1
|
Kim JY, Mayatepek E, Seyfarth J, Jacobsen M. High common-γ cytokine receptor levels promote expression of Interleukin-2/Interleukin-7 receptor α-chains with implications on T-cell differentiation and function. Immunology 2024; 173:93-105. [PMID: 38778445 DOI: 10.1111/imm.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Cytokines of the common-γ receptor chain (γc) family are crucial for T-cell differentiation and dysregulation of γc cytokine pathways is involved in the pathogenesis of autoimmune diseases. There is increasing evidence that the availability of the γc receptor (CD132) for the associated receptor chains has implications for T-cell functions. Here we studied the influence of differential γc expression on the expression of the IL-2Rα (CD25), the IL-7Rα (CD127) and the differentiation of activated naïve T cells. We fine-tuned the regulation of γc expression in human primary naïve T cells by lentiviral transduction using small hairpin (sh)RNAs and γc cDNA. Differential γc levels were then analysed for effects on T-cell phenotype and function after activation. Differential γc expression markedly affected IL-2Rα and IL-7Rα expression on activated naïve T cells. High γc expression (γc-high) induced significantly higher expression of IL-2Rα and re-expression of IL-7Rα after activation. Inhibition of γc caused lower IL-2Rα/IL-7Rα expression and impaired proliferation of activated naïve T cells. In contrast, γc-high T cells secreted significantly higher concentrations of effector cytokines (i.e., IFN-γ, IL-6) and showed higher cytokine-receptor induced STAT5 phosphorylation during initial stages as well as persistently higher pSTAT1 and pSTAT3 levels after activation. Finally, accelerated transition towards a CD45RO expressing effector/memory phenotype was seen especially for CD4+ γc-high naïve T cells. These results suggested that high expression of γc promotes expression of IL-2Rα and IL-7Rα on activated naïve T cells with significant effects on differentiation and effector cytokine expression.
Collapse
Affiliation(s)
- Ju-Young Kim
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Julia Seyfarth
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
2
|
Ahor HS, Schulte R, Adankwah E, Harelimana JDD, Minadzi D, Acheampong I, Vivekanandan MM, Aniagyei W, Yeboah A, Arthur JF, Lamptey M, Abass MK, Kumbel F, Osei-Yeboah F, Gawusu A, Debrah LB, Owusu DO, Debrah A, Mayatepek E, Seyfarth J, Phillips RO, Jacobsen M. Monocyte pathology in human tuberculosis is due to plasma milieu changes and aberrant STAT signalling. Immunology 2023; 170:154-166. [PMID: 37219921 DOI: 10.1111/imm.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Monocyte-derived macrophages contribute centrally to immune protection in Mycobacterium tuberculosis infection and changes in monocyte phenotype characterize immunopathology in tuberculosis patients. Recent studies highlighted an important role of the plasma milieu in tuberculosis immunopathology. Here, we investigated monocyte pathology in patients with acute tuberculosis and determined tuberculosis plasma milieu effects on phenotype as well as cytokine signalling of reference monocytes. Patients with tuberculosis (n = 37) and asymptomatic contacts (controls n = 35) were recruited as part of a hospital-based study in the Ashanti region of Ghana. Multiplex flow cytometry phenotyping of monocyte immunopathology was performed and effects of individual blood plasma samples on reference monocytes prior to and during treatment were characterized. Concomitantly, cell signalling pathways were analysed to elucidate underlying mechanisms of plasma effects on monocytes. Multiplex flow cytometry visualization characterized changes in monocyte subpopulations and detected higher expression of CD40, CD64 and PD-L1 in monocytes from tuberculosis patients as compared to controls. Aberrant expression normalized during anti-mycobacterial treatment and also CD33 expression decreased markedly. Notably, higher CD33, CD40 and CD64 expression was induced in reference monocytes when cultured in the presence of plasma samples from tuberculosis patients as compared to controls. STAT signalling pathways were affected by the aberrant plasma milieu and higher levels of STAT3 and STAT5 phosphorylation was found in tuberculosis plasma-treated reference monocytes. Importantly, high pSTAT3 levels were associated with high CD33 expression and pSTAT5 correlated with CD40 as well as CD64 expression. These results suggested plasma milieu effects with potential implications on monocyte phenotype and function in acute tuberculosis.
Collapse
Affiliation(s)
- Hubert Senanu Ahor
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Rebecca Schulte
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Ernest Adankwah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Jean De Dieu Harelimana
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Difery Minadzi
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Isaac Acheampong
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | | | - Wilfred Aniagyei
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Augustine Yeboah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Joseph F Arthur
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Millicent Lamptey
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | | | | | | | - Amidu Gawusu
- Sene West Health Directorate, Kwame Danso, Ghana
| | - Linda Batsa Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Dorcas O Owusu
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Alexander Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Julia Seyfarth
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Richard O Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
- School of Medicine and Dentistry, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| |
Collapse
|
3
|
Natalini A, Simonetti S, Favaretto G, Lucantonio L, Peruzzi G, Muñoz-Ruiz M, Kelly G, Contino AM, Sbrocchi R, Battella S, Capone S, Folgori A, Nicosia A, Santoni A, Hayday AC, Di Rosa F. Improved memory CD8 T cell response to delayed vaccine boost is associated with a distinct molecular signature. Front Immunol 2023; 14:1043631. [PMID: 36865556 PMCID: PMC9973452 DOI: 10.3389/fimmu.2023.1043631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
Effective secondary response to antigen is a hallmark of immunological memory. However, the extent of memory CD8 T cell response to secondary boost varies at different times after a primary response. Considering the central role of memory CD8 T cells in long-lived protection against viral infections and tumors, a better understanding of the molecular mechanisms underlying the changing responsiveness of these cells to antigenic challenge would be beneficial. We examined here primed CD8 T cell response to boost in a BALB/c mouse model of intramuscular vaccination by priming with HIV-1 gag-encoding Chimpanzee adenovector, and boosting with HIV-1 gag-encoding Modified Vaccinia virus Ankara. We found that boost was more effective at day(d)100 than at d30 post-prime, as evaluated at d45 post-boost by multi-lymphoid organ assessment of gag-specific CD8 T cell frequency, CD62L-expression (as a guide to memory status) and in vivo killing. RNA-sequencing of splenic gag-primed CD8 T cells at d100 revealed a quiescent, but highly responsive signature, that trended toward a central memory (CD62L+) phenotype. Interestingly, gag-specific CD8 T cell frequency selectively diminished in the blood at d100, relative to the spleen, lymph nodes and bone marrow. These results open the possibility to modify prime/boost intervals to achieve an improved memory CD8 T cell secondary response.
Collapse
Affiliation(s)
- Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Gabriele Favaretto
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Lorenzo Lucantonio
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Gavin Kelly
- Bioinformatic and Biostatistics Science and Technology Platform, The Francis Crick Institute, London, United Kingdom
| | | | | | | | | | | | - Alfredo Nicosia
- CEINGE, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Adrian C Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom.,Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom.,National Institute for Health Research (NIHR), Biomedical Research Center (BRC), Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
4
|
Fernandes MB, Barata JT. IL-7 and IL-7R in health and disease: An update through COVID times. Adv Biol Regul 2023; 87:100940. [PMID: 36503870 DOI: 10.1016/j.jbior.2022.100940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The role of IL-7 and IL-7R for normal lymphoid development and an adequately functioning immune system has been recognized for long, with severe immune deficiency and lymphoid leukemia as extreme examples of the consequences of deregulation of the IL-7-IL-7R axis. In this review, we provide an update (focusing on the past couple of years) on IL-7 and IL-7R in health and disease. We highlight the findings on IL-7/IL-7R signaling mechanisms and the, sometimes controversial, impact of IL-7 and its receptor on leukocyte biology, COVID-19, acute lymphoblastic leukemia, and different solid tumors, as well as their relevance as therapeutic tools or targets.
Collapse
Affiliation(s)
- Marta B Fernandes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal.
| |
Collapse
|
5
|
IL-7: Comprehensive review. Cytokine 2022; 160:156049. [DOI: 10.1016/j.cyto.2022.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
|
6
|
Harelimana JDD, Ahor HS, Benner B, Hellmuth S, Adankwah E, Minadzi D, Aniagyei W, Lamptey M, Arthur J, Yeboah A, Abass MK, Debrah LB, Owusu DO, Mayatepek E, Seyfarth J, Phillips RO, Jacobsen M. Cytokine-induced transient monocyte IL-7Ra expression and the serum milieu in tuberculosis. Eur J Immunol 2022; 52:958-969. [PMID: 35279828 DOI: 10.1002/eji.202149661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/09/2022]
Abstract
Bacterial components and cytokines induce Interleukin-7 receptor (IL-7Rα) expression in monocytes. Aberrant low IL-7Rα expression of monocytes has been identified as a feature of tuberculosis immunopathology. Here, we investigated the mechanisms underlying IL-7Rα regulation of monocytes and tuberculosis serum effects IL-7Rα expression. Serum samples from tuberculosis patients and healthy controls, cytokine candidates, and mycobacterial components were analyzed for in vitro effects on IL-7Rα expression of primary monocytes, monocyte-derived macrophages (MDM), and monocyte cell lines. IL-7Rα regulation during culture and the role of FoxO1 was characterized. In vitro activation induced IL-7Rα expression in human monocytes and serum samples from tuberculosis patients boosted IL-7Rα expression. Although pathognomonic tuberculosis cytokines were not associated with serum effects, we identified cytokines (i.e., GM-CSF, IL-1β, TNFα, IFNγ) that induced IL-7Rα expression in monocytes and/or MDM comparable to mycobacterial components. Blocking of cytokine subsets (i.e., IL-1β/TNFα in monocytes, GM-CSF in MDM) largely diminished IL-7Rα expression induced by mycobacterial components. Finally, we showed that in vitro induced IL-7Rα expression was transient and dependent on constitutive FoxO1 expression in primary monocytes and monocyte cell lines. This study demonstrated the crucial roles of cytokines and constitutive FoxO1 expression for transient IL-7Rα expression in monocytes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jean De Dieu Harelimana
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, 40225, Germany
| | - Hubert Senanu Ahor
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, 40225, Germany
| | - Bastian Benner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, 40225, Germany
| | - Sabine Hellmuth
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, 40225, Germany
| | - Ernest Adankwah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Difery Minadzi
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Wilfred Aniagyei
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Millicent Lamptey
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Joseph Arthur
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Augustine Yeboah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | | | - Linda Batsa Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Dorcas O Owusu
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, 40225, Germany
| | - Julia Seyfarth
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, 40225, Germany
| | - Richard O Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana.,School of Medicine and Dentistry, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, 40225, Germany
| |
Collapse
|
7
|
Gao Y, Wu Y, Huan T, Wang X, Xu J, Xu Q, Yu F, Shi H. The application of oncolytic viruses in cancer therapy. Biotechnol Lett 2021; 43:1945-1954. [PMID: 34448096 DOI: 10.1007/s10529-021-03173-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 08/16/2021] [Indexed: 12/22/2022]
Abstract
Oncolytic therapy is a treatment method used to directly combat tumor cells by modifying the genes of naturally occurring low pathogenic viruses to form "rhizobia" virus. By taking the advantage of abnormal signal pathways in cancer cells, it selectively replicates in tumor cells leading to tumor cell lysis and death. At present, clinical studies widely employ biomolecular technology to transform oncolytic viruses to exert stronger oncolytic effects and reduce their adverse reactions. This review summarizes the current progresses and the molecular mechanism of oncolytic viruses towards tumor treatment and management.
Collapse
Affiliation(s)
- Yang Gao
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China
| | - Yan Wu
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China
| | - Tian Huan
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiaoyan Wang
- Department of Gastroenterology, The First People's Hospital of Suqian, Suqian, Jiangsu, People's Republic of China
| | - Jun Xu
- Department of Cognitive Neurology, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tian Tan Hospital, Affiliated to Capital Medical University, Beijing, People's Republic of China
| | - Qinggang Xu
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China
| | - Feng Yu
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China.
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Adankwah E, Seyfarth J, Phillips R, Jacobsen M. Aberrant cytokine milieu and signaling affect immune cell phenotypes and functions in tuberculosis pathology: What can we learn from this phenomenon for application to inflammatory syndromes? Cell Mol Immunol 2021; 18:2062-2064. [PMID: 34035497 PMCID: PMC8144869 DOI: 10.1038/s41423-021-00695-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Ernest Adankwah
- Department of General Pediatrics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Medical Diagnostics, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Julia Seyfarth
- Department of General Pediatrics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Richard Phillips
- Department of Medicine, School of Medicine and Dentistry, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Marc Jacobsen
- Department of General Pediatrics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
9
|
Human Adipose Tissue-Derived Mesenchymal Stromal Cells Inhibit CD4+ T Cell Proliferation and Induce Regulatory T Cells as Well as CD127 Expression on CD4+CD25+ T Cells. Cells 2021; 10:cells10010058. [PMID: 33401501 PMCID: PMC7824667 DOI: 10.3390/cells10010058] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSC) exert their immunomodulatory potential on several cell types of the immune system, affecting and influencing the immune response. MSC efficiently inhibit T cell proliferation, reduce the secretion of pro-inflammatory cytokines, limit the differentiation of pro-inflammatory Th subtypes and promote the induction of regulatory T cells (Treg). In this study, we analyzed the immunomodulatory potential of human adipose tissue-derived MSC (ASC), on CD4+ T cells, addressing potential cell-contact dependency in relation to T cell receptor stimulation of whole human peripheral blood mononuclear cells (PBMC). ASC were cultured with not stimulated or anti-CD3/CD28-stimulated PBMC in direct and transwell cocultures; PBMC alone were used as controls. After 7 days, cocultures were harvested and we analyzed: (1) the inhibitory potential of ASC on CD4+ cell proliferation and (2) phenotypic changes in CD4+ cells in respect of Treg marker (CD25, CD127 and FoxP3) expression. We confirmed the inhibitory potential of ASC on CD4+ cell proliferation, which occurs upon PBMC stimulation and is mediated by indoleamine 2,3-dioxygenase. Importantly, ASC reduce both pro- and anti-inflammatory cytokine secretion, without indications on specific Th differentiation. We found that stimulation induces CD25 expression on CD4+ cells and that, despite inhibiting overall CD4+ cell proliferation, ASC can specifically induce the proliferation of CD4+CD25+ cells. We observed that ASC induce Treg (CD4+CD25+CD127−FoxP3+) only in not stimulated cocultures and that ASC increase the ratio of CD4+CD25+CD127+FoxP3− cells at the expense of CD4+CD25+CD127−FoxP3− cells. Our study provides new insights on the interplay between ASC and CD4+ T cells, proposing that ASC-dependent induction of Treg depends on PBMC activation which affects the balance between the different subpopulations of CD4+CD25+ cells expressing CD127 and/or FoxP3.
Collapse
|
10
|
Healy ZR, Weinhold KJ, Murdoch DM. Transcriptional Profiling of CD8+ CMV-Specific T Cell Functional Subsets Obtained Using a Modified Method for Isolating High-Quality RNA From Fixed and Permeabilized Cells. Front Immunol 2020; 11:1859. [PMID: 32983102 PMCID: PMC7492549 DOI: 10.3389/fimmu.2020.01859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/10/2020] [Indexed: 01/04/2023] Open
Abstract
Previous studies suggest that the presence of antigen-specific polyfunctional T cells is correlated with improved pathogen clearance, disease control, and clinical outcomes; however, the molecular mechanisms responsible for the generation, function, and survival of polyfunctional T cells remain unknown. The study of polyfunctional T cells has been, in part, limited by the need for intracellular cytokine staining (ICS), necessitating fixation and cell membrane permeabilization that leads to unacceptable degradation of RNA. Adopting elements from prior research efforts, we developed and optimized a modified protocol for the isolation of high-quality RNA (i.e., RIN > 7) from primary human T cells following aldehyde-fixation, detergent-based permeabilization, intracellular cytokines staining, and sorting. Additionally, this method also demonstrated utility preserving RNA when staining for transcription factors. This modified protocol utilizes an optimized combination of an RNase inhibitor and high-salt buffer that is cost-effective while maintaining the ability to identify and resolve cell populations for sorting. Overall, this protocol resulted in minimal loss of RNA integrity, quality, and quantity during cytoplasmic staining of cytokines and subsequent flourescence-activated cell sorting. Using this technique, we obtained the transcriptional profiles of functional subsets (i.e., non-functional, monofunctional, bifunctional, polyfunctional) of CMV-specific CD8+T cells. Our analyses demonstrated that these functional subsets are molecularly distinct, and that polyfunctional T cells are uniquely enriched for transcripts involved in viral response, inflammation, cell survival, proliferation, and metabolism when compared to monofunctional cells. Polyfunctional T cells demonstrate reduced activation-induced cell death and increased proliferation after antigen re-challenge. Further in silico analysis of transcriptional data suggested a critical role for STAT5 transcriptional activity in polyfunctional cell activation. Pharmacologic inhibition of STAT5 was associated with a significant reduction in polyfunctional cell cytokine expression and proliferation, demonstrating the requirement of STAT5 activity not only for proliferation and cell survival, but also cytokine expression. Finally, we confirmed this association between CMV-specific CD8+ polyfunctionality with STAT5 signaling also exists in immunosuppressed transplant recipients using single cell transcriptomics, indicating that results from this study may translate to this vulnerable patient population. Collectively, these results shed light on the mechanisms governing polyfunctional T cell function and survival and may ultimately inform multiple areas of immunology, including but not limited to the development of new vaccines, CAR-T cell therapies, and adoptive T cell transfer.
Collapse
Affiliation(s)
- Zachary R Healy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University Hospital, Durham, NC, United States
| | - Kent J Weinhold
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - David M Murdoch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University Hospital, Durham, NC, United States
| |
Collapse
|
11
|
Paul S, Roblin X. The Nightmare Monitoring of JAKinhibs. Gastroenterology 2020; 159:1188-1189. [PMID: 32645321 DOI: 10.1053/j.gastro.2020.03.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/08/2020] [Indexed: 12/02/2022]
Affiliation(s)
| | - Xavier Roblin
- Department of Gastroenterology, University Hospital of Saint Etienne, Saint Etienne, France
| |
Collapse
|