1
|
Malyshkina A, Brüggemann A, Paschen A, Dittmer U. Cytotoxic CD4 + T cells in chronic viral infections and cancer. Front Immunol 2023; 14:1271236. [PMID: 37965314 PMCID: PMC10642198 DOI: 10.3389/fimmu.2023.1271236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
CD4+ T cells play an important role in immune responses against pathogens and cancer cells. Although their main task is to provide help to other effector immune cells, a growing number of infections and cancer entities have been described in which CD4+ T cells exhibit direct effector functions against infected or transformed cells. The most important cell type in this context are cytotoxic CD4+ T cells (CD4+ CTL). In infectious diseases anti-viral CD4+ CTL are mainly found in chronic viral infections. Here, they often compensate for incomplete or exhausted CD8+ CTL responses. The induction of CD4+ CTL is counter-regulated by Tregs, most likely because they can be dangerous inducers of immunopathology. In viral infections, CD4+ CTL often kill via the Fas/FasL pathway, but they can also facilitate the exocytosis pathway of killing. Thus, they are very important effectors to keep persistent virus in check and guarantee host survival. In contrast to viral infections CD4+ CTL attracted attention as direct anti-tumor effectors in solid cancers only recently. Anti-tumor CD4+ CTL are defined by the expression of cytolytic markers and have been detected within the lymphocyte infiltrates of different human cancers. They kill tumor cells in an antigen-specific MHC class II-restricted manner not only by cytolysis but also by release of IFNγ. Thus, CD4+ CTL are interesting tools for cure approaches in chronic viral infections and cancer, but their potential to induce immunopathology has to be carefully taken into consideration.
Collapse
Affiliation(s)
- Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alicia Brüggemann
- Department of Dermatology, Venereology, and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, Venereology, and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Pircher H, Pinschewer DD, Boehm T. MHC I tetramer staining tends to overestimate the number of functionally relevant self-reactive CD8 T cells in the preimmune repertoire. Eur J Immunol 2023; 53:e2350402. [PMID: 37179469 DOI: 10.1002/eji.202350402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Previous studies that used peptide-MHC (pMHC) tetramers (tet) to identify self-specific T cells have questioned the effectiveness of thymic-negative selection. Here, we used pMHCI tet to enumerate CD8 T cells specific for the immunodominant gp33 epitope of lymphocytic choriomeningitis virus glycoprotein (GP) in mice transgenically engineered to express high levels of GP as a self-antigen in the thymus. In GP-transgenic mice (GP+ ), monoclonal P14 TCR+ CD8 T cells that express a GP-specific TCR could not be detected by gp33/Db -tet staining, indicative of their complete intrathymic deletion. By contrast, in the same GP+ mice, substantial numbers of polyclonal CD8 T cells identifiable by gp33/Db -tet were present. The gp33-tet staining profiles of polyclonal T cells from GP+ and GP-negative (GP- ) mice were overlapping, but mean fluorescence intensities were ∼15% lower in cells from GP+ mice. Remarkably, the gp33-tet+ T cells in GP+ mice failed to clonally expand after lymphocytic choriomeningitis virus infection, whereas those of GP- mice did so. In Nur77GFP -reporter mice, dose-dependent responses to gp33 peptide-induced TCR stimulation revealed that gp33-tet+ T cells with high ligand sensitivity are lacking in GP+ mice. Hence, pMHCI tet staining identifies self-specific CD8 T cells but tends to overestimate the number of truly self-reactive cells.
Collapse
Affiliation(s)
- Hanspeter Pircher
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Daniel D Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
3
|
Zhu C, Boucheron N, Müller AC, Májek P, Claudel T, Halilbasic E, Baazim H, Lercher A, Viczenczova C, Hainberger D, Preglej T, Sandner L, Alteneder M, Gülich AF, Khan M, Hamminger P, Remetic J, Ohradanova-Repic A, Schatzlmaier P, Donner C, Fuchs CD, Stojakovic T, Scharnagl H, Sakaguchi S, Weichhart T, Bergthaler A, Stockinger H, Ellmeier W, Trauner M. 24-Norursodeoxycholic acid reshapes immunometabolism in CD8 + T cells and alleviates hepatic inflammation. J Hepatol 2021; 75:1164-1176. [PMID: 34242699 PMCID: PMC8522806 DOI: 10.1016/j.jhep.2021.06.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS 24-Norursodeoxycholic acid (NorUDCA) is a novel therapeutic bile acid used to treat immune-mediated cholestatic liver diseases, such as primary sclerosing cholangitis (PSC), where dysregulated T cells including CD8+ T cells contribute to hepatobiliary immunopathology. We hypothesized that NorUDCA may directly modulate CD8+ T cell function thus contributing to its therapeutic efficacy. METHODS NorUDCA's immunomodulatory effects were first studied in Mdr2-/- mice, as a cholestatic model of PSC. To differentiate NorUDCA's immunomodulatory effects on CD8+ T cell function from its anticholestatic actions, we also used a non-cholestatic model of hepatic injury induced by an excessive CD8+ T cell immune response upon acute non-cytolytic lymphocytic choriomeningitis virus (LCMV) infection. Studies included molecular and biochemical approaches, flow cytometry and metabolic assays in murine CD8+ T cells in vitro. Mass spectrometry was used to identify potential CD8+ T cell targets modulated by NorUDCA. The signaling effects of NorUDCA observed in murine cells were validated in circulating T cells from patients with PSC. RESULTS NorUDCA demonstrated immunomodulatory effects by reducing hepatic innate and adaptive immune cells, including CD8+ T cells in the Mdr2-/- model. In the non-cholestatic model of CD8+ T cell-driven immunopathology induced by acute LCMV infection, NorUDCA ameliorated hepatic injury and systemic inflammation. Mechanistically, NorUDCA demonstrated strong immunomodulatory efficacy in CD8+ T cells affecting lymphoblastogenesis, expansion, glycolysis and mTORC1 signaling. Mass spectrometry identified that NorUDCA regulates CD8+ T cells by targeting mTORC1. NorUDCA's impact on mTORC1 signaling was further confirmed in circulating PSC CD8+ T cells. CONCLUSIONS NorUDCA has a direct modulatory impact on CD8+ T cells and attenuates excessive CD8+ T cell-driven hepatic immunopathology. These findings are relevant for treatment of immune-mediated liver diseases such as PSC. LAY SUMMARY Elucidating the mechanisms by which 24-norursodeoxycholic acid (NorUDCA) works for the treatment of immune-mediated liver diseases, such as primary sclerosing cholangitis, is of considerable clinical interest. Herein, we uncovered an unrecognized property of NorUDCA in the immunometabolic regulation of CD8+ T cells, which has therapeutic relevance for immune-mediated liver diseases, including PSC.
Collapse
Affiliation(s)
- Ci Zhu
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria,Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nicole Boucheron
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - André C. Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Peter Májek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Emina Halilbasic
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Hatoon Baazim
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Csilla Viczenczova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniela Hainberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Teresa Preglej
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lisa Sandner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marlis Alteneder
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexandra F. Gülich
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Matarr Khan
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Patricia Hamminger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Jelena Remetic
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Philipp Schatzlmaier
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Clemens Donner
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Claudia D. Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Graz, Graz, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory of Diagnostics, Medical University of Graz, Graz, Austria
| | - Shinya Sakaguchi
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Kräutler NJ, Yermanos A, Pedrioli A, Welten SPM, Lorgé D, Greczmiel U, Bartsch I, Scheuermann J, Kiefer JD, Eyer K, Menzel U, Greiff V, Neri D, Stadler T, Reddy ST, Oxenius A. Quantitative and Qualitative Analysis of Humoral Immunity Reveals Continued and Personalized Evolution in Chronic Viral Infection. Cell Rep 2020; 30:997-1012.e6. [PMID: 31995768 DOI: 10.1016/j.celrep.2019.12.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/20/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
Control of established chronic lymphocytic choriomeningitis virus (LCMV) infection requires the production of neutralizing antibodies, but it remains unknown how the ensemble of antibodies evolves during ongoing infection. Here, we analyze the evolution of antibody responses during acute or chronic LCMV infection, combining quantitative functional assays and time-resolved antibody repertoire sequencing. We establish that antibody responses initially converge in both infection types on a functional and repertoire level, but diverge later during chronic infection, showing increased clonal diversity, the appearance of mouse-specific persistent clones, and distinct phylogenetic signatures. Chronic infection is characterized by a longer-lasting germinal center reaction and a continuous differentiation of plasma cells, resulting in the emergence of higher-affinity plasma cells exhibiting increased antibody secretion rates. Taken together, our findings reveal the emergence of a personalized antibody response in chronic infection and support the concept that maintaining B cell diversity throughout chronic LCMV infection correlates with the development of infection-resolving antibodies.
Collapse
Affiliation(s)
- Nike Julia Kräutler
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Alexander Yermanos
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland; Department of Biosystems and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Alessandro Pedrioli
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Dominique Lorgé
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Ute Greczmiel
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Ilka Bartsch
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Jörg Scheuermann
- Institute for Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Jonathan D Kiefer
- Institute for Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Klaus Eyer
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| | - Ulrike Menzel
- Department of Biosystems and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Victor Greiff
- Department of Biosystems and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Department of Immunology, University of Oslo, Sognsvannsveien 20 Rikshospitalet, 0372 Oslo, Norway
| | - Dario Neri
- Institute for Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Tanja Stadler
- Department of Biosystems and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland.
| |
Collapse
|