1
|
Keot N, Sarma M. Probing the dynamic behaviour and magnetic identification of seven coordinated Mn(II) complexes: a combined AIMD and multi-reference approach. Phys Chem Chem Phys 2023; 25:31165-31177. [PMID: 37953737 DOI: 10.1039/d3cp04072k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We present an in-depth solution phase dynamics of rare seven coordinated pentagonal bipyramidal Mn(II) complexes, together with their binding affinity anticipated using ab initio molecular dynamics (AIMD) simulations and density functional theory (DFT). Moreover, the simulations at different temperatures (25 °C and 90 °C) interpret the rigidity and stability of the ligands with Mn(II) ions. An intuitive approach for modulating the easy plane magnetic anisotropy of the mononuclear Mn(II) complex has been revealed by this work. In this regard, we have performed an extensive theoretical study based on the ab initio CASSCF/NEVPT2 method, exhibiting the presence of an easy plane magnetic anisotropy with a positive value of axial zero-field splitting (ZFS) parameter D. The complex's magnetic properties and electronic relaxation reveal that the rhombic ZFS term (E) can be modulated as the symmetry around the Mn(II) ion varies. The magnitude of the D-value increased with a more symmetrical equatorial ligand as found in the order of [Mn(pydpa)(H2O)] > [Mn(cbda)(H2O)]- > [Mn(dpaaa)(H2O)]- > [Mn(dpasam)(H2O)]-. Furthermore, we found that substituting the equatorial oxygen atom with heavier S and Se-donor atoms switches the sign of magnetic anisotropy for the Mn(II) complexes. The magnitude of the D-value increased when the energy levels of the ground state (GS) and the first excited state (ES) decreased. The observed magneto-structural correlation reveals that shortening the distance of the axial water molecule (Mn-O(w)) increases the D-value by an order of magnitude for the symmetrical [Mn(pydpa)(H2O)] complex. Overall, the combined analysis of solution phase dynamics of Mn(II) complexes and their magnetic characterization opens up new avenues in coordination chemistry, molecular magnetism, spin-crossover materials, and catalysis.
Collapse
Affiliation(s)
- Niharika Keot
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Li Y, Xia Q, Zhu C, Cao W, Xia Z, Liu X, Xiao B, Chen K, Liu Y, Zhong L, Tan B, Lei J, Zhu J. An activatable Mn(II) MRI probe for detecting peroxidase activity in vitro and in vivo. J Inorg Biochem 2022; 236:111979. [PMID: 36087435 DOI: 10.1016/j.jinorgbio.2022.111979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/15/2022]
Abstract
Myeloperoxidase (MPO), a hallmark of the function and activation of innate immune cells, can act as a 'double-edged sword', contributing to clear infection as well as causing tissue oxidizing damage in various inflammatory diseases. In this study, an activatable Mn(II) chelate-based magnetic resonance imaging (MRI) contrast agent (CA), Mn-TyEDTA (TyEDTA = tyrosine derived ethylenediaminetetraacetic acid) structurally featuring a phenol group as the electron-donor, was developed to sense the activity of peroxidase in vitro and in vivo. Mn-TyEDTA demonstrated a peroxidase activity-dependent relaxivity in the presence of horseradish peroxidase (HRP)/H2O2 with more than a 2.6-fold increase in water proton relaxivity produced (HRP, 500 U; H2O2, 4.5 eq). A mechanism of peroxidase-mediated Mn(II) monomer radical polymerization was confirmed with those oligomers of Mn-TyEDTA such as dimer, trimer and tetramer were found in the LC-MS study. Dynamic MR imaging of normal mice revealed rapid blood clearance and mixed renal and hepatobiliary elimination of Mn-TyEDTA. Furthermore, compared to liver-specific and non-specific extracellular contrast agents (Mn-BnO-TyEDTA (BnO-TyEDTA = benzyl tyrosine-derived ethylenediaminetetraacetic acid) and Gd-DTPA (DTPA = diethylene triamine penta-acetic acid)), MRI on a monosodium urate (MSU) crystal-induced acute mice model of arthritis showed that inflamed tissues could be selectively enhanced by Mn-TyEDTA, suggesting that this peroxidase-activatable Mn(II) MRI probe could potentially be used for noninvasive detection of MPO activity in vivo.
Collapse
Affiliation(s)
- Yunhe Li
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China; School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, Sichuan 637000, China
| | - Qian Xia
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Chunrong Zhu
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Weidong Cao
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China; School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, Sichuan 637000, China
| | - Zhiyang Xia
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Xinxin Liu
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Bin Xiao
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Keyu Chen
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China; School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, Sichuan 637000, China
| | - Yun Liu
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Lei Zhong
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Bangxian Tan
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Jun Lei
- School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, Sichuan 637000, China.
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China; School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, Sichuan 637000, China.
| |
Collapse
|
3
|
Li Y, Zhang P, Tang W, McHugh KJ, Kershaw SV, Jiao M, Huang X, Kalytchuk S, Perkinson CF, Yue S, Qiao Y, Zhu L, Jing L, Gao M, Han B. Bright, Magnetic NIR-II Quantum Dot Probe for Sensitive Dual-Modality Imaging and Intensive Combination Therapy of Cancer. ACS NANO 2022; 16:8076-8094. [PMID: 35442624 DOI: 10.1021/acsnano.2c01153] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Improving the effectiveness of cancer therapy will require tools that enable more specific cancer targeting and improved tumor visualization. Theranostics have the potential for improving cancer care because of their ability to serve as both diagnostics and therapeutics; however, their diagnostic potential is often limited by tissue-associated light absorption and scattering. Herein, we develop CuInSe2@ZnS:Mn quantum dots (QDs) with intrinsic multifunctionality that both enable the accurate localization of small metastases and act as potent tumor ablation agents. By leveraging the growth kinetics of a ZnS shell on a biocompatible CuInSe2 core, Mn doping, and folic acid functionalization, we produce biocompatible QDs with high near-infrared (NIR)-II fluorescence efficiency up to 31.2%, high contrast on magnetic resonance imaging (MRI), and preferential distribution in 4T1 breast cancer tumors. MRI-enabled contrast of these nanoprobes is sufficient to timely identify small metastases in the lungs, which is critically important for preventing cancer spreading and recurrence. Further, exciting tumor-resident QDs with NIR light produces both fluorescence for tumor visualization through radiative recombination pathways as well as heat and radicals through nonradiative recombination pathways that kill cancer cells and initiate an anticancer immune response, which eliminates tumor and prevents tumor regrowth in 80% of mice.
Collapse
Affiliation(s)
- Yingying Li
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Peisen Zhang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Wen Tang
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, Texas 77005, United States
| | - Stephen V Kershaw
- Department of Materials Science and Engineering & Centre for Functional Photonics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 99077, Hong Kong SAR, China
| | - Mingxia Jiao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaodan Huang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Sergii Kalytchuk
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Collin F Perkinson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Saisai Yue
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanyuan Qiao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lichong Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihong Jing
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Mingyuan Gao
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Buxing Han
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| |
Collapse
|
4
|
Uzal-Varela R, Valencia L, Lalli D, Maneiro M, Esteban-Gómez D, Platas-Iglesias C, Botta M, Rodríguez-Rodríguez A. Understanding the Effect of the Electron Spin Relaxation on the Relaxivities of Mn(II) Complexes with Triazacyclononane Derivatives. Inorg Chem 2021; 60:15055-15068. [PMID: 34618439 PMCID: PMC8527457 DOI: 10.1021/acs.inorgchem.1c02057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Investigating the relaxation of water 1H nuclei induced by paramagnetic Mn(II) complexes is important to understand the mechanisms that control the efficiency of contrast agents used in diagnostic magnetic resonance imaging (MRI). Herein, a series of potentially hexadentate triazacyclononane (TACN) derivatives containing different pendant arms were designed to explore the relaxation of the electron spin in the corresponding Mn(II) complexes by using a combination of 1H NMR relaxometry and theoretical calculations. These ligands include 1,4,7-triazacyclononane-1,4,7-triacetic acid (H3NOTA) and three derivatives in which an acetate group is replaced by sulfonamide (H3NO2ASAm), amide (H2NO2AM), or pyridyl (H2NO2APy) pendants. The analogue of H3NOTA containing three propionate pendant arms (H3NOTPrA) was also investigated. The X-ray structure of the derivative containing two acetate groups and a sulfonamide pendant arm [Mn(NO2ASAm)]- evidenced six-coordination of the ligand to the metal ion, with the coordination polyhedron being close to a trigonal prism. The relaxivities of all complexes at 20 MHz and 25 °C (1.1-1.3 mM-1 s-1) are typical of systems that lack water molecules coordinated to the metal ion. The nuclear magnetic relaxation profiles evidence significant differences in the relaxivities of the complexes at low fields (<1 MHz), which are associated with different spin relaxation rates. The zero field splitting (ZFS) parameters calculated by using DFT and CASSCF methods show that electronic relaxation is relatively insensitive to the nature of the donor atoms. However, the twist angle of the two tripodal faces that delineate the coordination polyhedron, defined by the N atoms of the TACN unit (lower face) and the donor atoms of the pendant arms (upper face), has an important effect in the ZFS parameters. A twist angle close to the ideal value for an octahedral coordination (60°), such as that in [Mn(NOTPrA)]-, leads to a small ZFS energy, whereas this value increases as the coordination polyhedron approaches to a trigonal prism.
Collapse
Affiliation(s)
- Rocío Uzal-Varela
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Galicia, Spain
| | - Laura Valencia
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain
| | - Daniela Lalli
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Facultade de Ciencias, Campus de Lugo, 27002 Lugo, Galicia, Spain
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Galicia, Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Galicia, Spain
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Aurora Rodríguez-Rodríguez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Galicia, Spain
| |
Collapse
|
5
|
Dahanayake V, Lyons T, Kerwin B, Rodriguez O, Albanese C, Parasido E, Lee Y, Keuren EV, Li L, Maxey E, Paunesku T, Woloschak G, Stoll SL. Paramagnetic Mn 8Fe 4- co-Polystyrene Nanobeads as a Potential T 1-T 2 Multimodal Magnetic Resonance Imaging Contrast Agent with In Vivo Studies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39042-39054. [PMID: 34375073 PMCID: PMC10506655 DOI: 10.1021/acsami.1c09232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In developing a cluster-nanocarrier design, as a magnetic resonance imaging contrast agent, we have investigated the enhanced relaxivity of a manganese and iron-oxo cluster grafted within a porous polystyrene nanobead with increased relaxivity due to a higher surface area. The synthesis of the cluster-nanocarrier for the cluster Mn8Fe4O12(O2CC6H4CH═CH2)16(H2O)4, cross-linked with polystyrene (the nanocarrier), under miniemulsion conditions is described. By including a branched hydrophobe, iso-octane, the resulting nanobeads are porous and ∼70 nm in diameter. The increased surface area of the nanobeads compared to nonporous nanobeads leads to an enhancement in relaxivity; r1 increases from 3.8 to 5.2 ± 0.1 mM-1 s-1, and r2 increases from 11.9 to 50.1 ± 4.8 mM-1 s-1, at 9.4 teslas, strengthening the potential for T1 and T2 imaging. Several metrics were used to assess stability, and the porosity produced no reduction in metal stability. Synchrotron X-ray fluorescence microscopy was used to demonstrate that the nanobeads remain intact in vivo. In depth, physicochemical characteristics were determined, including extensive pharmacokinetics, in vivo imaging, and systemic biodistribution analysis.
Collapse
Affiliation(s)
- Vidumin Dahanayake
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Trevor Lyons
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Brendan Kerwin
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Christopher Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
- Department of Radiology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Erika Parasido
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Yichien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Edward Van Keuren
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Luxi Li
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Evan Maxey
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University, 303 E. Chicago Ave., Chicago, Illinois 60611, United States
| | - Gayle Woloschak
- Department of Radiation Oncology, Northwestern University, 303 E. Chicago Ave., Chicago, Illinois 60611, United States
| | - Sarah L Stoll
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| |
Collapse
|
6
|
Wang Y, Li M, Luo T, Jiao M, Jin S, Dou P, Zuo F, Wu C, Han C, Li J, Xu K, Zheng S. Development of FL/MR dual-modal Au nanobipyramids for targeted cancer imaging and photothermal therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112190. [PMID: 34225846 DOI: 10.1016/j.msec.2021.112190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/15/2021] [Accepted: 05/13/2021] [Indexed: 01/07/2023]
Abstract
Multifunctional nanodrugs have emerged as an effective platform to integrate multiple imaging and therapeutic functions for tremendous biomedical applications. However, the development of a simple potent theranostic nanoplatform is still an intractable challenge. Herein, a novel theranostic nanoplatform was developed by coupling prepared Au nanobipyramids with Gd2O3, Au nanoclusters and denatured bovine serum albumin (AuNBP-Gd2O3/Au-dBSA) for FL/MR dual-modal imaging guided photothermal therapy. AS1411 aptamers were conjugated to enhance its targetability towards breast cancer. The AS1411-AuNBP-Gd2O3/Au-dBSA suspension could be readily heated above 40 °C at a low concentration (2 mg/L) and NIR density (1 W/cm2). The AS1411-AuNBP-Gd2O3/Au-dBSA revealed a fluorescence quantum yield of 4.2% and higher longitudinal relaxivity rate of 6.75 mM-1 s-1 compared to Gd-DTPA of 4.45 mM-1 s-1. As a result, the AS1411-AuNBP-Gd2O3/Au-dBSA functions as a multimodal nanoprobe of photothermal, fluorescence and MR imaging for specific tumor diagnosis and guidance of therapy, which was validated via in vitro and in vivo tests. Moreover, AS1411-AuNBP-Gd2O3/Au-dBSA nanoparticles indicated excellent photothermal anticancer effect more than 95% in both in vitro and in vivo tests. Besides, the low toxicity of AS1411-AuNBP-Gd2O3/Au-dBSA nanocomposites was further confirmed in vitro and in vivo. Thus, these results demonstrated the AS1411-AuNBP-Gd2O3/Au-dBSA nanocomposites as a rational design of multifunctional nanoplatform to enable multimodal imaging guided photothermal therapy.
Collapse
Affiliation(s)
- Yong Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Mengshuang Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Tao Luo
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Min Jiao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Shang Jin
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Peipei Dou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Fengmei Zuo
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Changyu Wu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Cuiping Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China.
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China.
| |
Collapse
|
7
|
Yun B, Zhu H, Yuan J, Sun Q, Li Z. Synthesis, modification and bioapplications of nanoscale copper chalcogenides. J Mater Chem B 2021; 8:4778-4812. [PMID: 32226981 DOI: 10.1039/d0tb00182a] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Copper chalcogenides have a simple general formula, variable atomic ratios, and complicated crystal structures, which lead to their wealth of optical, electrical, and magnetic properties with great potential for wide applications ranging from energy conversion to the biomedical field. Herein, we summarize the recent advances in (1) the synthesis of size- and morphology tunable nanostructures by different methods; (2) surface modification and functionalization for different purposes; and (3) bioapplications for diagnosis and treatment of tumors by different imaging and therapy methods, as well as antibacterial applications. We also briefly discuss the future directions and challenges of copper chalcogenide nanoparticles in the biomedical field.
Collapse
Affiliation(s)
- Baofeng Yun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| | - Hongqin Zhu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| | - Jiaxin Yuan
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| |
Collapse
|
8
|
Porcar-Tost O, Pallier A, Esteban-Gómez D, Illa O, Platas-Iglesias C, Tóth É, Ortuño RM. Stability, relaxometric and computational studies on Mn 2+ complexes with ligands containing a cyclobutane scaffold. Dalton Trans 2021; 50:1076-1085. [PMID: 33367361 DOI: 10.1039/d0dt03402a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stability constants of Mn2+ complexes with ligands containing a trans-1,2-cyclobutanediamine spacer functionalized with picolinate and/or carboxylate functions were determined using potentiometric titrations (25 °C, 0.1 M KCl). The stability constant of the complex with a hexadentate ligand containing four acetate groups (L14-, log KMnL = 10.26) is improved upon replacing one (L24-, log KMnL = 14.71) or two (L34-, log KMnL = 15.81) carboxylate groups with picolinates. The [Mn(L1)]2- complex contains a water molecule coordinated to the metal ion in aqueous solutions, as evidenced by 1H NMRD studies and 17O chemical shifts and transverse relaxation rates. The 1H relaxivities determined at 60 MHz (3.3 and 2.4 mM-1 s-1 at 25 and 37 °C, respectively) are comparable to those of monohydrated complexes such as [Mn(edta)]2-. The exchange rate of the inner-sphere water molecule (k = 248 × 106 s-1) is slightly lower than that of the edta4- analogue. DFT calculations (M11/def2-TZVP) suggest that the water exchange reaction follows a dissociatively activated mechanism, providing activation parameters in reasonably good agreement with the experimental data. DFT calculations also show that the 17O hyperfine coupling constant A/ℏ is affected slightly by changes in the Mn-Owater distance and the orientation of the water molecule with respect to the Mn-O vector.
Collapse
Affiliation(s)
- Oriol Porcar-Tost
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
9
|
Han C, Xie T, Wang K, Jin S, Li K, Dou P, Yu N, Xu K. Development of fluorescence/MR dual-modal manganese-nitrogen-doped carbon nanosheets as an efficient contrast agent for targeted ovarian carcinoma imaging. J Nanobiotechnology 2020; 18:175. [PMID: 33256741 PMCID: PMC7708123 DOI: 10.1186/s12951-020-00736-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Development of sensitive and specific imaging approaches for the detection of ovarian cancer holds great promise for improving the therapeutic efficacy and the lifespan of the patients. Results In this study, manganese-nitrogen doped carbon nanosheets (Mn-N-CNSs) coupled with Anti-HE4 monoclonal antibody (Mn-N-CNSs@Anti-HE4) were synthesized for the specific and targeted fluorescence/MR dual-modal imaging of ovarian carcinoma. The prepared Mn-N-CNSs revealed excellent aqueous dispersity, good colloidal stability, great optical properties and high longtudinal relaxivity rate (r1 = 10.30 mM−1 s−1). Encouraged by the tunable photoluminiscence of the nanoprobe and Anti-HE4 targeting ligand, the ovarian carcinoma cells were specifically labeled by the Mn-N-CNSs@Anti-HE4 nanoprobe with multi-color fluorescences. Benefiting from the high r1 relaxivity, the nanoprobe exhibited targeted and enhanced MR contrast effect in the ovarian carcinoma cells and tumor bearing mice model. Besides, the high biocompatibility and easy excretion from the body of the nanoprobe were further confirmed in vivo. Conclusion The prepared Mn-N-CNSs@Anti-HE4 with excellent biocompatibility, high-performance and superior tumor-targeting ability provides a novel fluorescence/MR dual-modal nanoprobe for specific labeling and detection of ovarian carcinoma cells in vitro and in vivo. ![]()
Collapse
Affiliation(s)
- Cuiping Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China. .,Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ting Xie
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Keying Wang
- Department of Medical Imaging, Jinshan Hospital Affiliated To Fudan University, Shnghai, 200540, China
| | - Shang Jin
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Ke Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Peipei Dou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Nana Yu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Kai Xu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
10
|
Calvete MJ, Pinto SM, Burrows HD, Castro MMC, Geraldes CF, Pereira MM. Multifunctionalization of cyanuric chloride for the stepwise synthesis of potential multimodal imaging chemical entities. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
Yaghoobi F, Karimi shervedani R, Torabi M, Kefayat A, Ghahremani F, Farzadniya A. Therapeutic effect of deferrioxamine conjugated to PEGylated gold nanoparticles and complexed with Mn(II) beside the CT scan and MRI diagnostic studies. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Samiei Foroushani M, Karimi Shervedani R, Kefayat A, Torabi M, Ghahremani F, Yaghoobi F. Folate-graphene chelate manganese nanoparticles as a theranostic system for colon cancer MR imaging and drug delivery: In-vivo examinations. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Bárta J, Hermann P, Kotek J. Coordination Behavior of 1,4-Disubstituted Cyclen Endowed with Phosphonate, Phosphonate Monoethylester, and H-Phosphinate Pendant Arms. Molecules 2019; 24:E3324. [PMID: 31547345 PMCID: PMC6767212 DOI: 10.3390/molecules24183324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 11/17/2022] Open
Abstract
Three 1,4,7,10-tetraazacyclododecane-based ligands disubstituted in 1,4-positions with phosphonic acid, phosphonate monoethyl-ester, and H-phosphinic acid pendant arms, 1,4-H4do2p, 1,4-H2do2pOEt, and 1,4-H2Bn2do2pH, were synthesized and their coordination to selected metal ions, Mg(II), Ca(II), Mn(II), Zn(II), Cu(II), Eu(III), Gd(III), and Tb(III), was investigated. The solid-state structure of the phosphonate ligand, 1,4-H4do2p, was determined by single-crystal X-ray diffraction. Protonation constants of the ligands and stability constants of their complexes were obtained by potentiometry, and their values are comparable to those of previously studied analogous 1,7-disubstitued cyclen derivatives. The Gd(III) complex of 1,4-H4do2p is ~1 order of magnitude more stable than the Gd(III) complex of the 1,7-analogue, probably due to the disubstituted ethylenediamine-like structural motif in 1,4-H4do2p enabling more efficient wrapping of the metal ion. Stability of Gd(III)-1,4-H2do2pOEt and Gd(III)-H2Bn2do2pH complexes is low and the constants cannot be determined due to precipitation of the metal hydroxide. Protonations of the Cu(II), Zn(II), and Gd(III) complexes probably takes place on the coordinated phosphonate groups. Complexes of Mn(II) and alkali-earth metal ions are significantly less stable and are not formed in acidic solutions. Potential presence of water molecule(s) in the coordination spheres of the Mn(II) and Ln(III) complexes was studied by variable-temperature NMR experiments. The Mn(II) complexes of the ligands are not hydrated. The Gd(III)-1,4-H4do2p complex undergoes hydration equilibrium between mono- and bis-hydrated species. Presence of two-species equilibrium was confirmed by UV-Vis spectroscopy of the Eu(III)-1,4-H4do2p complex and hydration states were also determined by luminescence measurements of the Eu(III)/Tb(III)-1,4-H4do2p complexes.
Collapse
Affiliation(s)
- Jiří Bárta
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic.
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic.
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic.
| |
Collapse
|
14
|
Samiei Foroushani M, Niroumand N, Karimi Shervedani R, Yaghoobi F, Kefayat A, Torabi M. A theranostic system based on nanocomposites of manganese oxide nanoparticles and a pH sensitive polymer: Preparation, and physicochemical characterization. Bioelectrochemistry 2019; 130:107347. [PMID: 31437809 DOI: 10.1016/j.bioelechem.2019.107347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 01/17/2023]
Abstract
A multifunctional nanocomposite theranostic system is constructed of manganese oxide (Mn3O4) nanoparticles (NPs), as a tumor diagnostic agent, in conjunction with polyacrylic acid (PAA), as a pH-sensitive drug delivery agent, and methotrexate (MTX), as a model of targeting agent and anticancer drug. Physicochemical characteristics of the Mn3O4@PAA/MTX system is studied in detail by several techniques, including X-ray and Auger photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and electrochemical methods. The system performance is studied based on (i) in-vitro MRI measurements to support efficiency of the Mn3O4@PAA NPs as a diagnostic agent, (ii) drug release performance of the Mn3O4@PAA/MTX NPs at pHs of 5.4 and 7.4 through in-vitro method to evaluate application of the NPs as pH-sensitive nanocarriers for MTX, and (iii) impedance spectroscopy measurements to show Mn3O4@PAA/MTX NPs affinity for capturing of cancer cells. The results show that (i) Mn3O4@PAA NPs can be used as a contrast agent in MRI measurements (r1 ≅ 6.5 mM-1 s-1), (ii) the MTX, loaded on Mn3O4@PAA NPs, is released faster and more efficient at pH 5.4 than 7.4, and (iii) the GC-Mn3O4@PAA/MTX electrode system captures the 4T1 cells 3.32 times larger than L929 cells.
Collapse
Affiliation(s)
| | - Nazanin Niroumand
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Fatemeh Yaghoobi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mostafa Torabi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
15
|
Pinto SM, Tomé V, Calvete MJ, Castro MMC, Tóth É, Geraldes CF. Metal-based redox-responsive MRI contrast agents. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Abstract
Mn(II) has several favorable physicochemical characteristics and a good toxicity profile, which makes it a viable alternative to the Gd(III)-based MRI contrast agents currently used in clinics. Although many studies have been undertaken in the last 10 years, this is a field of investigation still in rapid and continuous development. This review aims to critically discuss the chemical and magnetic properties of Mn(II) compounds relevant as MRI probes, both small complexes and nanosystems containing a large number of metal centers, the possible approaches for optimizing their efficiency by understanding the role of various molecular parameters that control the relaxation processes, and the most important issues related to stability and kinetic inertness.
Collapse
|
17
|
Pujales-Paradela R, Carniato F, Esteban-Gómez D, Botta M, Platas-Iglesias C. Controlling water exchange rates in potential Mn 2+-based MRI agents derived from NO2A 2. Dalton Trans 2019; 48:3962-3972. [PMID: 30834411 DOI: 10.1039/c9dt00211a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report a series of pentadentate ligands based on a 1,4,7-triazacyclononane-1,4-diacetic acid (H2NO2A) containing different substituents attached to the third nitrogen atom of the macrocyclic unit. Detailed 1H Nuclear Magnetic Relaxation Dispersion (NMRD) characterisation of the corresponding Mn2+ complexes suggests the formation of six-coordinate species in solution containing an inner-sphere water molecule. This was confirmed by recording the transverse 17O relaxation time and chemical shift measurements. The water exchange rate of the coordinated water molecule was found to be strongly influenced by the nature of the substituent R at position 7 of the triazacyclononane unit (R = Me, k298ex = 62.6 × 107 s-1; R = Bz, k298ex = 4.4 × 107 s-1; R = 1-phenylethyl, k298ex = 2.6 × 107 s-1). The decreasing exchange rates are explained by the increasing bulkiness of the substituent, which hinders the approach of the entering water molecule in an associatively activated water exchange mechanism. This is supported by DFT calculations (M062X/TZVP), which confirm the associative nature of the water exchange reaction. A potentially decadentate ligand containing two NO2A units linked by a xylenyl spacer in the meta position was also synthesised. The corresponding binuclear Mn2+ complex contains two metal ions with different hydration numbers, as evidenced by 1H NMRD and 17O NMR measurements. DFT calculations show that this is related to the presence of a bridging bidentate μ-η1-carboxylate group connecting the two metal centers. The results reported in this work provide a straightforward strategy to control the exchange rate of the coordinated water molecule in this family of MRI contrast agent candidates.
Collapse
Affiliation(s)
- Rosa Pujales-Paradela
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | | | | | | | | |
Collapse
|
18
|
Pujales‐Paradela R, Savić T, Esteban‐Gómez D, Angelovski G, Carniato F, Botta M, Platas‐Iglesias C. Gadolinium(III)‐Based Dual1H/19F Magnetic Resonance Imaging Probes. Chemistry 2019; 25:4782-4792. [DOI: 10.1002/chem.201806192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Rosa Pujales‐Paradela
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento, de QuímicaFacultade de CienciasUniversidade da Coruña 15071 A Coruña Galicia Spain
| | - Tanja Savić
- MR Neuroimaging AgentsMax Planck Institute for Biological Cybernetics Tübingen Germany
| | - David Esteban‐Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento, de QuímicaFacultade de CienciasUniversidade da Coruña 15071 A Coruña Galicia Spain
| | - Goran Angelovski
- MR Neuroimaging AgentsMax Planck Institute for Biological Cybernetics Tübingen Germany
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione TecnologicaUniversità del Piemonte Orientale “A. Avogadro” Viale T. Michel 11 15121 Alessandria Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione TecnologicaUniversità del Piemonte Orientale “A. Avogadro” Viale T. Michel 11 15121 Alessandria Italy
| | - Carlos Platas‐Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento, de QuímicaFacultade de CienciasUniversidade da Coruña 15071 A Coruña Galicia Spain
| |
Collapse
|
19
|
Zeng K, Xu Q, Ouyang J, Han Y, Sheng J, Wen M, Chen W, Liu YN. Coordination Nanosheets of Phthalocyanine as Multifunctional Platform for Imaging-Guided Synergistic Therapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6840-6849. [PMID: 30693749 DOI: 10.1021/acsami.8b22008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
"All-in-one" nanodrugs integrating various functionalities into one nanosystem are highly desired for cancer treatment. Coordination nanosheets as one type of two dimensional (2D) nanomaterials offer great opportunities, but there is lack of enough candidates. Here, a new kind of coordination nanosheets based on phthalocyanine are constructed. Manganese phthalocyanine (MnPc) tetracarboxylic acid is employed as photoactive ligand to form MnPc nanosheets; meanwhile, hyaluronic acid (HA) is coated on their surface. The obtained MnPc@HA nanosheets exhibit superior near-infrared (NIR) photothermal effect with photothermal conversion efficiency of 72.3%, much higher than those of the previously reported photothermal agents. Due to their 2D nanostructures, MnPc@HA nanosheets possess superhigh drug-loading capacity for chemotherapy drug curcumin. With HA as a targeting group, the nanosheets selectively accumulated in CD44 overexpressed tumors, followed by drug release under the control of NIR light. Moreover, MnPc@HA nanosheets with intrinsic paramagnetism can serve as T1 contrast agent for magnetic resonance imaging. The synergistic effect of phototherapy and chemotherapy endows curcumin-loaded MnPc@HA nanosheets with superior tumor-eradicating efficacy. Besides, MnPc@HA nanosheets are biocompatible and safe for biomedical applications. This work provides novel insight for developing new multifunctional platforms based on 2D coordination nanosheets to synergistically combat cancer.
Collapse
|
20
|
Pujales-Paradela R, Carniato F, Uzal-Varela R, Brandariz I, Iglesias E, Platas-Iglesias C, Botta M, Esteban-Gómez D. A pentadentate member of the picolinate family for Mn(ii) complexation and an amphiphilic derivative. Dalton Trans 2019; 48:696-710. [PMID: 30547165 DOI: 10.1039/c8dt03856b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report a pentadentate ligand containing a 2,2'-azanediyldiacetic acid moiety functionalized with a picolinate group at the nitrogen atom (H3paada), as well as a lipophylic derivative functionalized with a dodecyloxy group at position 4 of the pyridyl ring (H3C12Opaada). The protonation constants of the paada3- ligand and the stability constant of the Mn(ii) complex were determined using a combination of potentiometric and spectrophotometric titrations (25 °C, 0.15 M NaCl). A detailed relaxometric characterisation was accomplished by recording 1H Nuclear Magnetic Relaxation Dispersion (NMRD) profiles and 17O chemical shifts and relaxation rates. These studies provide detailed information on the microscopic parameters that control their efficiency as relaxation agents in vitro. For the sake of completeness and to facilitate comparison, we also characterised the related [Mn(nta)]- complex (nta = nitrilotriacetate). Both the [Mn(paada)]- and [Mn(nta)]- complexes turned out to contain two inner-sphere water molecules in aqueous solution. The exchange rate of these coordinated water molecules was slower in [Mn(paada)]- (k298ex = 90 × 107 s-1) than in [Mn(nta)]- (k298ex = 280 × 107 s-1). The complexes were also characterised using both DFT (TPSSh/def2-TZVP) and ab initio CAS(5,5) calculations. The lipophylic [Mn(C12Opaada)]- complex forms micelles in solution characterised by a critical micellar concentration (cmc) of 0.31 ± 0.01 mM. This complex also forms a rather strong adduct with Bovine Serum Albumin (BSA) with an association constant of 5.5 × 104 M-1 at 25 °C. The enthalpy and entropy changes obtained for the formation of the adduct indicate that the binding event is driven by hydrophobic interactions.
Collapse
Affiliation(s)
- Rosa Pujales-Paradela
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Islam MK, Kim S, Kim HK, Kim YH, Lee YM, Choi G, Baek AR, Sung BK, Kim M, Cho AE, Kang H, Lee GH, Choi SH, Lee T, Park JA, Chang Y. Synthesis and Evaluation of Manganese(II)-Based Ethylenediaminetetraacetic Acid-Ethoxybenzyl Conjugate as a Highly Stable Hepatobiliary Magnetic Resonance Imaging Contrast Agent. Bioconjug Chem 2018; 29:3614-3625. [PMID: 30383368 DOI: 10.1021/acs.bioconjchem.8b00560] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, we designed and synthesized a highly stable manganese (Mn2+)-based hepatobiliary complex by tethering an ethoxybenzyl (EOB) moiety with an ethylenediaminetetraacetic acid (EDTA) coordination cage as an alternative to the well-established hepatobiliary gadolinium (Gd3+) chelates and evaluated its usage as a T1 hepatobiliary magnetic resonance imaging (MRI) contrast agent (CA). This new complex exhibits higher r1 relaxivity (2.3 mM-1 s-1) than clinically approved Mn2+-based hepatobiliary complex Mn-DPDP (1.6 mM-1 s-1) at 1.5 T. Mn-EDTA-EOB shows much higher kinetic inertness than that of clinically approved Gd3+-based hepatobiliary MRI CAs, such as Gd-DTPA-EOB and Gd-BOPTA. In addition, in vivo biodistribution and MRI enhancement patterns of this new Mn2+ chelate are comparable to those of Gd3+-based hepatobiliary MRI CAs. The diagnostic efficacy of the new complex was demonstrated by its enhanced tumor detection sensitivity in a liver cancer model using in vivo MRI.
Collapse
Affiliation(s)
| | | | | | - Yeoun-Hee Kim
- Institute of New Drug Research , Myungmoon Bio , 180, Yuram-ro , Dong-gu, Daegu 41059 , Korea
| | | | | | | | | | - Minsup Kim
- Department of Bioinformatics , Korea University Sejong Campus , 2511, Sejong-ro , Sejong City 30019 , Korea
| | - Art E Cho
- Department of Bioinformatics , Korea University Sejong Campus , 2511, Sejong-ro , Sejong City 30019 , Korea
| | | | | | - Seon Hee Choi
- Laboratory Animal Center , Daegu-Gyeongbuk Medical Innovation Foundation , 80, Chumbok-ro , Dong-gu, Daegu 41061 , Korea
| | - Taekwan Lee
- Laboratory Animal Center , Daegu-Gyeongbuk Medical Innovation Foundation , 80, Chumbok-ro , Dong-gu, Daegu 41061 , Korea
| | - Ji-Ae Park
- Molecular Imaging Research Center , Korea Institute of Radiological and Medical Sciences , Seoul 139-706 , Korea
| | - Yongmin Chang
- Department of Radiology , Kyungpook National University Hospital , 130 Dongdeok-ro , Jung-gu, Daegu 41944 , Korea
| |
Collapse
|
22
|
Imran M, Ramzan M, Qureshi AK, Khan MA, Tariq M. Emerging Applications of Porphyrins and Metalloporphyrins in Biomedicine and Diagnostic Magnetic Resonance Imaging. BIOSENSORS-BASEL 2018; 8:bios8040095. [PMID: 30347683 PMCID: PMC6316340 DOI: 10.3390/bios8040095] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022]
Abstract
In recent years, scientific advancements have constantly increased at a significant rate in the field of biomedical science. Keeping this in view, the application of porphyrins and metalloporphyrins in the field of biomedical science is gaining substantial importance. Porphyrins are the most widely studied tetrapyrrole-based compounds because of their important roles in vital biological processes. The cavity of porphyrins containing four pyrrolic nitrogens is well suited for the binding majority of metal ions to form metalloporphyrins. Porphyrins and metalloporphyrins possess peculiar photochemical, photophysical, and photoredox properties which are tunable through structural modifications. Their beneficial photophysical properties, such as the long wavelength of emission and absorption, high singlet oxygen quantum yield, and low in vivo toxicity, have drawn scientists' interest to discover new dimensions in the biomedical field. Applications of porphyrins and metalloporphyrins have been pursued in the perspective of contrast agents for magnetic resonance imaging (MRI), photodynamic therapy (PDT) of cancer, bio-imaging, and other biomedical applications. This review discusses photophysics and the photochemistry of porphyrins and their metal complexes. Secondly, it explains the current developments and mode of action for contrast agents for MRI. Moreover, the application of porphyrin and metalloporphyrin-based molecules as a photosensitizer in PDT of cancer, the mechanism of the generation of reactive oxygen species (ROS), factors that determine the efficiency of PDT, and the developments to improve this technology are delineated. The last part explores the most recent research and developments on metalloporphyrin-based materials in bio-imaging, drug delivery, and the determination of ferrochelatase in bone marrow indicating their prospective clinical applications.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Chemistry, Baghdad-Ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Muhammad Ramzan
- Department of Physics, Baghdad-Ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Ahmad Kaleem Qureshi
- Department of Chemistry, Baghdad-Ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Muhammad Azhar Khan
- Department of Physics, Baghdad-Ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Muhammad Tariq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| |
Collapse
|
23
|
Construction and characterization of a theranostic system based on graphene/manganese chelate. Biosens Bioelectron 2018; 117:794-801. [DOI: 10.1016/j.bios.2018.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 12/28/2022]
|
24
|
Wang J, Wang J, Ding P, Zhou W, Li Y, Drechsler M, Guo X, Cohen Stuart MA. A Supramolecular Crosslinker To Give Salt-Resistant Polyion Complex Micelles and Improved MRI Contrast Agents. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiahua Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Peng Ding
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Wenjuan Zhou
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Yuehua Li
- Institute of Diagnostic and Interventional Radiology; The Sixth Affiliated People's Hospital; Shanghai Jiao Tong University; 600 Yi Shan Road Shanghai 200233 P. R. China
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI); KeyLab of Electron and Optical Microscopy; University Bayreuth; Universitaetsstrasse 30 95440 Bayreuth Germany
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Martien A. Cohen Stuart
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
25
|
Wang J, Wang J, Ding P, Zhou W, Li Y, Drechsler M, Guo X, Cohen Stuart MA. A Supramolecular Crosslinker To Give Salt-Resistant Polyion Complex Micelles and Improved MRI Contrast Agents. Angew Chem Int Ed Engl 2018; 57:12680-12684. [DOI: 10.1002/anie.201805707] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Jiahua Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Peng Ding
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Wenjuan Zhou
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Yuehua Li
- Institute of Diagnostic and Interventional Radiology; The Sixth Affiliated People's Hospital; Shanghai Jiao Tong University; 600 Yi Shan Road Shanghai 200233 P. R. China
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI); KeyLab of Electron and Optical Microscopy; University Bayreuth; Universitaetsstrasse 30 95440 Bayreuth Germany
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Martien A. Cohen Stuart
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
26
|
Forgács A, Tei L, Baranyai Z, Esteban-Gómez D, Platas-Iglesias C, Botta M. Optimising the relaxivities of Mn 2+ complexes by targeting human serum albumin (HSA). Dalton Trans 2018. [PMID: 28632276 DOI: 10.1039/c7dt01508a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report two novel macrocyclic ligands based on the 1,4-DO2AM platform (1,4-DO2AM = 2,2'-(1,4,7,10-tetraazacyclododecane-1,4-diyl)diacetamide) and containing two benzyl groups attached either to the nitrogen atoms of the macrocyclic unit (1,4-BzDO2AM) or to the amide pendant arms (1,4-DO2AMBz). The protonation constants of the ligands and the stability constants of their Mn2+ complexes were determined using pH potentiometry. The introduction of benzyl groups results in a slight decrease of the stability constants of the Mn2+ complexes and a slight increase of their acid-catalysed dissociation reactions. A detailed relaxometric characterisation of the complexes using nuclear magnetic dispersion relaxation (NMRD) and 17O NMR studies indicated that the increase in molecular weight associated with the presence of benzyl groups results in a remarkable increase of proton relaxivities r1p, which take values of 3.8, 3.5 and 2.5 mM-1 s-1 for [Mn(1,4-BzDO2AM)]2+, [Mn(1,4-DO2AMBz)]2+ and [Mn(1,4-DO2AM)]2+ (at 25 °C and 20 MHz). The [Mn(1,4-BzDO2AM)]2+ and [Mn(1,4-DO2AMBz)]2+ complexes form relatively strong adducts with Human Serum Albumin (HSA) with association constants of (3.9 ± 0.6) × 103 and (2.0 ± 0.3) × 103 M-1, respectively. The interaction with the protein slows down the rotational tumbling of the complex in solution, which results in adducts endowed with remarkably high proton relaxivities (r1pb = 18.5 ± 0.7 and 27.4 ± 1.4 mM-1 s-1 for [Mn(1,4-BzDO2AM)]2+ and [Mn(1,4-DO2AMBz)]2+, respectively).
Collapse
Affiliation(s)
- Attila Forgács
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Lai WF, Rogach AL, Wong WT. Chemistry and engineering of cyclodextrins for molecular imaging. Chem Soc Rev 2018; 46:6379-6419. [PMID: 28930330 DOI: 10.1039/c7cs00040e] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides bearing a basket-shaped topology with an "inner-outer" amphiphilic character. The abundance of hydroxyl groups enables CDs to be functionalized with multiple targeting ligands and imaging elements. The imaging time, and the payload of different imaging elements, can be tuned by taking advantage of the commercial availability of CDs with different sizes of the cavity. This review aims to offer an outlook of the chemistry and engineering of CDs for the development of molecular probes. Complexation thermodynamics of CDs, and the corresponding implications for probe design, are also presented with examples demonstrating the structural and physiochemical roles played by CDs in the full ambit of molecular imaging. We hope that this review not only offers a synopsis of the current development of CD-based molecular probes, but can also facilitate translation of the incremental advancements from the laboratory to real biomedical applications by illuminating opportunities and challenges for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen, China.
| | | | | |
Collapse
|
28
|
Forgács A, Pujales-Paradela R, Regueiro-Figueroa M, Valencia L, Esteban-Gómez D, Botta M, Platas-Iglesias C. Developing the family of picolinate ligands for Mn 2+ complexation. Dalton Trans 2018; 46:1546-1558. [PMID: 28091671 DOI: 10.1039/c6dt04442e] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have reported here a series of ligands containing pentadentate 6,6'-(azanediylbis(methylene))dipicolinic acid units that differ in the substituent present at the amine nitrogen atom (acetate: H3DPAAA; phenyl: H2DPAPhA; dodecyl: H2DPAC12A; 4-hexylphenyl: H2DPAC6PhA). The protonation constants of the hexadentate DPAAA3- and pentadentate DPAPhA2- ligands and the stability constants of their Mn2+ complexes were determined using pH-potentiometry (25 °C, 0.15 M NaCl). The mono-hydrated [Mn(DPAAA)]- complex (log KMnL = 13.19(5)) was found to be considerably more stable than the bis-hydrated [Mn(DPAPhA)] analogue (log KMnL = 9.55(1)). A detailed 1H and 17O NMR relaxometric study was carried out to determine the parameters that govern the proton relaxivities of these complexes. The [Mn(DPAC12A)] complex, which contains a dodecyl lipophilic chain, forms micelles in solution characterized by a critical micellar concentration (cmc) of 96(9) μM. The lipophilic [Mn(DPAC6PhA)] and [Mn(DPAC12A)] derivatives form rather strong adducts with Human Serum Albumin (HSA) with association constants of 7.1 ± 0.1 × 103 and 1.3 ± 0.4 × 105 M-1, respectively. The X-ray structure of the complex {K(H2O)4}{[Mn(DPAAA)(H2O)]}2 shows that the Mn2+ ion in [Mn(DPAAA)]- is coordinated to the six donor atoms of the ligand, a coordinated water molecule completing the pentagonal bipyramidal coordination environment.
Collapse
Affiliation(s)
- Attila Forgács
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Rosa Pujales-Paradela
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Martín Regueiro-Figueroa
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Laura Valencia
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain
| | - David Esteban-Gómez
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| |
Collapse
|
29
|
Addisu KD, Hailemeskel BZ, Mekuria SL, Andrgie AT, Lin YC, Tsai HC. Bioinspired, Manganese-Chelated Alginate-Polydopamine Nanomaterials for Efficient in Vivo T 1-Weighted Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5147-5160. [PMID: 29277987 DOI: 10.1021/acsami.7b13396] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Manganese-based nanomaterials are an emerging new class of magnetic resonance imaging (MRI) contrast agents (CAs) that provide impressive contrast abilities. MRI CAs that can respond to pathophysiological parameters such as pH or redox potential are also highly in demand for MRI-guided tumor diagnosis. Until now, synthesizing nanomaterials with good biocompatibility, physiochemical stability, and good contrast effects remains a challenge. This study investigated two new systems of calcium/manganese cations complexed with either alginate-polydopamine or alginate-dopamine nanogels [AlgPDA(Ca/Mn) NG or AlgDA(Ca/Mn) NG]. Under such systems, Ca cations form ionic interactions via carboxylic acids of the Alg backbone to enhance the stability of the synthetic nanogels (NGs). Likewise, complexation of Mn cations also increased the colloidal stability of the synthetic NGs. The magnetic property of the prepared CAs was confirmed with superconducting quantum interference device measurements, proving the potential paramagnetic property. Hence, the T1 relaxivity measurement showed that PDA-complexed synthetic NGs reveal a strong positive contrast enhancement with r1 = 12.54 mM-1·s-1 in 7.0 T MRI images, whereas DA-complexed synthetic NGs showed a relatively lower T1 relaxivity effect with r1 = 10.13 mM-1·s-1. In addition, both the synthetic NGs exhibit negligible cytotoxicity with >92% cell viability up to 0.25 mM concentration, when incubated with the mouse macrophage (RAW 264.7) and HeLa cells, and high biocompatibility under in vivo analysis. The in vivo MRI test indicates that the synthetic NG exhibits a high signal-to-noise ratio for longer hours, which provides a longer image acquisition time for tumor and anatomical imaging. Furthermore, T1-weighted MRI results revealed that PEGylated AlgPDA(Ca/Mn) NGs significantly enhanced the signals from liver and tumor tissues. Therefore, owing to the enhanced permeability and retention effect, significantly enhanced in vitro and in vivo imagings, low cost, and one-pot synthesis method, the Mn-based biomimetic approach used in this study provides a promising and competitive alternative for noninvasive tumor detection and comprehensive anatomical diagnosis.
Collapse
Affiliation(s)
- Kefyalew Dagnew Addisu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology , Taipei 106, Taiwan, ROC
| | - Balkew Zewge Hailemeskel
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology , Taipei 106, Taiwan, ROC
| | - Shewaye Lakew Mekuria
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology , Taipei 106, Taiwan, ROC
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology , Taipei 106, Taiwan, ROC
| | - Yu-Chun Lin
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital , Taipei 114, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology , Taipei 106, Taiwan, ROC
| |
Collapse
|
30
|
Liu Z, Xianyu Y, Zheng W, Zhang J, Luo Y, Chen Y, Dong M, Wu J, Jiang X. T 1-Mediated Nanosensor for Immunoassay Based on an Activatable MnO 2 Nanoassembly. Anal Chem 2018; 90:2765-2771. [PMID: 29336145 DOI: 10.1021/acs.analchem.7b04817] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Current magnetic relaxation switching (MRS) sensors for detection of trace targets in complex samples still suffer from limitations in terms of relatively low sensitivity and poor stability. To meet this challenge, we develop a longitudinal relaxation time (T1)-based nanosensor by using Mn2+ released from the reduction of a MnO2 nanoassembly that can induce the change of T1, and thus can greatly improve the sensitivity and overcome the "hook effect" of conventional MRS. Through the specific interaction between antigen and the antibody-functionalized MnO2 nanoassembly, the T1 signal of Mn2+ released from the nanoassembly is quantitatively determined by the antigen, which allows for highly sensitive and straightforward detection of targets. This approach broadens the applicability of magnetic biosensors and has great potential for applications in early diagnosis of disease biomarkers.
Collapse
Affiliation(s)
- Zixin Liu
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100, PingLeYuan, ChaoYang District, Beijing 100124, People's Republic of China.,Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nano-safety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology , 11 BeiYiTiao, ZhongGuanCun District, Beijing 100190, People's Republic of China
| | - Yunlei Xianyu
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nano-safety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology , 11 BeiYiTiao, ZhongGuanCun District, Beijing 100190, People's Republic of China
| | - Wenshu Zheng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nano-safety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology , 11 BeiYiTiao, ZhongGuanCun District, Beijing 100190, People's Republic of China
| | - Jiangjiang Zhang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nano-safety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology , 11 BeiYiTiao, ZhongGuanCun District, Beijing 100190, People's Republic of China
| | - Yunjing Luo
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100, PingLeYuan, ChaoYang District, Beijing 100124, People's Republic of China
| | - Yiping Chen
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nano-safety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology , 11 BeiYiTiao, ZhongGuanCun District, Beijing 100190, People's Republic of China
| | - Mingling Dong
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nano-safety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology , 11 BeiYiTiao, ZhongGuanCun District, Beijing 100190, People's Republic of China
| | - Jing Wu
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nano-safety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology , 11 BeiYiTiao, ZhongGuanCun District, Beijing 100190, People's Republic of China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nano-safety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology , 11 BeiYiTiao, ZhongGuanCun District, Beijing 100190, People's Republic of China.,The University of Chinese Academy of Sciences , 19 A YuQuan Road, ShiJingShan District, Beijing 100049, People's Republic of China
| |
Collapse
|
31
|
Pota K, Garda Z, Kálmán FK, Barriada JL, Esteban-Gómez D, Platas-Iglesias C, Tóth I, Brücher E, Tircsó G. Taking the next step toward inert Mn2+ complexes of open-chain ligands: the case of the rigid PhDTA ligand. NEW J CHEM 2018. [DOI: 10.1039/c8nj00121a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Equilibrium, dissociation kinetics, relaxometric and electrochemical properties of the [Mn(PhDTA)]2− complex were investigated and the structure of the [Mn(PhDTA)]2− complex was studied by using DFT calculations.
Collapse
Affiliation(s)
- Kristof Pota
- Department of Inorganic and Analytical Chemistry
- Faculty of Science and Technology
- University of Debrecen
- H-4032 Debrecen
- Hungary
| | - Zoltán Garda
- Department of Inorganic and Analytical Chemistry
- Faculty of Science and Technology
- University of Debrecen
- H-4032 Debrecen
- Hungary
| | - Ferenc Krisztián Kálmán
- Department of Inorganic and Analytical Chemistry
- Faculty of Science and Technology
- University of Debrecen
- H-4032 Debrecen
- Hungary
| | - José Luis Barriada
- Centro de Investigaciones Científicas Avanzadas (CICA)
- Departamento de Química, Universidade da Coruña
- Spain
| | - David Esteban-Gómez
- Centro de Investigaciones Científicas Avanzadas (CICA)
- Departamento de Química, Universidade da Coruña
- Spain
| | - Carlos Platas-Iglesias
- Centro de Investigaciones Científicas Avanzadas (CICA)
- Departamento de Química, Universidade da Coruña
- Spain
| | - Imre Tóth
- Department of Inorganic and Analytical Chemistry
- Faculty of Science and Technology
- University of Debrecen
- H-4032 Debrecen
- Hungary
| | - Ernő Brücher
- Department of Inorganic and Analytical Chemistry
- Faculty of Science and Technology
- University of Debrecen
- H-4032 Debrecen
- Hungary
| | - Gyula Tircsó
- Department of Inorganic and Analytical Chemistry
- Faculty of Science and Technology
- University of Debrecen
- H-4032 Debrecen
- Hungary
| |
Collapse
|
32
|
Rolla G, De Biasio V, Giovenzana GB, Botta M, Tei L. Supramolecular assemblies based on amphiphilic Mn2+-complexes as high relaxivity MRI probes. Dalton Trans 2018; 47:10660-10670. [DOI: 10.1039/c8dt01250d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Mn2+ complexes of amphiphilic derivatives of EDTA and 1,4-DO2A ligands show a strong increase in relaxivity upon micellar aggregation and human serum albumin binding.
Collapse
Affiliation(s)
- Gabriele Rolla
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale “Amedeo Avogadro”
- I-15121 Alessandria
- Italy
| | - Valeria De Biasio
- Dipartimento di Scienze del Farmaco
- Università del Piemonte Orientale “A. Avogadro”
- I-28100 Novara
- Italy
| | - Giovanni B. Giovenzana
- Dipartimento di Scienze del Farmaco
- Università del Piemonte Orientale “A. Avogadro”
- I-28100 Novara
- Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale “Amedeo Avogadro”
- I-15121 Alessandria
- Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale “Amedeo Avogadro”
- I-15121 Alessandria
- Italy
| |
Collapse
|
33
|
Niedbalski P, Parish C, Wang Q, Hayati Z, Song L, Martins AF, Sherry AD, Lumata L. Transition Metal Doping Reveals Link between Electron T 1 Reduction and 13C Dynamic Nuclear Polarization Efficiency. J Phys Chem A 2017; 121:9221-9228. [PMID: 29125294 PMCID: PMC5793213 DOI: 10.1021/acs.jpca.7b09448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Optimal efficiency of dissolution dynamic nuclear polarization (DNP) is essential to provide the required high sensitivity enhancements for in vitro and in vivo hyperpolarized 13C nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI). At the nexus of the DNP process are the free electrons, which provide the high spin alignment that is transferred to the nuclear spins. Without changing DNP instrumental conditions, one way to improve 13C DNP efficiency is by adding trace amounts of paramagnetic additives such as lanthanide (e.g., Gd3+, Ho3+, Dy3+, Tb3+) complexes to the DNP sample, which has been observed to increase solid-state 13C DNP signals by 100-250%. Herein, we have investigated the effects of paramagnetic transition metal complex R-NOTA (R = Mn2+, Cu2+, Co2+) doping on the efficiency of 13C DNP using trityl OX063 as the polarizing agent. Our DNP results at 3.35 T and 1.2 K show that doping the 13C sample with 3 mM Mn2+-NOTA led to a substantial improvement of the solid-state 13C DNP signal by a factor of nearly 3. However, the other transition metal complexes Cu2+-NOTA and Co2+-NOTA complexes, despite their paramagnetic nature, had essentially no impact on solid-state 13C DNP enhancement. W-band electron paramagnetic resonance (EPR) measurements reveal that the trityl OX063 electron T1 was significantly reduced in Mn2+-doped samples but not in Cu2+- and Co2+-doped DNP samples. This work demonstrates, for the first time, that not all paramagnetic additives are beneficial to DNP. In particular, our work provides a direct evidence that electron T1 reduction of the polarizing agent by a paramagnetic additive is an essential requirement for the improvement seen in solid-state 13C DNP signal.
Collapse
Affiliation(s)
- Peter Niedbalski
- Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Christopher Parish
- Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Qing Wang
- Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zahra Hayati
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - André F. Martins
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - A. Dean Sherry
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Lloyd Lumata
- Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
34
|
Rastogi N, Tyagi N, Singh O, Hemanth Kumar B, Singh UP, Ghosh K, Roy R. Mn(II) based T1 and T2 potential MRI contrast agent appended with tryptamine: Recognition moiety for Aβ-plaques. J Inorg Biochem 2017; 177:76-81. [DOI: 10.1016/j.jinorgbio.2017.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 11/16/2022]
|
35
|
Synthesis of dendronized polymeric chelating agents using hydrazone ligation strategy. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Islam MK, Kim S, Kim HK, Park S, Lee GH, Kang HJ, Jung JC, Park JS, Kim TJ, Chang Y. Manganese Complex of Ethylenediaminetetraacetic Acid (EDTA)-Benzothiazole Aniline (BTA) Conjugate as a Potential Liver-Targeting MRI Contrast Agent. J Med Chem 2017; 60:2993-3001. [PMID: 28301142 DOI: 10.1021/acs.jmedchem.6b01799] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel manganese(II) complex based on an ethylenediaminetetraacetic acid (EDTA) coordination cage bearing a benzothiazole aniline (BTA) moiety (Mn-EDTA-BTA) was designed and synthesized for use as a liver-specific MRI contrast agent with high chelation stability. In addition to forming a hydrophilic, stable complex with Mn2+, this new Mn chelate was rapidly taken up by liver hepatocytes and excreted by the kidneys and biliary system. The kinetic inertness and R1 relaxivity of the complex were much higher than those of mangafodipir trisodium (MnDPDP), a clinically approved liver-specific MRI contrast agent. The diagnostic utility of this new Mn complex in MRI was demonstrated by high-sensitivity tumor detection in an animal model of liver cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joon-Suk Park
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation , Chumbok-ro 80, Dong-gu, Daegu 41061, Korea
| | | | | |
Collapse
|
37
|
Metal coordinated pyrrole-based macrocycles as contrast agents for magnetic resonance imaging technologies: Synthesis and applications. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.11.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Girma WM, Fahmi MZ, Permadi A, Abate MA, Chang JY. Synthetic strategies and biomedical applications of I–III–VI ternary quantum dots. J Mater Chem B 2017; 5:6193-6216. [DOI: 10.1039/c7tb01156c] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this review, we discuss recent advances of I–III–VI QDs with a major focus on synthesis and biomedical applications; advantages include low toxicity and fluorescent tuning in the biological window.
Collapse
Affiliation(s)
- Wubshet Mekonnen Girma
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | | | - Adi Permadi
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | - Mulu Alemayehu Abate
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | - Jia-Yaw Chang
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| |
Collapse
|
39
|
Wang TJ, Liu K, Shi X, Ye L, Gu W, Yan CX. Tuning of synthesis conditions by thermal decomposition towards gadolinium-doped manganese carbonate nanoparticles with uniform size and high relaxivity. NEW J CHEM 2017. [DOI: 10.1039/c6nj02739c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A low temperature thermal decomposition method has been developed to synthesize uniform-sized Gd-doped MnCO3 nanoparticles.
Collapse
Affiliation(s)
- Ting-jian Wang
- Department of Neurosurgery
- Sanbo Brain Hospital
- Capital Medical University
- Beijing 100093
- P. R. China
| | - Kang Liu
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Xin Shi
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Ling Ye
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Wei Gu
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Chang-xiang Yan
- Department of Neurosurgery
- Sanbo Brain Hospital
- Capital Medical University
- Beijing 100093
- P. R. China
| |
Collapse
|
40
|
Baroni S, Colombo Serra S, Fringuello Mingo A, Lux G, Giovenzana GB, Lattuada L. Synthesis and Relaxometric Characterization of a New Mn(II)-EDTA-Deoxycholic Acid Conjugate Complex as a Potential MRI Blood Pool Agent. ChemistrySelect 2016. [DOI: 10.1002/slct.201600349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- S. Baroni
- Molecular Imaging Center; Department of Molecular Biotechnologies & Health Sciences; Università di Torino; Via Nizza 52 10100 Torino (TO) Italy
| | - Sonia Colombo Serra
- Bracco Imaging SpA; Bracco Research Center; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Alberto Fringuello Mingo
- Bracco Imaging SpA; Bracco Research Center; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
- Dipartimento di Fisica; Università di Torino; Via Pietro Giuria 1 10100 Torino (TO) Italy
| | - G. Lux
- Bracco Imaging SpA; Bracco Research Center; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - G. B. Giovenzana
- Dipartimento di Scienze del Farmaco; Università degli Studi del Piemonte Orientale “A. Avogadro”; Largo Donegani 2/3 28100 Novara (NO) Italy
| | - L. Lattuada
- Bracco Imaging SpA; Bracco Research Center; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| |
Collapse
|
41
|
Forgács A, Tei L, Baranyai Z, Tóth I, Zékány L, Botta M. A Bisamide Derivative of [Mn(1,4-DO2A)] - Solution Thermodynamic, Kinetic, and NMR Relaxometric Studies. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501415] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Zou T, Zhen M, Chen D, Li R, Guan M, Shu C, Han H, Wang C. The positive influence of fullerene derivatives bonded to manganese(III) porphyrins on water proton relaxation. Dalton Trans 2016; 44:9114-9. [PMID: 25899301 DOI: 10.1039/c4dt03482a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese-porphyrin compounds as MRI contrast agents have drawn particular attention due to high relaxivities and unique biodistribution. It has been reported that the charge density of the metal center and steric decompression of the substituents, rather than rotational correlation time, were the key factors to determine the relaxivities of manganese(III) porphyrins. In this study, [6,6]-phenyl-C61-butyric acid (PC61BA) was introduced into 5-(4-aminophenyl)-10,15,20-tris (4-sulfonatophenyl) porphyrin (APTSPP) to investigate the influence on water proton relaxation. The obtained PC61BA-APTSPP-Mn possesses a relaxivity of 19.2 mM(-1) s(-1), which is greater than that of Mn-APTSPP (11.2 mM(-1) s(-1)) and clinically used Gd-DTPA (4.1 mM(-1) s(-1)) at 0.5 T, and even more effective compared with those binding manganese(III) porphyrins to certain macromolecules. It was reasonably speculated that the high relaxivity of PC61BA-APTSPP-Mn should ascribe to the charge density variation of Mn(III) and steric decompression induced by PC61BA. Both fluorescence emission spectra and cyclic voltammetry results verified the presence of electronic communication between PC61BA and APTSPP-Mn. In addition, the hydrodynamic diameter of PC61BA-APTSPP-Mn aggregates was much smaller than that of APTSPP-Mn aggregates, which may contribute to the higher relaxivity by inhibiting the formation of dimers of APTSPP-Mn. Therefore, the introduction of fullerene derivatives is suggested to be a good strategy for the improvement of the relaxivities of manganese(III) porphyrins.
Collapse
Affiliation(s)
- Toujun Zou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
McDonagh BH, Singh G, Hak S, Bandyopadhyay S, Augestad IL, Peddis D, Sandvig I, Sandvig A, Glomm WR. L-DOPA-Coated Manganese Oxide Nanoparticles as Dual MRI Contrast Agents and Drug-Delivery Vehicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:301-306. [PMID: 26619158 DOI: 10.1002/smll.201502545] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Manganese oxide nanoparticles (MONPs) are capable of time-dependent magnetic resonance imaging contrast switching as well as releasing a surface-bound drug. MONPs give T2/T2* contrast, but dissolve and release T1-active Mn(2+) and L-3,4-dihydroxyphenylalanine. Complementary images are acquired with a single contrast agent, and applications toward Parkinson's disease are suggested.
Collapse
Affiliation(s)
- Birgitte Hjelmeland McDonagh
- Uglestad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Gurvinder Singh
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Sjoerd Hak
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Sulalit Bandyopadhyay
- Uglestad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Ingrid Lovise Augestad
- Department of Neuroscience, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Davide Peddis
- Institute of Structure and Matter, National Research Council, 00015, Monterotondo, Scalo, Italy
| | - Ioanna Sandvig
- Department of Neuroscience, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, CB2 OPY, Cambridge, UK
| | - Axel Sandvig
- Department of Neuroscience, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Division of Pharmacology and Clinical Neurosciences, Department of Neurosurgery, Umeå University, 901 87, Umeå, Sweden
| | - Wilhelm Robert Glomm
- Uglestad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Sector for Biotechnology and Nanomedicine, SINTEF Materials and Chemistry, 7465, Trondheim, Norway
| |
Collapse
|
44
|
Simão T, Chevallier P, Lagueux J, Côté MF, Rehbock C, Barcikowski S, Fortin MA, Guay D. Laser-synthesized ligand-free Au nanoparticles for contrast agent applications in computed tomography and magnetic resonance imaging. J Mater Chem B 2016; 4:6413-6427. [DOI: 10.1039/c6tb01162d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pulsed laser ablation in liquids (PLAL) has emerged as a new green chemistry method, advantageous to produce gold nanoparticles-based contrast agents with strong blood retention and for multimodal imaging.
Collapse
Affiliation(s)
- Teresa Simão
- Institut National de la Recherche Scientifique (INRS)
- Centre Énergie Matériaux Télécommunications
- Varennes (QC)
- Canada
| | - Pascale Chevallier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec (CR-CHUQ)
- Axe Médecine Régénératrice
- Quebec City (QC)
- Canada
- Centre de Recherche sur les Matériaux Avancés (CERMA)
| | - Jean Lagueux
- Centre de Recherche du Centre Hospitalier Universitaire de Québec (CR-CHUQ)
- Axe Médecine Régénératrice
- Quebec City (QC)
- Canada
| | - Marie-France Côté
- Centre de Recherche du Centre Hospitalier Universitaire de Québec (CR-CHUQ)
- Axe Médecine Régénératrice
- Quebec City (QC)
- Canada
| | - Christoph Rehbock
- Technical Chemistry I
- University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen CENIDE
- 45141 Essen
- Germany
| | - Stephan Barcikowski
- Technical Chemistry I
- University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen CENIDE
- 45141 Essen
- Germany
| | - Marc-André Fortin
- Centre de Recherche du Centre Hospitalier Universitaire de Québec (CR-CHUQ)
- Axe Médecine Régénératrice
- Quebec City (QC)
- Canada
- Centre de Recherche sur les Matériaux Avancés (CERMA)
| | - Daniel Guay
- Institut National de la Recherche Scientifique (INRS)
- Centre Énergie Matériaux Télécommunications
- Varennes (QC)
- Canada
| |
Collapse
|
45
|
Meng J, Zhao Y, Li Z, Wang L, Tian Y. Phase transfer preparation of ultrasmall MnS nanocrystals with a high performance MRI contrast agent. RSC Adv 2016. [DOI: 10.1039/c5ra24775f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper, a phase transfer method is reported which was used to prepare ultrasmall manganese(ii) sulfide nanocrystals in which prefabricated MnS aggregations are transferred from cyclohexane into an aqueous solution of sodium citrate.
Collapse
Affiliation(s)
- Jing Meng
- Department of Chemistry
- Beijing Key Laboratory for Optical Materials and Photonic Devices
- Capital Normal University
- Beijing 100048
- PR China
| | - Yizhe Zhao
- Department of Chemistry
- Beijing Key Laboratory for Optical Materials and Photonic Devices
- Capital Normal University
- Beijing 100048
- PR China
| | - Zhongfeng Li
- Department of Chemistry
- Beijing Key Laboratory for Optical Materials and Photonic Devices
- Capital Normal University
- Beijing 100048
- PR China
| | - Ligang Wang
- Department of Chemistry
- Beijing Key Laboratory for Optical Materials and Photonic Devices
- Capital Normal University
- Beijing 100048
- PR China
| | - Yang Tian
- Department of Chemistry
- Beijing Key Laboratory for Optical Materials and Photonic Devices
- Capital Normal University
- Beijing 100048
- PR China
| |
Collapse
|
46
|
Burov SV, Polyanichko KV, Chelushkin PS, Dorosh MY, Gavrilova II, Dobrodumov AV, Pokhvoshchev YV, Krasikov VD, Panarin EF. Contrast agents for magnetic resonance imaging based on dendronized N-vinylpyrrolidone polymers. DOKLADY CHEMISTRY 2016. [DOI: 10.1134/s0012500816010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Turyanska L, Moro F, Patanè A, Barr J, Köckenberger W, Taylor A, Faas HM, Fowler M, Wigmore P, Trueman RC, Williams HEL, Thomas NR. Developing Mn-doped lead sulfide quantum dots for MRI labels. J Mater Chem B 2016; 4:6797-6802. [DOI: 10.1039/c6tb02574a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic interactions of Mn2+ ions in lead sulfide (PbS) nanocrystals with protons in water are probed by NMR and MRI.
Collapse
Affiliation(s)
- Lyudmila Turyanska
- School of Physics and Astronomy
- The University of Nottingham
- UK
- School of Chemistry
- University of Lincoln
| | - Fabrizio Moro
- School of Physics and Astronomy
- The University of Nottingham
- UK
| | - Amalia Patanè
- School of Physics and Astronomy
- The University of Nottingham
- UK
| | - James Barr
- School of Physics and Astronomy
- The University of Nottingham
- UK
| | | | - Alexander Taylor
- Faculty of Medicine and Health Sciences
- The University of Nottingham
- UK
| | - Henryk M. Faas
- Faculty of Medicine and Health Sciences
- The University of Nottingham
- UK
| | - Maxine Fowler
- Faculty of Medicine and Health Sciences
- The University of Nottingham
- UK
| | - Peter Wigmore
- Faculty of Medicine and Health Sciences
- The University of Nottingham
- UK
| | | | - Huw E. L. Williams
- Centre for Biomolecular Sciences
- School of Chemistry
- The University of Nottingham
- UK
| | - Neil R. Thomas
- Centre for Biomolecular Sciences
- School of Chemistry
- The University of Nottingham
- UK
| |
Collapse
|
48
|
Kuźnik N, Wyskocka M. Iron(III) Contrast Agent Candidates for MRI: a Survey of the Structure-Effect Relationship in the Last 15 Years of Studies. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201501166] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
49
|
Forgács A, Regueiro-Figueroa M, Barriada JL, Esteban-Gómez D, de Blas A, Rodríguez-Blas T, Botta M, Platas-Iglesias C. Mono-, bi-, and trinuclear bis-hydrated Mn(2+) complexes as potential MRI contrast agents. Inorg Chem 2015; 54:9576-87. [PMID: 26397808 DOI: 10.1021/acs.inorgchem.5b01677] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report a series of ligands containing pentadentate 6,6′-((methylazanediyl)bis(methylene))dipicolinic acid binding units that form mono- (H2dpama), di- (mX(H2dpama)2), and trinuclear (mX(H2dpama)3) complexes with Mn2+ containing two coordinated water molecules per metal ion, which results in pentagonal bipyramidal coordination around the metal ions. In contrast, the hexadentate ligand 6,6′-((ethane-1,2-diylbis(azanediyl))bis(methylene))dipicolinic acid (H2bcpe) forms a complex with distorted octahedral coordination around Mn2+ that lacks coordinated water molecules. The protonation constants of the ligands and the stability constants of the Mn2+, Cu2+, and Zn2+ complexes were determined using potentiometric and spectrophotometric titrations in 0.15 M NaCl. The pentadentate dpama2– ligand and the di- and trinucleating mX(dpama)24– and mX(dpama)36– ligands provide metal complexes with stabilities that are very similar to that of the complex with the hexadentate ligand bcpe2–, with log β101 values in the range 10.1–11.6. Cyclic voltammetry experiments on aqueous solutions of the [Mn(bcpe)] complex reveal a quasireversible system with a half-wave potential of +595 mV versus Ag/AgCl. However, [Mn(dpama)] did not suffer oxidation in the range 0.0–1.0 V, revealing a higher resistance toward oxidation. A detailed 1H NMRD and 17O NMR study provided insight into the parameters that govern the relaxivity for these systems. The exchange rate of the coordinated water molecules in [Mn(dpama)] is relatively fast, kex298 = (3.06 ± 0.16) × 108 s–1. The trinuclear [mX(Mn(dpama)(H2O)2)3] complex was found to bind human serum albumin with an association constant of 1286 ± 55 M–1 and a relaxivity of the adduct of 45.2 ± 0.6 mM–1 s–1 at 310 K and 20 MHz.
Collapse
Affiliation(s)
- Attila Forgács
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11, 15121 Alessandria, Italy
| | | | | | | | | | | | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11, 15121 Alessandria, Italy
| | | |
Collapse
|
50
|
Miao ZH, Wang H, Yang H, Li ZL, Zhen L, Xu CY. Intrinsically Mn2+-Chelated Polydopamine Nanoparticles for Simultaneous Magnetic Resonance Imaging and Photothermal Ablation of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16946-16952. [PMID: 26196160 DOI: 10.1021/acsami.5b06265] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Theranostic agents for magnetic resonance imaging (MRI) guided photothermal therapy have attracted intensive interest in cancer diagnosis and treatment. However, the development of biocompatible theranostic agents with high photothermal conversion efficiency and good MRI contrast effect remains a challenge. Herein, PEGylated Mn2+-chelated polydopamine (PMPDA) nanoparticles were successfully developed as novel theranostic agents for simultaneous MRI signal enhancement and photothermal ablation of cancer cells, based on intrinsic manganese-chelating properties and strong near-infrared absorption of polydopamine nanomaterials. The obtained PMPDA nanoparticles showed significant MRI signal enhancement for both in vitro and in vivo imaging. Highly effective photothermal ablation of HeLa cells exposed to PMPDA nanoparticles was then achieved upon laser irradiation for 10 min. Furthermore, the excellent biocompatibility of PMPDA nanoparticles, because of the use of Mn2+ ions as diagnostic agents and biocompatible polydopamine as photothermal agents, was confirmed by a standard MTT assay. Therefore, the developed PMPDA nanoparticles could be used as a promising theranostic agent for MRI-guided photothermal therapy of cancer cells.
Collapse
Affiliation(s)
- Zhao-Hua Miao
- †School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- ‡MOE Key Laboratory of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Hui Wang
- §School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Huanjie Yang
- §School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Zheng-Lin Li
- ∥Condensed Matter Science and Technology Institute, School of Science, Harbin Institute of Technology, Harbin 150000, People's Republic of China
| | - Liang Zhen
- †School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- ‡MOE Key Laboratory of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Cheng-Yan Xu
- †School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- ‡MOE Key Laboratory of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|