1
|
Remarkably flexible 2,2′:6′,2″-terpyridines and their group 8–10 transition metal complexes – Chemistry and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
Zhou XQ, Carbo-Bague I, Siegler MA, Hilgendorf J, Basu U, Ott I, Liu R, Zhang L, Ramu V, IJzerman AP, Bonnet S. Rollover Cyclometalation vs Nitrogen Coordination in Tetrapyridyl Anticancer Gold(III) Complexes: Effect on Protein Interaction and Toxicity. JACS AU 2021; 1:380-395. [PMID: 34056633 PMCID: PMC8154207 DOI: 10.1021/jacsau.0c00104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 05/05/2023]
Abstract
In this work, a pair of gold(III) complexes derived from the analogous tetrapyridyl ligands H2biqbpy1 and H2biqbpy2 was prepared: the rollover, bis-cyclometalated [Au(biqbpy1)Cl ([1]Cl) and its isomer [Au(biqbpy2)Cl ([2]Cl). In [1]+, two pyridyl rings coordinate to the metal via a Au-C bond (C∧N∧N∧C coordination) and the two noncoordinated amine bridges of the ligand remain protonated, while in [2]+ all four pyridyl rings of the ligand coordinate to the metal via a Au-N bond (N∧N∧N∧N coordination), but both amine bridges are deprotonated. As a result, both complexes are monocationic, which allowed comparison of the sole effect of cyclometalation on the chemistry, protein interaction, and anticancer properties of the gold(III) compounds. Due to their identical monocationic charge and similar molecular shape, both complexes [1]Cl and [2]Cl displaced reference radioligand [3H]dofetilide equally well from cell membranes expressing the Kv11.1 (hERG) potassium channel, and more so than the tetrapyridyl ligands H2biqbpy1 and H2biqbpy2. By contrast, cyclometalation rendered [1]Cl coordinatively stable in the presence of biological thiols, while [2]Cl was reduced by a millimolar concentration of glutathione into metastable Au(I) species releasing the free ligand H2biqbpy2 and TrxR-inhibiting Au+ ions. The redox stability of [1]Cl dramatically decreased its thioredoxin reductase (TrxR) inhibition properties, compared to [2]Cl. On the other hand, unlike [2]Cl, [1]Cl aggregated into nanoparticles in FCS-containing medium, which resulted in much more efficient gold cellular uptake. [1]Cl had much more selective anticancer properties than [2]Cl and cisplatin, as it was almost 10 times more cytotoxic to human cancer cells (A549, A431, A375, and MCF7) than to noncancerous cells (MRC5). Mechanistic studies highlight the strikingly different mode of action of the two compounds: while for [1]Cl high gold cellular uptake, nuclear DNA damage, and interaction with hERG may contribute to cell killing, for [2]Cl extracellular reduction released TrxR-inhibiting Au+ ions that were taken up in minute amounts in the cytosol, and a toxic tetrapyridyl ligand also capable of binding to hERG. These results demonstrate that bis-cyclometalation is an appealing method to improve the redox stability of Au(III) compounds and to develop gold-based cytotoxic compounds that do not rely on TrxR inhibition to kill cancer cells.
Collapse
Affiliation(s)
- Xue-Quan Zhou
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Imma Carbo-Bague
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Department
of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jonathan Hilgendorf
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Uttara Basu
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Ingo Ott
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Rongfang Liu
- Division
of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Liyan Zhang
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Vadde Ramu
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division
of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sylvestre Bonnet
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
3
|
|
4
|
Konkankit CC, Marker SC, Knopf KM, Wilson JJ. Anticancer activity of complexes of the third row transition metals, rhenium, osmium, and iridium. Dalton Trans 2018; 47:9934-9974. [DOI: 10.1039/c8dt01858h] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A summary of recent developments on the anticancer activity of complexes of rhenium, osmium, and iridium is described.
Collapse
Affiliation(s)
| | - Sierra C. Marker
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Kevin M. Knopf
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
5
|
Sundaraneedi MK, Tedla BA, Eichenberger RM, Becker L, Pickering D, Smout MJ, Rajan S, Wangchuk P, Keene FR, Loukas A, Collins JG, Pearson MS. Polypyridylruthenium(II) complexes exert anti-schistosome activity and inhibit parasite acetylcholinesterases. PLoS Negl Trop Dis 2017; 11:e0006134. [PMID: 29240773 PMCID: PMC5746282 DOI: 10.1371/journal.pntd.0006134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/28/2017] [Accepted: 11/23/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Schistosomiasis affects over 200 million people and there are concerns whether the current chemotherapeutic control strategy (periodic mass drug administration with praziquantel (PZQ)-the only licenced anti-schistosome compound) is sustainable, necessitating the development of new drugs. METHODOLOGY/PRINCIPAL FINDINGS We investigated the anti-schistosome efficacy of polypyridylruthenium(II) complexes and showed they were active against all intra-mammalian stages of S. mansoni. Two compounds, Rubb12-tri and Rubb7-tnl, which were among the most potent in their ability to kill schistosomula and adult worms and inhibit egg hatching in vitro, were assessed for their efficacy in a mouse model of schistosomiasis using 5 consecutive daily i.v. doses of 2 mg/kg (Rubb12-tri) and 10 mg/kg (Rubb7-tnl). Mice treated with Rubb12-tri showed an average 42% reduction (P = 0.009), over two independent trials, in adult worm burden. Liver egg burdens were not significantly decreased in either drug-treated group but ova from both of these groups showed significant decreases in hatching ability (Rubb12-tri-68%, Rubb7-tnl-56%) and were significantly morphologically altered (Rubb12-tri-62% abnormal, Rubb7-tnl-35% abnormal). We hypothesize that the drugs exerted their activity, at least partially, through inhibition of both neuronal and tegumental acetylcholinesterases (AChEs), as worms treated in vitro showed significant decreases in activity of these enzymes. Further, treated parasites exhibited a significantly decreased ability to uptake glucose, significantly depleted glycogen stores and withered tubercules (a site of glycogen storage), implying drug-mediated interference in this nutrient acquisition pathway. CONCLUSIONS/SIGNIFICANCE Our data provide compelling evidence that ruthenium complexes are effective against all intra-mammalian stages of schistosomes, including schistosomula (refractory to PZQ) and eggs (agents of disease transmissibility). Further, the results of this study suggest that schistosome AChE is a target of ruthenium drugs, a finding that can inform modification of current compounds to identify analogues which are even more effective and selective against schistosomes.
Collapse
Affiliation(s)
- Madhu K. Sundaraneedi
- School of Physical, Environmental and Mathematical Sciences, UNSW Canberra, Canberra, Australian Capital Territory, Australia
| | - Bemnet A. Tedla
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Ramon M. Eichenberger
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Luke Becker
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Darren Pickering
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Michael J. Smout
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Siji Rajan
- School of Physical, Environmental and Mathematical Sciences, UNSW Canberra, Canberra, Australian Capital Territory, Australia
| | - Phurpa Wangchuk
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - F. Richard Keene
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - J. Grant Collins
- School of Physical, Environmental and Mathematical Sciences, UNSW Canberra, Canberra, Australian Capital Territory, Australia
| | - Mark S. Pearson
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
6
|
Sundaraneedi MK, Ammit AJ, Tedla BA, Pearson MS, Loukas A, Keene FR, Collins JG. Tetranuclear Polypyridylruthenium(II) Complexes as Inhibitors and Down-Regulators of Phosphatase Enzymes. ChemistrySelect 2017. [DOI: 10.1002/slct.201702118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Madhu K. Sundaraneedi
- School of Physical; Environmental & Mathematical Sciences; University of New South Wales; Australian Defence Force Academy; Canberra, ACT 2600 Australia
| | - Alaina J. Ammit
- Woolcock Emphysema Centre; Woolcock Institute of Medical Research; University of Sydney; Sydney, NSW 2006 Australia
- School of Life Sciences; University of Technology Sydney; Sydney, NSW 2007 Australia
| | - Bemnet A. Tedla
- Centre for Biodiscovery & Molecular Development of Therapeutics/Australian Institute for Tropical Health & Medicine; James Cook University; Cairns, QLD 4878 Australia
| | - Mark S. Pearson
- Centre for Biodiscovery & Molecular Development of Therapeutics/Australian Institute for Tropical Health & Medicine; James Cook University; Cairns, QLD 4878 Australia
| | - Alex Loukas
- Centre for Biodiscovery & Molecular Development of Therapeutics/Australian Institute for Tropical Health & Medicine; James Cook University; Cairns, QLD 4878 Australia
| | - F. Richard Keene
- Centre for Biodiscovery & Molecular Development of Therapeutics/Australian Institute for Tropical Health & Medicine; James Cook University; Cairns, QLD 4878 Australia
- School of Physical Sciences; University of Adelaide; Adelaide, SA 5005 Australia
| | - J. Grant Collins
- School of Physical; Environmental & Mathematical Sciences; University of New South Wales; Australian Defence Force Academy; Canberra, ACT 2600 Australia
| |
Collapse
|
7
|
Gothe Y, Marzo T, Messori L, Metzler-Nolte N. Iridium(I) Compounds as Prospective Anticancer Agents: Solution Chemistry, Antiproliferative Profiles and Protein Interactions for a Series of Iridium(I) N-Heterocyclic Carbene Complexes. Chemistry 2016; 22:12487-94. [PMID: 27443984 DOI: 10.1002/chem.201601542] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Indexed: 02/06/2023]
Abstract
A series of structurally related mono- and bis-NHC-iridium(I) (NHC: N-heterocyclic carbene) complexes have been investigated for their suitability as potential anticancer drugs. Their spectral behaviour in aqueous buffers under physiological-like conditions and their cytotoxicity against the cancer cell lines MCF-7 and HT-29 are reported. Notably, almost all complexes exhibit significant cytotoxic effects towards both cancer cell lines. In general, the cationic bis-carbene complexes show higher stability and greater anticancer activity than their neutral mono-carbene analogues with IC50 values in the high nanomolar range. Furthermore, to gain initial mechanistic insight, the interactions of these iridium(I)-NHC complexes with two model proteins, namely lysozyme and cytochrome c, were explored by HR-ESI-MS analyses. The different protein metalation patterns of the complexes can be roughly classified into two distinct groups. Those interactions give us a first idea about the possible mechanism of action of this class of compounds. Overall, our findings show that iridium(I)-NHC complexes represent very interesting candidates for further development as new metal-based anticancer drugs.
Collapse
Affiliation(s)
- Yvonne Gothe
- Inorganic Chemistry I-Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Tiziano Marzo
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.,Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Luigi Messori
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Nils Metzler-Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.
| |
Collapse
|