1
|
Milakin K, Gupta S, Kobera L, Mahun A, Konefał M, Kočková O, Taboubi O, Morávková Z, Chin JM, Allahyarli K, Bober P. Effect of a Zr-Based Metal-Organic Framework Structure on the Properties of Its Composite with Polyaniline. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23813-23823. [PMID: 37141587 PMCID: PMC10197080 DOI: 10.1021/acsami.3c03870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Composites of polyaniline (PANI) and Zr-based metal-organic frameworks (MOFs), UiO-66 and UiO-66-NH2, were synthesized by the oxidative polymerization of aniline in the presence of MOF templates with the MOF content in the resulting materials (78.2 and 86.7 wt %, respectively) close to the theoretical value (91.5 wt %). Scanning electron microscopy and transmission electron microscopy showed that the morphology of the composites was set by the morphology of the MOFs, whose structure was mostly preserved after the synthesis, based on the X-ray diffraction data. Vibrational and NMR spectroscopies pointed out that MOFs participate in the protonation of PANI and conducting polymer chains were grafted to amino groups of UiO-66-NH2. Unlike PANI-UiO-66, cyclic voltammograms of PANI-UiO-66-NH2 showed a well-resolved redox peak at around ≈0 V, pointing at the pseudocapacitive behavior. The gravimetric capacitance of PANI-UiO-66-NH2, normalized per mass of the active material, was also found to be higher compared to that of pristine PANI (79.8 and 50.5 F g-1, respectively, at 5 mV s-1). The introduction of MOFs into the composites with PANI significantly improved the cycling stability of the materials over 1000 cycles compared to the pristine conducting polymer, with the residual gravimetric capacitance being ≥100 and 77%, respectively. Thus, the electrochemical performance of the prepared PANI-MOF composites makes them attractive materials for application in energy storage.
Collapse
Affiliation(s)
- Konstantin
A. Milakin
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 00 Prague, Czech Republic
| | - Sonal Gupta
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 00 Prague, Czech Republic
| | - Libor Kobera
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 00 Prague, Czech Republic
| | - Andrii Mahun
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 00 Prague, Czech Republic
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 40 Prague, Czech
Republic
| | - Magdalena Konefał
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 00 Prague, Czech Republic
| | - Olga Kočková
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 00 Prague, Czech Republic
| | - Oumayma Taboubi
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 00 Prague, Czech Republic
| | - Zuzana Morávková
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 00 Prague, Czech Republic
| | - Jia Min Chin
- Institute
of Inorganic Chemistry-Functional Materials, University of Vienna, A-1090 Vienna, Austria
| | - Kamal Allahyarli
- Institute
of Inorganic Chemistry-Functional Materials, University of Vienna, A-1090 Vienna, Austria
| | - Patrycja Bober
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 00 Prague, Czech Republic
| |
Collapse
|
2
|
Huo L, Wang L, Li J, Pu Y, Xuan K, Qiao C, Yang H. Cerium doped Zr-based metal-organic framework as catalyst for direct synthesis of dimethyl carbonate from CO2 and methanol. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Kaur M, Mehta SK, Kansal SK. Construction of multifunctional NH 2-UiO-66 metal organic framework: sensing and photocatalytic degradation of ketorolac tromethamine and tetracycline in aqueous medium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8464-8484. [PMID: 35133583 DOI: 10.1007/s11356-022-18629-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Existence of pharmaceutical residues in water has endangered environmental pollution worldwide, which makes it ineludible to develop prospective bifunctional materials which not only possess excellent fluorescence behaviour to monitor pharmaceuticals but also exhibit simultaneous photocatalytic removal efficiency. Strengthened by functionalized metal organic framework (MOF) materials, we present here an amine functionalized zirconium-based MOF NH2-UiO-66 which has been successfully synthesized using solvothermal approach. The as prepared MOF was subjected to numerous structural, morphological and compositional characterizations. Interestingly, featured by the excellent fluorescent intensity of MOF modulated by LMCT effect, NH2-UiO-66 was screened to detect pharmaceutical compounds with KTC and TC in aqueous solution. The prepared functionalized MOF showcased excellent sensing platform with magnificent response range (0‒3 µM), lower limit of detection (160 nM; KTC and 140 nM; TC), excellent selectivity and influential anti-interference capability. More importantly, the practical utility of the proposed sensor was further explored for the determination of pharmaceutical drugs in real water samples with suitable recoveries. Simultaneously, the synthesized MOF also exhibited high photocatalytic efficiency towards the removal of KTC and TC under solar light irradiation. The degradation efficiency for KTC and TC was found to be 68.3% and 71.8% within 60 and 280 min of solar light, respectively. Moreover, excellent recyclability was demonstrated by the current synthesized system over five cycles. Overall, this study presents a feasible route for the utilization of functionalized MOFs as potential dual functional materials towards the simultaneous detection and degradation of specific pharmaceuticals from aqueous medium.
Collapse
Affiliation(s)
- Manpreet Kaur
- Energy Research Centre, Panjab University, Chandigarh, 160014, India
| | | | - Sushil Kumar Kansal
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
4
|
Jayaramulu K, Mukherjee S, Morales DM, Dubal DP, Nanjundan AK, Schneemann A, Masa J, Kment S, Schuhmann W, Otyepka M, Zbořil R, Fischer RA. Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chem Rev 2022; 122:17241-17338. [PMID: 36318747 PMCID: PMC9801388 DOI: 10.1021/acs.chemrev.2c00270] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 11/06/2022]
Abstract
Current energy and environmental challenges demand the development and design of multifunctional porous materials with tunable properties for catalysis, water purification, and energy conversion and storage. Because of their amenability to de novo reticular chemistry, metal-organic frameworks (MOFs) have become key materials in this area. However, their usefulness is often limited by low chemical stability, conductivity and inappropriate pore sizes. Conductive two-dimensional (2D) materials with robust structural skeletons and/or functionalized surfaces can form stabilizing interactions with MOF components, enabling the fabrication of MOF nanocomposites with tunable pore characteristics. Graphene and its functional derivatives are the largest class of 2D materials and possess remarkable compositional versatility, structural diversity, and controllable surface chemistry. Here, we critically review current knowledge concerning the growth, structure, and properties of graphene derivatives, MOFs, and their graphene@MOF composites as well as the associated structure-property-performance relationships. Synthetic strategies for preparing graphene@MOF composites and tuning their properties are also comprehensively reviewed together with their applications in gas storage/separation, water purification, catalysis (organo-, electro-, and photocatalysis), and electrochemical energy storage and conversion. Current challenges in the development of graphene@MOF hybrids and their practical applications are addressed, revealing areas for future investigation. We hope that this review will inspire further exploration of new graphene@MOF hybrids for energy, electronic, biomedical, and photocatalysis applications as well as studies on previously unreported properties of known hybrids to reveal potential "diamonds in the rough".
Collapse
Affiliation(s)
- Kolleboyina Jayaramulu
- Department
of Chemistry, Indian Institute of Technology
Jammu, Jammu
and Kashmir 181221, India
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Soumya Mukherjee
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| | - Dulce M. Morales
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
- Nachwuchsgruppe
Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Deepak P. Dubal
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Ashok Kumar Nanjundan
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl
für Anorganische Chemie I, Technische
Universität Dresden, Bergstrasse 66, Dresden 01067, Germany
| | - Justus Masa
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, Mülheim an der Ruhr D-45470, Germany
| | - Stepan Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Wolfgang Schuhmann
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17 Listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Roland A. Fischer
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| |
Collapse
|
5
|
Nanocomposites of functionalized Metal−Organic frameworks and magnetic graphene oxide for selective adsorption and efficient determination of Lead(II). J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Jiang Q, Lan D, Zhao G, Xu H, Gong X, Liu J, Shi Y, Zhang L, Fang H, Cheng D, Ge J, Xu Z, Liu J. Converting CO 2 Hydrogenation Products from Paraffins to Olefins: Modification of Zeolite Surface Properties by a UIO- n Membrane. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qi Jiang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dengpeng Lan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Guofeng Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Haitao Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaodi Gong
- Department of Gynaecology and Obstetrics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jichang Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Shi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Lidong Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Huimin Fang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Denghui Cheng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianping Ge
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zhenliang Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinku Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Zhou M, Liu M, Jiang H, Chen R. Controllable Synthesis of Pd-ZIF-L-GO: The Role of Drying Temperature. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minghui Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Manman Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
8
|
Nasrollahzadeh M, Nezafat Z, Gorab MG, Sajjadi M. Recent progresses in graphene-based (photo)catalysts for reduction of nitro compounds. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110758] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Liu M, Jiang H, Liu Y, Chen R. Pd Nanoparticles Immobilized in Layered ZIFs as Efficient Catalysts for Heterogeneous Catalysis. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Manman Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yefei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
10
|
Nanocomposites of Pt nanoparticles anchored on UiO66-NH2 as carriers to construct acetylcholinesterase biosensors for organophosphorus pesticide detection. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.110] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Yang Q, Zhang HY, Wang L, Zhang Y, Zhao J. Ru/UiO-66 Catalyst for the Reduction of Nitroarenes and Tandem Reaction of Alcohol Oxidation/Knoevenagel Condensation. ACS OMEGA 2018; 3:4199-4212. [PMID: 31458654 PMCID: PMC6641650 DOI: 10.1021/acsomega.8b00157] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/30/2018] [Indexed: 05/08/2023]
Abstract
A 3.1% Ru/UiO-66 material was prepared by adsorption of RuCl3 from ethyl acetate on to MOF UiO-66, followed by reduction with NaBH4. The presence of acid-base and ox-red sites allows this 3.1% Ru/UiO-66 material acting as a bifunctional catalyst for the reduction of nitroarenes and tandem reaction of alcohol oxidation/Knoevenagel condensation. The high efficiency of 3.1% Ru/UiO-66 was demonstrated in the reduction of nitroarenes to amines. This system can be applied as a catalyst for at least six successive cycles without loss of activity. The 3.1% Ru/UiO-66 catalyst also was active in the tandem aerobic oxidation of alcohols/Knoevenagel condensation with malononitrile. However, the activity of this catalyst strongly decreased in the second cycle. A combination of physicochemical and catalytic experimental data indicated that Ru nanoparticles are the active sites both for the catalytic reduction of nitro compounds and the aerobic oxidation of alcohols. The activity for the Knoevenagel condensation reaction was from the existence of the "Zr n+-O2- Lewis acid-base" pair in the framework of UiO-66.
Collapse
Affiliation(s)
- Qiming Yang
- School
of Chemical Engineering and Technology and National-Local Joint Engineering
Laboratory for Energy Conservation of Chemical Process Integration
and Resources Utilization, Hebei University
of Technology, Guangrong Road No. 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Hong-Yu Zhang
- School
of Chemical Engineering and Technology and National-Local Joint Engineering
Laboratory for Energy Conservation of Chemical Process Integration
and Resources Utilization, Hebei University
of Technology, Guangrong Road No. 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Liping Wang
- School
of Chemical Engineering and Technology and National-Local Joint Engineering
Laboratory for Energy Conservation of Chemical Process Integration
and Resources Utilization, Hebei University
of Technology, Guangrong Road No. 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Yuecheng Zhang
- School
of Chemical Engineering and Technology and National-Local Joint Engineering
Laboratory for Energy Conservation of Chemical Process Integration
and Resources Utilization, Hebei University
of Technology, Guangrong Road No. 8, Hongqiao District, Tianjin 300130, P. R. China
- E-mail: (Y.Z.)
| | - Jiquan Zhao
- School
of Chemical Engineering and Technology and National-Local Joint Engineering
Laboratory for Energy Conservation of Chemical Process Integration
and Resources Utilization, Hebei University
of Technology, Guangrong Road No. 8, Hongqiao District, Tianjin 300130, P. R. China
- E-mail: (J.Z.)
| |
Collapse
|
12
|
Palladium Nanoparticles Covered on Amine-Functionalized Mesoporous Hollow SiO2 Spheres for the Reduction of 4-Nitrophenol. Catal Letters 2017. [DOI: 10.1007/s10562-017-2222-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Yang Q, Xu Q, Jiang HL. Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev 2017. [DOI: 10.1039/c6cs00724d] [Citation(s) in RCA: 1230] [Impact Index Per Article: 153.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review highlights recent advances in the hybridization of metal–organic frameworks and metal nanoparticles for their synergistically enhanced catalysis.
Collapse
Affiliation(s)
- Qihao Yang
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Soft Matter Chemistry
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Department of Chemistry
- University of Science and Technology of China
| | - Qiang Xu
- Research Institute of Electrochemical Energy
- National Institute of Advanced Industrial Science and Technology (AIST)
- Ikeda
- Japan
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL)
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Soft Matter Chemistry
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Department of Chemistry
- University of Science and Technology of China
| |
Collapse
|