balance of circulating and kidney-infiltrating PMo. This blockade also led to the reversal of pro-inflammatory responses in monocytes and a noticeable improvement in renal damage in lupus mice. Overall, the results indicate that the upregulation of proBDNF in PMo plays a crucial role in their infiltration into the kidney, thereby contributing to nephritis in SLE. Targeting of proBDNF offers a potential therapeutic role in modulating monocyte-driven renal damage in SLE.
Collapse
Affiliation(s)
- Cong Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Anesthesiology Research Institute of Central South University, China
| | - An-Hui Zha
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Anesthesiology Research Institute of Central South University, China
| | - Ru-Yi Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Anesthesiology Research Institute of Central South University, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Anesthesiology Research Institute of Central South University, China
| | - Wei-Yun Shen
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Anesthesiology Research Institute of Central South University, China.
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Anesthesiology Research Institute of Central South University, China.
| |
Collapse
|
8
|
Bruschi M, Candiano G, Angeletti A, Lugani F, Panfoli I. Extracellular Vesicles as Source of Biomarkers in Glomerulonephritis. Int J Mol Sci 2023; 24:13894. [PMID: 37762196 PMCID: PMC10530272 DOI: 10.3390/ijms241813894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Kidney disease is a global health and healthcare burden. Glomerulonephritis (Gn), both primary and secondary, is generally characterized by an inflammatory glomerular injury and may lead to end-stage renal disease. Kidney biopsy is fundamental to the diagnosis; however, kidney biopsy presents some concerns that may partly hamper the clinical process. Therefore, more accurate diagnostic tools are needed. Extracellular vesicles (EVs) are membranous vesicles released by cells and found in bodily fluids, including urine. EVs mediate intercellular signaling both in health and disease. EVs can have both harmful and cytoprotective effects in kidney diseases, especially Gn. Previous findings reported that the specific cargo of urinary EV contains an aerobic metabolic ability that may either restore the recipient cell metabolism or cause oxidative stress production. Here, we provide an overview of the most recent proteomic findings on the role of EVs in several aspects of glomerulopathies, with a focus on this metabolic and redox potential. Future studies may elucidate how the ability of EVs to interfere with aerobic metabolism and redox status can shed light on aspects of Gn etiology which have remained elusive so far.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Andrea Angeletti
- Division of Nephrology and Transplantation, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Francesca Lugani
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, 16148 Genoa, Italy
| |
Collapse
|
9
|
Tsai CY, Li KJ, Shen CY, Lu CH, Lee HT, Wu TH, Ng YY, Tsao YP, Hsieh SC, Yu CL. Decipher the Immunopathological Mechanisms and Set Up Potential Therapeutic Strategies for Patients with Lupus Nephritis. Int J Mol Sci 2023; 24:10066. [PMID: 37373215 PMCID: PMC10298725 DOI: 10.3390/ijms241210066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Lupus nephritis (LN) is one of the most severe complications in patients with systemic lupus erythematosus (SLE). Traditionally, LN is regarded as an immune complex (IC) deposition disease led by dsDNA-anti-dsDNA-complement interactions in the subendothelial and/or subepithelial basement membrane of glomeruli to cause inflammation. The activated complements in the IC act as chemoattractants to chemically attract both innate and adaptive immune cells to the kidney tissues, causing inflammatory reactions. However, recent investigations have unveiled that not only the infiltrating immune-related cells, but resident kidney cells, including glomerular mesangial cells, podocytes, macrophage-like cells, tubular epithelial cells and endothelial cells, may also actively participate in the inflammatory and immunological reactions in the kidney. Furthermore, the adaptive immune cells that are infiltrated are genetically restricted to autoimmune predilection. The autoantibodies commonly found in SLE, including anti-dsDNA, are cross-reacting with not only a broad spectrum of chromatin substances, but also extracellular matrix components, including α-actinin, annexin II, laminin, collagen III and IV, and heparan sulfate proteoglycan. Besides, the glycosylation on the Fab portion of IgG anti-dsDNA antibodies can also affect the pathogenic properties of the autoantibodies in that α-2,6-sialylation alleviates, whereas fucosylation aggravates their nephritogenic activity. Some of the coexisting autoantibodies, including anti-cardiolipin, anti-C1q, anti-ribosomal P autoantibodies, may also enhance the pathogenic role of anti-dsDNA antibodies. In clinical practice, the identification of useful biomarkers for diagnosing, monitoring, and following up on LN is quite important for its treatments. The development of a more specific therapeutic strategy to target the pathogenic factors of LN is also critical. We will discuss these issues in detail in the present article.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Immunology & Rheumatology, Department of Medicine, Fu Jen Catholic University Hospital & College of Medicine, Fu Jen Catholic University, New Taipei City 24352, Taiwan
| | - Ko-Jen Li
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| | - Cheng-Hsun Lu
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| | - Hui-Ting Lee
- MacKay Memorial Hospital & MacKay Medical College, New Taipei City 25245, Taiwan;
| | - Tsai-Hung Wu
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and Faculty of Medicine, National Yang-Ming Chiao-Tung University, Taipei 112304, Taiwan;
| | - Yee-Yung Ng
- Department of Medicine, Fu Jen Catholic University Hospital & College of Medicine, Fu Jen Catholic University, New Taipei City 24352, Taiwan;
| | - Yen-Po Tsao
- Division of Holistic and Multidisciplinary Medicine, Department of Medicine, Taipei Veterans General Hospital and Faculty of Medicine, National Yang-Ming Chiao-Tung University, Taipei 112304, Taiwan;
| | - Song-Chou Hsieh
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| | - Chia-Li Yu
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| |
Collapse
|
10
|
Wei J, Ou Z, Tong B, Liao Z, Yang C. Engineered extracellular vesicles as therapeutics of degenerative orthopedic diseases. Front Bioeng Biotechnol 2023; 11:1162263. [PMID: 37362216 PMCID: PMC10289007 DOI: 10.3389/fbioe.2023.1162263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Degenerative orthopedic diseases, as a global public health problem, have made serious negative impact on patients' quality of life and socio-economic burden. Traditional treatments, including chemical drugs and surgical treatments, have obvious side effects and unsatisfactory efficacy. Therefore, biological therapy has become the focus of researches on degenerative orthopedic diseases. Extracellular vesicles (EVs), with superior properties of immunoregulatory, growth support, and drug delivery capabilities, have emerged as a new cell-free strategy for the treatment of many diseases, including degenerative orthopedic diseases. An increasing number of studies have shown that EVs can be engineered through cargo loading, surface modification, and chemical synthesis to improve efficiency, specificity, and safety. Herein, a comprehensive overview of recent advances in engineering strategies and applications of engineered EVs as well as related researches in degenerative orthopedic diseases, including osteoarthritis (OA), osteoporosis (OP), intervertebral disc degeneration (IDD) and osteonecrosis of the femoral head (ONFH), is provided. In addition, we analyze the potential and challenges of applying engineered EVs to clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Cao Yang
- *Correspondence: Zhiwei Liao, ; Cao Yang,
| |
Collapse
|
11
|
Renaudineau Y, Muller S, Hedrich CM, Chauveau D, Bellière J, De Almeida S, Damoiseaux J, Scherlinger M, Guery JC, Sailler L, Bost C. Immunological and translational key challenges in systemic lupus erythematosus: A symposium update. J Transl Autoimmun 2023; 6:100199. [PMID: 37065621 PMCID: PMC10090709 DOI: 10.1016/j.jtauto.2023.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The first LBMR-Tim (Toulouse Referral Medical Laboratory of Immunology) symposium convened on December 16, 2022 in Toulouse, France to address challenging questions in systemic lupus erythematosus (SLE). Special focus was put on (i) the role played by genes, sex, TLR7, and platelets on SLE pathophysiology; (ii) autoantibodies, urinary proteins, and thrombocytopenia contribution at the time of diagnosis and during follow-up; (iii) neuropsychiatric involvement, vaccine response in the COVID-19 era, and lupus nephritis management at the clinical frontline; and (iv) therapeutic perspectives in patients with lupus nephritis and the unexpected adventure of the Lupuzor/P140 peptide. The multidisciplinary panel of experts further supports the concept that a global approach including basic sciences, translational research, clinical expertise, and therapeutic development have to be prioritized in order to better understand and then improve the management of this complex syndrome.
Collapse
|
12
|
Costa-Reis P, Maurer K, Petri MA, Levy Erez D, Zhao X, Faig W, Burnham J, O'Neil K, Klein-Gitelman MS, von Scheven E, Schanberg LE, Sullivan KE. Urinary HER2, TWEAK and VCAM-1 levels are associated with new-onset proteinuria in paediatric lupus nephritis. Lupus Sci Med 2022; 9:9/1/e000719. [PMID: 35918102 PMCID: PMC9351344 DOI: 10.1136/lupus-2022-000719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/27/2022] [Indexed: 01/13/2023]
Abstract
Objective Lupus nephritis is a key driver of morbidity and mortality in SLE. Detecting active nephritis on a background of pre-existing renal damage is difficult, leading to potential undertreatment and accumulating injury. An unmet need is a biomarker that distinguishes active lupus nephritis, particularly important in paediatrics where minimising invasive procedures is desirable. Methods This was a multicentre, prospective study of 113 paediatric patients with biopsy-proven lupus nephritis. Clinical data and urine were obtained every 3–4 months and patients averaged 2 years on study with seven time points. Urine was analysed for human epidermal growth factor receptor 2 (HER2), tumour necrosis factor-like weak inducer of apoptosis and vascular cell adhesion molecule-1 (VCAM-1) by ELISA. We defined active disease as either a rise in serum creatinine ≥0.3 mg/dL from baseline or a rise in renal Systemic Lupus Erythematosus Disease Activity Index score from the previous visit. These markers were also studied in patients with acute kidney injury, juvenile idiopathic arthritis (JIA), amplified pain syndrome and healthy controls. Results The rate of active disease was 56% over an average of 2 years of follow-up. HER2 and VCAM-1 were significantly elevated at time points with active disease defined by increased serum creatinine compared with time points with inactive disease or patients who never flared. All three biomarkers were associated with new-onset proteinuria and VCAM-1 was elevated at time points preceding new-onset proteinuria. These biomarkers were not increased in acute kidney injury or JIA. Conclusion All three biomarkers were associated with new onset proteinuria and increased VCAM-1 may predict impending proteinuria. These biomarkers provide potential non-invasive measures for monitoring that may be more sensitive to impending flare than conventional measures.
Collapse
Affiliation(s)
| | - Kelly Maurer
- Division of Allergy Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michelle A Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniella Levy Erez
- Department of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Xue Zhao
- Division of Allergy Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Walter Faig
- Biostatistics and Data Management Core, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jon Burnham
- Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kathleen O'Neil
- Department of Rheumatology, Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Marisa S Klein-Gitelman
- Department of Pediatrics, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | | | - Laura Eve Schanberg
- Department of Pediatrics, Duke Children's Hospital and Health Center, Durham, North Carolina, USA
| | - Kathleen E Sullivan
- Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Zhou X, Zhang Y, Wang N. Systematic identification of key extracellular proteins as the potential biomarkers in lupus nephritis. Front Immunol 2022; 13:915784. [PMID: 35967373 PMCID: PMC9366080 DOI: 10.3389/fimmu.2022.915784] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
Background Lupus nephritis (LN) is the most common and severe clinical manifestation of systemic lupus erythematosus (SLE) with considerable morbidity/mortality and limited treatment options. Since kidney biopsy is a relative hysteretic indicator, it is indispensable to investigate potential biomarkers for early diagnosis and predicting clinical outcomes of LN patients. Extracellular proteins may become the promising biomarkers by the secretion into body fluid. Our study linked extracellular proteins with lupus nephritis to identify the emerging biomarkers. Methods The expression profiling data were acquired from the Gene Expression Omnibus (GEO) database. Meanwhile, the two gene lists encoding extracellular proteins were collected from the Human Protein Atlas (HPA) and UniProt database. Subsequently, the extracellular protein-differentially expressed genes (EP-DEGs) were screened out, and the key EP-DEGs were determined by MCODE, MCC, and Degree methods via the protein–protein interaction (PPI) network. The expression level, immune characteristics, and diagnostic value of these candidate biomarkers were investigated. Finally, the Nephroseq V5 tool was applied to evaluate the clinical significance of the key EP-DEGs. Results A total of 164 DEGs were acquired by comparing LN samples with healthy controls based on GSE32591 datasets. Then, 38 EP-DEGs were screened out through the intersection between DEGs and extracellular protein gene lists. Function enrichment analysis indicated that these EP-DEGs might participate in immune response and constitute the extracellular matrix. Four key EP-DEGs (LUM, TGFBI, COL1A2, and POSTN) were eventually identified as candidate biomarkers, and they were all overexpressed in LN samples. Except that LUM expression was negatively correlated with most of the immune regulatory genes, there was a positive correlation between the remaining three biomarkers and the immune regulatory genes. In addition, these biomarkers had high diagnostic value, especially the AUC value of the LUM–TGFBI combination which reached almost 1 (AUC = 0.973), demonstrating high accuracy in distinguishing LN from controls. Finally, we found a meaningful correlation of these biomarkers with sex, WHO class, and renal function such as glomerular filtration rate (GFR), serum creatinine level, and proteinuria. Conclusion In summary, our study comprehensively identified four key EP-DEGs exerting a vital role in LN diagnosis and pathogenesis and serving as promising therapeutic targets.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Nephrology, Tianjin Haihe Hospital, Tianjin, China
- Haihe Hospital, Tianjin University, Tianjin, China
- Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Yuefeng Zhang
- Department of Nephrology, Tianjin Haihe Hospital, Tianjin, China
- Haihe Hospital, Tianjin University, Tianjin, China
- Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Ning Wang
- Medical Department, The Third Central Hospital of Tianjin, Tianjin, China
- *Correspondence: Ning Wang,
| |
Collapse
|
14
|
Dong Y, Ming B, Dong L. The Role of HMGB1 in Rheumatic Diseases. Front Immunol 2022; 13:815257. [PMID: 35250993 PMCID: PMC8892237 DOI: 10.3389/fimmu.2022.815257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
HMGB1, a highly conserved non-histone nuclear protein, is widely expressed in mammalian cells. HMGB1 in the nucleus binds to the deoxyribonucleic acid (DNA) to regulate the structure of chromosomes and maintain the transcription, replication, DNA repair, and nucleosome assembly. HMGB1 is actively or passively released into the extracellular region during cells activation or necrosis. Extracellular HMGB1 as an alarmin can initiate immune response alone or combined with other substances such as nucleic acid to participate in multiple biological processes. It has been reported that HMGB1 is involved in various inflammatory responses and autoimmunity. This review article summarizes the physiological function of HMGB1, the post-translational modification of HMGB1, its interaction with different receptors, and its recent advances in rheumatic diseases and strategies for targeted therapy.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Gaboriaud C, Lorvellec M, Rossi V, Dumestre-Pérard C, Thielens NM. Complement System and Alarmin HMGB1 Crosstalk: For Better or Worse. Front Immunol 2022; 13:869720. [PMID: 35572583 PMCID: PMC9095977 DOI: 10.3389/fimmu.2022.869720] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Our immune system responds to infectious (PAMPs) and tissue damage (DAMPs) signals. The complement system and alarmin High-Mobility Group Box 1 (HMGB1) are two powerful soluble actors of human host defense and immune surveillance. These systems involve molecular cascades and amplification loops for their signaling or activation. Initially activated as alarm raising systems, their function can be finally switched towards inflammation resolution, where they sustain immune maturation and orchestrate repair mechanisms, opening the way back to homeostasis. However, when getting out of control, these defense systems can become deleterious and trigger serious cellular and tissue damage. Therefore, they can be considered as double-edged swords. The close interaction between the complement and HMGB1 pathways is described here, as well as their traditional and non-canonical roles, their functioning at different locations and their independent and collective impact in different systems both in health and disease. Starting from these systems and interplay at the molecular level (when elucidated), we then provide disease examples to better illustrate the signs and consequences of their roles and interaction, highlighting their importance and possible vicious circles in alarm raising and inflammation, both individually or in combination. Although this integrated view may open new therapeutic strategies, future challenges have to be faced because of the remaining unknowns regarding the molecular mechanisms underlying the fragile molecular balance which can drift towards disease or return to homeostasis, as briefly discussed at the end.
Collapse
Affiliation(s)
| | | | | | - Chantal Dumestre-Pérard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Laboratoire d’Immunologie, Pôle de Biologie, CHU Grenoble Alpes, Grenoble, France
| | | |
Collapse
|
16
|
Karpman D, Tontanahal A. Extracellular vesicles in renal inflammatory and infectious diseases. Free Radic Biol Med 2021; 171:42-54. [PMID: 33933600 DOI: 10.1016/j.freeradbiomed.2021.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles can mediate cell-to-cell communication, or relieve the parent cell of harmful substances, in order to maintain cellular integrity. The content of extracellular vesicles includes miRNAs, mRNAs, growth factors, complement factors, cytokines, chemokines and receptors. These may contribute to inflammatory and infectious diseases by the exposure or transfer of potent effectors that induce vascular inflammation by leukocyte recruitment and thrombosis. Furthermore, vesicles release cytokines and induce their release from cells. Extracellular vesicles possess immune modulatory and anti-microbial properties, and induce receptor signaling in the recipient cell, not least by the transfer of pro-inflammatory receptors. Additionally, the vesicles may carry virulence factors systemically. Extracellular vesicles in blood and urine can contribute to the development of kidney diseases or exhibit protective effects. In this review we will describe the role of EVs in inflammation, thrombosis, immune modulation, angiogenesis, oxidative stress, renal tubular regeneration and infection. Furthermore, we will delineate their contribution to renal ischemia/reperfusion, vasculitis, glomerulonephritis, lupus nephritis, thrombotic microangiopathies, IgA nephropathy, acute kidney injury, urinary tract infections and renal transplantation. Due to their content of miRNAs and growth factors, or when loaded with nephroprotective modulators, extracellular vesicles have the potential to be used as therapeutics for renal regeneration.
Collapse
Affiliation(s)
- Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185, Lund, Sweden.
| | - Ashmita Tontanahal
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185, Lund, Sweden
| |
Collapse
|
17
|
Mazzariol M, Camussi G, Brizzi MF. Extracellular Vesicles Tune the Immune System in Renal Disease: A Focus on Systemic Lupus Erythematosus, Antiphospholipid Syndrome, Thrombotic Microangiopathy and ANCA-Vasculitis. Int J Mol Sci 2021; 22:ijms22084194. [PMID: 33919576 PMCID: PMC8073859 DOI: 10.3390/ijms22084194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023] Open
Abstract
Extracellular vesicles (EV) are microparticles released in biological fluids by different cell types, both in physiological and pathological conditions. Owing to their ability to carry and transfer biomolecules, EV are mediators of cell-to-cell communication and are involved in the pathogenesis of several diseases. The ability of EV to modulate the immune system, the coagulation cascade, the angiogenetic process, and to drive endothelial dysfunction plays a crucial role in the pathophysiology of both autoimmune and renal diseases. Recent studies have demonstrated the involvement of EV in the control of renal homeostasis by acting as intercellular signaling molecules, mediators of inflammation and tissue regeneration. Moreover, circulating EV and urinary EV secreted by renal cells have been investigated as potential early biomarkers of renal injury. In the present review, we discuss the recent findings on the involvement of EV in autoimmunity and in renal intercellular communication. We focused on EV-mediated interaction between the immune system and the kidney in autoimmune diseases displaying common renal damage, such as antiphospholipid syndrome, systemic lupus erythematosus, thrombotic microangiopathy, and vasculitis. Although further studies are needed to extend our knowledge on EV in renal pathology, a deeper investigation of the impact of EV in kidney autoimmune diseases may also provide insight into renal biological processes. Furthermore, EV may represent promising biomarkers of renal diseases with potential future applications as diagnostic and therapeutic tools.
Collapse
|
18
|
Zhang B, Zhao M, Lu Q. Extracellular Vesicles in Rheumatoid Arthritis and Systemic Lupus Erythematosus: Functions and Applications. Front Immunol 2021; 11:575712. [PMID: 33519800 PMCID: PMC7841259 DOI: 10.3389/fimmu.2020.575712] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
In the last two decades, extracellular vesicles (EVs) have aroused wide interest among researchers in basic and clinical research. EVs, small membrane vesicles are released by almost all kinds of cells into the extracellular environment. According to many recent studies, EVs participate in immunomodulation and play an important role in the pathogenesis of autoimmune diseases. In addition, EVs have great potential in the diagnosis and therapy of autoimmune diseases. Here, we reviewed the latest research advances on the functions and mechanisms of EVs and their roles in the pathogenesis, diagnosis, and treatment of rheumatoid arthritis and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.,Clinical Immunology Research Center, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.,Clinical Immunology Research Center, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.,Clinical Immunology Research Center, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, China
| |
Collapse
|
19
|
Álvarez K, Villar-Vesga J, Ortiz-Reyes B, Vanegas-García A, Castaño D, Rojas M, Vásquez G. Induction of NF-κB inflammatory pathway in monocytes by microparticles from patients with systemic lupus erythematosus. Heliyon 2020; 6:e05815. [PMID: 33409392 PMCID: PMC7773880 DOI: 10.1016/j.heliyon.2020.e05815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/21/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022] Open
Abstract
Background Elevated levels of circulating microparticles (MPs) and molecules of the complement system have been reported in patients with systemic lupus erythematosus (SLE). Moreover, microparticles isolated from patients with SLE (SLE-MPs) contain higher levels of damage-associated molecular patterns (DAMPs) than MPs from healthy controls (CMPs). We hypothesize that the uptake of MPs by monocytes could contribute to the chronic inflammatory processes observed in patients with SLE. Therefore, the aim of this study was to evaluate the expression of activation markers, production of proinflammatory mediators, and activation of the NF-κB signaling pathway in monocytes treated with CMPs and SLE-MPs. Methodology Monocytes isolated from healthy individuals were pretreated or not with pyrrolidine dithiocarbamate (PDTC) and cultured with CMPs and SLE-MPs. The cell surface expression of CD69 and HLA-DR were evaluated by flow cytometry; cytokine and eicosanoid levels were quantified in culture supernatants by Cytokine Bead Array and ELISA, respectively; and the NF-κB activation was evaluated by Western blot and epifluorescence microscopy. Results The cell surface expression of HLA-DR and CD69, and the supernatant levels of IL-6, IL-1β, PGE2, and LTB4 were higher in cultures of monocytes treated with SLE-MPs than CMPs. These responses were blocked in the presence of PDTC, a pharmacological inhibitor of the NF-κB pathway, with concomitant reduction of IκBα and cytoplasmic p65, and increased nuclear translocation of p65. Conclusions The present findings indicate that significant uptake of SLE-MPs by monocytes results in activation, production of inflammatory mediators, and triggering of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Karen Álvarez
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| | - Juan Villar-Vesga
- Grupo de Neurociencias de Antioquia, Área de Neurobiología Celular y Molecular, Facultad de Medicina. Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Calle 70 No.52-21, Medellín, Colombia
| | - Blanca Ortiz-Reyes
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| | - Adriana Vanegas-García
- Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia.,Sección de Reumatología, Hospital Universitario San Vicente Fundación, Calle 64 No.51D-154, Medellín, Colombia
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia.,Unidad de Citometría de Flujo, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia.,Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| |
Collapse
|
20
|
Ortega A, Martinez-Arroyo O, Forner MJ, Cortes R. Exosomes as Drug Delivery Systems: Endogenous Nanovehicles for Treatment of Systemic Lupus Erythematosus. Pharmaceutics 2020; 13:pharmaceutics13010003. [PMID: 33374908 PMCID: PMC7821934 DOI: 10.3390/pharmaceutics13010003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes, nanometer-sized lipid-bilayer-enclosed extracellular vesicles (EVs), have attracted increasing attention due to their inherent ability to shuttle proteins, lipids and genes between cells and their natural affinity to target cells. Their intrinsic features such as stability, biocompatibility, low immunogenicity and ability to overcome biological barriers, have prompted interest in using exosomes as drug delivery vehicles, especially for gene therapy. Evidence indicates that exosomes play roles in both immune stimulation and tolerance, regulating immune signaling and inflammation. To date, exosome-based nanocarriers delivering small molecule drugs have been developed to treat many prevalent autoimmune diseases. This review highlights the key features of exosomes as drug delivery vehicles, such as therapeutic cargo, use of targeting peptide, loading method and administration route with a broad focus. In addition, we outline the current state of evidence in the field of exosome-based drug delivery systems in systemic lupus erythematosus (SLE), evaluating exosomes derived from various cell types and engineered exosomes.
Collapse
Affiliation(s)
- Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (A.O.); (O.M.-A.); (M.J.F.)
| | - Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (A.O.); (O.M.-A.); (M.J.F.)
| | - Maria J. Forner
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (A.O.); (O.M.-A.); (M.J.F.)
- Internal Medicine Unit, Hospital Clinico Universitario, 46010 Valencia, Spain
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (A.O.); (O.M.-A.); (M.J.F.)
- Correspondence: ; Tel.: +34-96398-3916; Fax: +34-96398-7860
| |
Collapse
|
21
|
González LA, Ugarte-Gil MF, Alarcón GS. Systemic lupus erythematosus: The search for the ideal biomarker. Lupus 2020; 30:181-203. [PMID: 33307987 DOI: 10.1177/0961203320979051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During the last decades, there has been an increased interest in the discovery and validation of biomarkers that reliably reflect specific aspects of lupus. Although many biomarkers have been developed, few of them have been validated and used in clinical practice, but with unsatisfactory performances. Thus, there is still a need to rigorously validate many of these novel promising biomarkers in large-scale longitudinal studies and also identify better biomarkers not only for lupus diagnosis but also for monitoring and predicting upcoming flares and response to treatment. Besides serological biomarkers, urinary and cerebrospinal fluid biomarkers have emerged for assessing both renal and central nervous system involvement in systemic lupus erythematosus, respectively. Also, novel omics techniques help us to understand the molecular basis of the disease and also allow the identification of novel biomarkers which may be potentially useful for guiding new therapeutic targets.
Collapse
Affiliation(s)
- Luis Alonso González
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Universidad de Antioquia, Hospital Universitario de San Vicente Fundación, Medellín, Colombia
| | - Manuel Francisco Ugarte-Gil
- Rheumatology Department, Hospital Guillermo Almenara Irigoyen, EsSalud, Lima, Perú.,School of Medicine, Universidad Científica del Sur, Lima, Perú
| | - Graciela S Alarcón
- Division of Clinical Immunology and Rheumatology, Department of Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Medicine, School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
22
|
Zhao Y, Wei W, Liu ML. Extracellular vesicles and lupus nephritis - New insights into pathophysiology and clinical implications. J Autoimmun 2020; 115:102540. [PMID: 32893081 PMCID: PMC9107953 DOI: 10.1016/j.jaut.2020.102540] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022]
Abstract
Lupus nephritis (LN) is a major cause for overall morbidity and mortality in patients with systemic lupus erythematosus (SLE), while its pathogenic mechanisms are still not well understood. Extracellular vesicles (EVs) are membrane vesicles that are released from almost all cell types. EVs can be subdivided into exosomes, microvesicles, and apoptotic bodies. Latest studies have shown that EVs can be released during several cellular events, including cell activation, autophagy, and several types of programed cell death, i.e. apoptosis, necroptosis, pyroptosis, and NETosis. Emerging evidence demonstrates that EVs harbor different bioactive molecules, including nucleic acids, proteins, lipids, cytokines, immune complexes (ICs), complements, and other molecules, some of which may contribute to pathogenesis of autoimmune diseases. EVs can serve as novel information shuttle to mediate local autocrine or paracrine signals to nearby cells, and distant endocrine signals to cells located far away. In LN, EVs may have pathogenic effects by transportation of autoantigens or complements, promotion of IC deposition or complement activation, and stimulation of inflammatory responses, renal tissue injury, or microthrombus formation. Additionally, EVs released from kidney cells may serve as specific biomarkers for diagnosis or monitoring of disease activity and therapeutic efficacy. In this review, we will summarize the latest progress about EV generation from basic research, their potential pathologic effects on LN, and their clinical implications. The cutting-edge knowledge about EV research provides insights into novel therapeutic strategy, new tools for diagnosis or prognosis, and evaluation approaches for treatment effectiveness in LN.
Collapse
Affiliation(s)
- Yin Zhao
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, 300020, China
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, 300020, China.
| | - Ming-Lin Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Corporal Michael J. Crescenz VA Medical Center (Philadelphia), Philadelphia, PA, 19104, USA.
| |
Collapse
|
23
|
Liu Y, Li S, Rong W, Zeng C, Zhu X, Chen Q, Li L, Liu ZH, Zen K. Podocyte-Released Migrasomes in Urine Serve as an Indicator for Early Podocyte Injury. KIDNEY DISEASES 2020; 6:422-433. [PMID: 33313063 DOI: 10.1159/000511504] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022]
Abstract
Background Levels of urinary microvesicles, which are increased during various kidney injuries, have diagnostic potential for renal diseases. However, the significance of urinary microvesicles as a renal disease indicator is dampened by the difficulty to ascertain their cell source. Objectives The aim of this study was to demonstrate that podocytes can release migrasomes, a unique class of microvesicle with size ranging between 400 and 2,000 nm, and the urine level of migrasomes may serve as novel non-invasive biomarker for early podocyte injury. Method In this study, immunofluorescence labeling, electronic microscopy, nanosite, and sequential centrifugation were used to purify and analyze migrasomes. Results Migrasomes released by podocytes differ from exosomes as they have different content and mechanism of release. Compared to podocytes, renal tubular cells secrete markedly less migrasomes. Moreover, secretion of migrasomes by human or murine podocytes was strongly augmented during podocyte injuries induced by LPS, puromycin amino nucleoside (PAN), or a high concentration of glucose (HG). LPS, PAN, or HG-induced podocyte migrasome release, however, was blocked by Rac-1 inhibitor. Strikingly, a higher level of podocyte migrasomes in urine was detected in mice with PAN-nephropathy than in control mice. In fact, increased urinary migrasome number was detected earlier than elevated proteinuria during PAN-nephropathy, suggesting that urinary migrasomes are a more sensitive podocyte injury indicator than proteinuria. Increased urinary migrasome number was also detected in diabetic nephropathy patients with proteinuria level <5.5 g/day. Conclusions Our findings reveal that podocytes release the "injury-related" migrasomes during migration and provide urinary podocyte migrasome as a potential diagnostic marker for early podocyte injury.
Collapse
Affiliation(s)
- Ying Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Shan Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Weiwei Rong
- Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qilin Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Limin Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Zhi-Hong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ke Zen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| |
Collapse
|
24
|
Zhao Z, Hu Z, Zeng R, Yao Y. HMGB1 in kidney diseases. Life Sci 2020; 259:118203. [PMID: 32781069 DOI: 10.1016/j.lfs.2020.118203] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/20/2022]
Abstract
High mobility group box 1 (HMGB1) is a highly conserved nucleoprotein involving in numerous biological processes, and well known to trigger immune responses as the damage-associated molecular pattern (DAMP) in the extracellular environment. The role of HMGB1 is distinct due to its multiple functions in different subcellular location. In the nucleus, HMGB1 acts as a chaperone to regulate DNA events including DNA replication, repair and nucleosome stability. While in the cytoplasm, it is engaged in regulating autophagy and apoptosis. A great deal of research has explored its function in the pathogenesis of renal diseases. This review mainly focuses on the role of HMGB1 and summarizes the pathway and treatment targeting HMGB1 in the various renal diseases which may open the windows of opportunities for the development of desirable therapeutic ends in these pathological conditions.
Collapse
Affiliation(s)
- Zhi Zhao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China
| | - Zhizhi Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China.
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China.
| |
Collapse
|
25
|
Liu T, Son M, Diamond B. HMGB1 in Systemic Lupus Erythematosus. Front Immunol 2020; 11:1057. [PMID: 32536928 PMCID: PMC7267015 DOI: 10.3389/fimmu.2020.01057] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/01/2020] [Indexed: 01/09/2023] Open
Abstract
The high-mobility group box 1 (HMGB1) has been shown to exert proinflammatory effects on many cells of the innate immune system. Originally identified as a nuclear protein, HMGB1 has been found to play an important role in mediating inflammation when released from apoptotic or necrotic cells as a damage-associated molecular pattern (DAMP). Systemic lupus erythematosus (SLE) is a disease of non-resolving inflammation, characterized by the presence of autoantibodies and systemic inflammation involving multiple organ systems. SLE patients have impaired clearance of apoptotic debris, which releases HMGB1 and other DAMPs extracellularly. HMGB1 activity is implicated in multiple disease phenotypes in SLE, including lupus nephritis and neuropsychiatric lupus. Elucidating the various properties of HMGB1 in SLE provides a better understanding of the disease and opens up new opportunities for designing potential therapeutics.
Collapse
Affiliation(s)
- Tianye Liu
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Myoungsun Son
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Betty Diamond
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
26
|
Aragón CC, Tafúr RA, Suárez-Avellaneda A, Martínez MDT, Salas ADL, Tobón GJ. Urinary biomarkers in lupus nephritis. J Transl Autoimmun 2020; 3:100042. [PMID: 32743523 PMCID: PMC7388339 DOI: 10.1016/j.jtauto.2020.100042] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/07/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is the prototypical autoimmune disease that can affect any organ of the body. Multiple mechanisms may contribute to the pathophysiology of systemic lupus, including failure to remove apoptotic bodies, hyperactivity of self-reactive B and T lymphocytes, abnormal exposure to autoantigens, and increased levels of B-cell stimulatory cytokines. The involvement of the kidney, called lupus nephritis (LN), during the course of the disease affects between 30% and 60% of adult SLE patients, and up to 70% of children. LN is an immune-mediated glomerulonephritis that is a common and serious finding in patients with SLE. Nowadays, renal biopsy is considered the gold standard for classifying LN, besides its degree of activity or chronicity. Nevertheless, renal biopsy lacks the ability to predict which patients will respond to immunosuppressive therapy and is a costly and risky procedure that is not practical in the monitoring of LN because serial repetitions would be necessary. Consequently, many serum and urinary biomarkers have been studied in SLE patients for the complementary study of LN, existing conventional biomarkers like proteinuria, protein/creatinine ratio in spot urine, 24 h urine proteinuria, creatinine clearance, among others and non-conventional biomarkers, like Monocyte chemoattractant protein-1 (MCP-1), have been correlated with the histological findings of the different types of LN. In this article, we review the advances in lupus nephritis urinary biomarkers. Such markers ideally should be capable of predicting early sub-clinical flares and could be used to follow response to therapy. In addition, some of these markers have been found to be involved in the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Cristian C. Aragón
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| | - Raúl-Alejandro Tafúr
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
- Universidad Icesi, Medical School, Cali, Colombia
| | - Ana Suárez-Avellaneda
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| | - MD. Tatiana Martínez
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
- Universidad Icesi, Medical School, Cali, Colombia
| | - Alejandra de las Salas
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
- Universidad Icesi, Medical School, Cali, Colombia
| | - Gabriel J. Tobón
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| |
Collapse
|
27
|
Diao L, Tao J, Wang Y, Hu Y, He W. Co-Delivery Of Dihydroartemisinin And HMGB1 siRNA By TAT-Modified Cationic Liposomes Through The TLR4 Signaling Pathway For Treatment Of Lupus Nephritis. Int J Nanomedicine 2019; 14:8627-8645. [PMID: 31806961 PMCID: PMC6839745 DOI: 10.2147/ijn.s220754] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Background and purpose Systemic lupus erythematous (SLE) is an autoimmune disease caused by many factors. Lupus nephritis (LN) is a common complication of SLE and represents a major cause of morbidity and mortality. Previous studies have shown the advantages of multi-targeted therapy for LN and that TLR4 signaling is a target of anti-LN drugs. High-mobility group box 1 (HMGB1), a nuclear protein with a proinflammatory cytokine activity, binds specifically to TLR4 to induce inflammation. We aimed to develop PEGylated TAT peptide-cationic liposomes (TAT-CLs) to deliver anti-HMGB1 siRNA and dihydroartemisinin (DHA) to increase LN therapeutic efficiency and explore their treatment mechanism. Methods We constructed the TAT-CLs-DHA/siRNA delivery system using the thin film hydration method. The uptake and localization of Cy3-labeled siRNA were detected by confocal microscopy and flow cytometry. MTT assays were used to detect glomerular mesangial cell proliferation. Real-time PCR, Western blot analysis, and ELISA evaluated the anti-inflammatory mechanism of TAT-CLs-DHA/siRNA. Results We constructed the TAT-CLs-DHA/siRNA delivery system measuring approximately 140 nm with superior storage and serum stabilities. In vitro, it showed significantly greater uptake compared with unmodified liposomes and significant inhibition of glomerular mesangial cell proliferation. TAT-CLs-DHA/siRNA inhibited NF-κB activation in a concentration-dependent manner. Real-time PCR and Western blot analysis showed that TAT-CLs-DHA/siRNA downregulated expression of HMGB1 mRNA and protein. TAT-CLs-DHA/siRNA markedly diminished Toll-like receptor 4 (TLR4) expression and subsequent activation of MyD88, IRAK4, and NF-κB. Conclusion TAT-CLs-DHA/siRNA may have the potential for treatment of inflammatory diseases such as LN mediated by the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Lu Diao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China.,College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, People's Republic of China
| | - Jin Tao
- College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, People's Republic of China
| | - Yiqi Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, People's Republic of China
| | - Ying Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China.,College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, People's Republic of China
| | - Wenfei He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The management of lupus nephritis remains unsatisfactory due to insufficiently effective treatment regimens and the dearth of reliable predictors of disease onset or progression to guide individualized therapeutic decisions. This review summarizes new findings related to lupus nephritis over the last 18 months and discusses clinical needs that should be considered to advance trials of mechanism-based therapeutic strategies. RECENT FINDINGS Collaborative teams are addressing how to improve disease definitions and are developing predictive models for disease onset, disease response and risk of flare in individual patients. More attention is being paid to clinical trial design. Advanced technologic approaches are allowing the analysis of small amounts of human tissue and urine in unprecedented detail so as to discover new pathogenic mechanisms and identify disease biomarkers. Novel therapies continue to be tested in disease models and include new strategies to protect renal tissue from cell damage and fibrosis. SUMMARY The collaborative efforts of patients, clinical and translational researchers, the pharmaceutical industry and funding sources are needed to advance therapies for lupus nephritis. Specialized clinical centers can then deliver optimal and more personalized patient care that will improve patient outcomes.
Collapse
Affiliation(s)
- Anne Davidson
- Center for Autoimmunity, Musculoskeletal and Hematologic Diseases, Feinstein Institute for Medical Research, New York, New York, USA
| | | | | |
Collapse
|