1
|
Fu S, Younis MR, Cai Z, Liu L, Gu H, Ni G, Lui S, Ai H, Song B, Wu M. One-Pot Fabrication of Kinetically Inert Ultrasmall Manganese(II) Chelate-Backboned Polymer Contrast Agents for High-Performance Magnetic Resonance Imaging. NANO LETTERS 2024; 24:14252-14262. [PMID: 39400054 DOI: 10.1021/acs.nanolett.4c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Traditional macromolecules or nanoscale Mn2+ chelate-based magnetic resonance imaging (MRI) contrast agents (CAs) suffer from complicated and laborious synthesis processes, relatively low kinetic stability and T1 relaxivity, limiting their clinical applications. Herein, we fabricated a series of kinetically inert Mn2+ chelate-backboned polymers, P(MnL-PEG), through a facile and one-pot polymerization process. Particularly, P(MnL-PEG)-3 demonstrates a significantly higher T1 relaxivity of 23.9 Mn mM-1 s-1 at 1.5 T than that of previously reported small molecules and macromolecules or nanoscale Mn2+ chelate-based CAs. Due to its high T1 relaxivity, extended blood circulation, hepatocyte-specific uptake, and kidneys metabolism, P(MnL-PEG)-3 presents significantly enhanced contrast in blood vessel, liver, and kidneys imaging compared to clinical Gd3+-based CAs (Gd-EOB-DTPA and Gd-DOTA) at a dosage of 0.05 mmol Mn/Gd kg-1 BW, and can accurately diagnose orthotopic H22 liver tumors in vivo in animal models. We anticipate that this work will promote the development of clinically relevant MRI CAs.
Collapse
Affiliation(s)
- Shengxiang Fu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Liu
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haojie Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guohua Ni
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Su Lui
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bin Song
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan 572022, China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Ancora G, Marchesi S, Botta M, Marchese L, Carniato F, Bisio C. Silica-based monoliths functionalized with DTPA for the removal of transition and lanthanide ions from aqueous solutions. Dalton Trans 2024; 53:7801-7811. [PMID: 38623752 DOI: 10.1039/d4dt00388h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Transition and rare earth metals serve as indispensable raw materials across a broad spectrum of technological applications. However, their utilization is frequently linked to substantial waste production. Consequently, the recycling and recovery of these metals from end-of-life products or metal-contaminated aqueous environments hold significant importance within the framework of a circular economy. In our investigation, we employed synthetic mesoporous silica monoliths, synthesized via the sol-gel method and functionalized with chelating groups, for the efficient recovery of metal ions from aqueous matrices. The monoliths were characterized using a multi-technique approach and were tested in the recovery of paramagnetic Gd3+, Cu2+ and Co2+ ions from aqueous solutions, using 1H-NMR relaxometry to evaluate their uptake performance in real time and under simple conditions. Detailed information on the kinetics of the capture process was also highlighted. Finally, the possibility to regenerate the solid sorbents was evaluated.
Collapse
Affiliation(s)
- Gioele Ancora
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, AL, Italy.
| | - Stefano Marchesi
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, AL, Italy.
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, AL, Italy.
| | - Leonardo Marchese
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, AL, Italy.
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, AL, Italy.
| | - Chiara Bisio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, AL, Italy.
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche, "Giulio Natta", Via C. Golgi 19, 20133 Milano, MI, Italy
| |
Collapse
|
3
|
Garifo S, Vangijzegem T, Stanicki D, Laurent S. A Review on the Design of Carbon-Based Nanomaterials as MRI Contrast Agents. Molecules 2024; 29:1639. [PMID: 38611919 PMCID: PMC11013788 DOI: 10.3390/molecules29071639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The administration of magnetic resonance imaging (MRI) contrast agents (CAs) has been conducted since 1988 by clinicians to enhance the clarity and interpretability of MR images. CAs based on gadolinium chelates are the clinical standard used worldwide for the diagnosis of various pathologies, such as the detection of brain lesions, the visualization of blood vessels, and the assessment of soft tissue disorders. However, due to ongoing concerns associated with the safety of gadolinium-based contrast agents, considerable efforts have been directed towards developing contrast agents with better relaxivities, reduced toxicity, and eventually combined therapeutic modalities. In this context, grafting (or encapsulating) paramagnetic metals or chelates onto (within) carbon-based nanoparticles is a straightforward approach enabling the production of contrast agents with high relaxivities while providing extensive tuneability regarding the functionalization of the nanoparticles. Here, we provide an overview of the parameters defining the efficacy of lanthanide-based contrast agents and the subsequent developments in the field of nanoparticular-based contrast agents incorporating paramagnetic species.
Collapse
Affiliation(s)
- Sarah Garifo
- NMR and Molecular Imaging Laboratory, General, Organic and Biomedical Chemistry Unit, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (T.V.); (D.S.)
| | - Thomas Vangijzegem
- NMR and Molecular Imaging Laboratory, General, Organic and Biomedical Chemistry Unit, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (T.V.); (D.S.)
| | - Dimitri Stanicki
- NMR and Molecular Imaging Laboratory, General, Organic and Biomedical Chemistry Unit, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (T.V.); (D.S.)
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, General, Organic and Biomedical Chemistry Unit, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (T.V.); (D.S.)
- Center for Microscopy and Molecular Imaging (CMMI), 8 Rue Adrienne Boland, 6041 Gosselies, Belgium
| |
Collapse
|
4
|
Carniato F, Ricci M, Tei L, Garello F, Furlan C, Terreno E, Ravera E, Parigi G, Luchinat C, Botta M. Novel Nanogels Loaded with Mn(II) Chelates as Effective and Biologically Stable MRI Probes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302868. [PMID: 37345577 DOI: 10.1002/smll.202302868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/01/2023] [Indexed: 06/23/2023]
Abstract
Here it is described nanogels (NG) based on a chitosan matrix, which are covalently stabilized by a bisamide derivative of Mn-t-CDTA (t-CDTA = trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid). the Mn(II) complex acts both as a contrast medium and as a cross-linking agent. These nanogels are proposed as an alternative to the less stable paramagnetic nanogels obtained by electrostatic interactions between the polymeric matrix and paramagnetic Gd(III) chelates. The present novel nanogels show: i) relaxivity values seven times higher than that of typical monohydrated Mn(II) chelates at the clinical fields, thanks to the combination of a restricted mobility of the complex with a fast exchange of the metal-bound water molecule; ii) high stability of the formulation over time at pH 5 and under physiological conditions, thus excluding metal leaking or particles aggregation; iii) good extravasation and accumulation, with a maximum contrast achieved at 24 h post-injection in mice bearing subcutaneous breast cancer tumor; iv) high T1 contrast (1 T) in the tumor 24 h post-injection. These improved properties pave the way for the use of these paramagnetic nanogels as promising magnetic resonance imaging (MRI) probes for in vitro and in vivo preclinical applications.
Collapse
Affiliation(s)
- Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Marco Ricci
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Francesca Garello
- Molecular Imaging Centre, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, 10126, Italy
| | - Chiara Furlan
- Molecular Imaging Centre, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, 10126, Italy
| | - Enzo Terreno
- Molecular Imaging Centre, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, 10126, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, 50019, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, 50019, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, 50019, Italy
- Giotto Biotech S.r.l., Sesto Fiorentino, 50019, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, 15121, Italy
| |
Collapse
|
5
|
Chen X, Teng S, Li J, Qiao X, Zhao W, Xue Z, Shi X, Wang Y, Yang W, Wang T. Gadolinium (III)-Chelated Deformable Mesoporous Organosilica Nanoparticles as Magnetic Resonance Imaging Contrast Agent. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211578. [PMID: 36880582 DOI: 10.1002/adma.202211578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/21/2023] [Indexed: 05/19/2023]
Abstract
Magnetic resonance imaging (MRI) contrast agents, such as Magnevist (Gd-DTPA), are routinely used for detecting tumors at an early stage. However, the rapid clearance by the kidney of Gd-DTPA leads to short blood circulation time, which limits further improvement of the contrast between tumorous and normal tissue. Inspired by the deformability of red blood cells, which improves their blood circulation, this work fabricates a novel MRI contrast agent by incorporating Gd-DTPA into deformable mesoporous organosilica nanoparticles (D-MON). In vivo distribution shows that the novel contrast agent is able to depress rapid clearance by the liver and spleen, and the mean residence time is 20 h longer than Gd-DTPA. Tumor MRI studies demonstrated that the D-MON-based contrast agent is highly enriched in the tumor tissue and achieves prolonged high-contrast imaging. D-MON significantly improves the performance of clinical contrast agent Gd-DTPA, exhibiting good potential in clinical applications.
Collapse
Affiliation(s)
- Xiangyu Chen
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130022, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences CAS, Beijing, 100049, P. R. China
| | - Shiyong Teng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130022, P. R. China
| | - Jinming Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences CAS, Beijing, 100049, P. R. China
| | - Xuezhi Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences CAS, Beijing, 100049, P. R. China
| | - Weidong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences CAS, Beijing, 100049, P. R. China
| | - Zhengjie Xue
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences CAS, Beijing, 100049, P. R. China
| | - Xudong Shi
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, 100021, P. R. China
| | - Yuguang Wang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology NHC Research Center of Engineering and Technology for Computerized Dentistry, Beijing, 100081, P. R. China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130022, P. R. China
| | - Tie Wang
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences CAS, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Licciardi G, Rizzo D, Salobehaj M, Massai L, Geri A, Messori L, Ravera E, Fragai M, Parigi G. Large Protein Assemblies for High-Relaxivity Contrast Agents: The Case of Gadolinium-Labeled Asparaginase. Bioconjug Chem 2022; 33:2411-2419. [PMID: 36458591 PMCID: PMC9782335 DOI: 10.1021/acs.bioconjchem.2c00506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Biologics are emerging as the most important class of drugs and are used to treat a large variety of pathologies. Most of biologics are proteins administered in large amounts, either by intramuscular injection or by intravenous infusion. Asparaginase is a large tetrameric protein assembly, currently used against acute lymphoblastic leukemia. Here, a gadolinium(III)-DOTA derivative has been conjugated to asparaginase, and its relaxation properties have been investigated to assess its efficiency as a possible theranostic agent. The field-dependent 1H longitudinal relaxation measurements of water solutions of gadolinium(III)-labeled asparaginase indicate a very large increase in the relaxivity of this paramagnetic protein complex with respect to small gadolinium chelates, opening up the possibility of its use as an MRI contrast agent.
Collapse
Affiliation(s)
- Giulia Licciardi
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy,Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Domenico Rizzo
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy,Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Maria Salobehaj
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy,Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Lara Massai
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy
| | - Andrea Geri
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy
| | - Luigi Messori
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy
| | - Enrico Ravera
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy,Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Marco Fragai
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy,Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Giacomo Parigi
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy,Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,
| |
Collapse
|
7
|
Lee ZH, Lee MF, Chen JH, Tsou MH, Wu ZY, Lee CZ, Huang YY, Lin SM, Lin HM. Fucoidan with three functions extracted from Sargassum aquifolium integrated rice-husk synthesis dual-imaging mesoporous silica nanoparticle. J Nanobiotechnology 2022; 20:298. [PMID: 35733216 PMCID: PMC9215008 DOI: 10.1186/s12951-022-01430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022] Open
Abstract
In this study, we used the nanoparticle delivery system to reduce the side effect of conventional cancer treatment- radiation therapy and chemotherapy. We used rice husk silicon source mesoporous silica nanoparticle doped in Eu3+ and Gd3+ as the carrier in the delivery system and to enable fluorescence and MRI dual-imaging functions for follow-up therapy. In addition, we choose a popular seaweed extract-fucoidan was extracted from the same brown algae-Sargassum aquifolium collected from Taiwan-Pingtung-Kenting-Chuanfan Rock. In this research, we used acid hydrolysis to prepared two different molecular weight fucoidan, the small molecular fucoidan (Fus) as drug, and the molecular weight approximately 1 kDa fucoidan (Ful) as the nanoparticle gatekeeper, and as targeting molecule for overexpressed P-selectin on the surface of the metastatic tumors. The results of the cell cytotoxicity experiment showed that HCT116 cancer cells have a survival rate of approximately 58.12% when treated with 200 μg/mL fucoidan. Dual-imaging rice husk mesoporous silica nanoparticles (rMSN-EuGd) were modified with 1 kDa fucoidan (Ful) as the gatekeeper and target, and the small molecule fucoidan (Fus) was loaded into nanoparticles (Ful-Fus@rMSN-EuGd) at a concentration of 200 μg/mL. The HCT116 cancer cells had a survival rate of approximately 55.56%. The cell cytotoxicity experiment results show that Ful-Fus@rMSN-EuGd can improve the anticancer effect of fucoidan, and the nanoparticle drug delivery system using fucoidan as a drug, target, and gatekeeper was successfully synthesized.
Collapse
Affiliation(s)
- Zui-Harng Lee
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Meng-Feng Lee
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Jung-Huang Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Min-Hsuan Tsou
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Zhi-Yuan Wu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Cheng-Zhang Lee
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Yu-Ya Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Showe-Mei Lin
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Hsiu-Mei Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202, Taiwan.
| |
Collapse
|
8
|
MacCuaig WM, Samykutty A, Foote J, Luo W, Filatenkov A, Li M, Houchen C, Grizzle WE, McNally LR. Toxicity Assessment of Mesoporous Silica Nanoparticles upon Intravenous Injection in Mice: Implications for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14050969. [PMID: 35631554 PMCID: PMC9148138 DOI: 10.3390/pharmaceutics14050969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Nanoparticles are popular tools utilized to selectively deliver drugs and contrast agents for identification and treatment of disease. To determine the usefulness and translational potential of mesoporous silica nanoparticles (MSNs), further evaluations of toxicity are required. MSNs are among the most utilized nano-delivery systems due to ease of synthesis, pore structure, and functionalization. This study aims to elucidate toxicity as a result of intravenous injection of 25 nm MSNs coated with chitosan (C) or polyethylene glycol (PEG) in mice. Following acute and chronic injections, blood was evaluated for standard blood chemistry and complete blood count analyses. Blood chemistry results primarily indicated that no abnormalities were present following acute or chronic injections of MSNs, or C/PEG-coated MSNs. After four weekly administered treatments, vital organs showed minor exacerbation of pre-existing lesions in the 35KPEG-MSN and moderate exacerbation of pre-existing lesions in uncoated MSN and 2KPEG-MSN treatment groups. In contrast, C-MSN treatment groups had minimal changes compared to controls. This study suggests 25 nm MSNs coated with chitosan should elicit minimal toxicity when administered as either single or multiple intravenous injections, but MSNs coated with PEG, especially 2KPEG may exacerbate pre-existing vascular conditions. Further studies should evaluate varying sizes and types of nanoparticles to provide a better overall understanding on the relation between nanoparticles and in vivo toxicity.
Collapse
Affiliation(s)
- William M. MacCuaig
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (W.M.M.); (A.S.); (W.L.); (A.F.); (M.L.); (C.H.)
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK 73109, USA
| | - Abhilash Samykutty
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (W.M.M.); (A.S.); (W.L.); (A.F.); (M.L.); (C.H.)
| | - Jeremy Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Wenyi Luo
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (W.M.M.); (A.S.); (W.L.); (A.F.); (M.L.); (C.H.)
- Department of Pathology, Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Alexander Filatenkov
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (W.M.M.); (A.S.); (W.L.); (A.F.); (M.L.); (C.H.)
- Department of Pathology, Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Min Li
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (W.M.M.); (A.S.); (W.L.); (A.F.); (M.L.); (C.H.)
- Department of Medicine, Oklahoma Health Science Center, Oklahoma City, OK 73049, USA
| | - Courtney Houchen
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (W.M.M.); (A.S.); (W.L.); (A.F.); (M.L.); (C.H.)
- Department of Medicine, Oklahoma Health Science Center, Oklahoma City, OK 73049, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (W.M.M.); (A.S.); (W.L.); (A.F.); (M.L.); (C.H.)
- Department of Surgery, Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
9
|
Synthesis of Novel Luminescent Double-Decker Silsesquioxanes Based on Partially Condensed TetraSilanolPhenyl POSS and Tb3+/Eu3+ Lanthanide Ions. Processes (Basel) 2022. [DOI: 10.3390/pr10040758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this study, novel lanthanide-containing double-decker polyhedral oligomeric silsesquioxanes (POSS) were prepared by combining the partially condensed TetraSilanolPhenyl POSS with terbium (Tb3+) and europium (Eu3+) ions. This open-cage POSS possesses four diametrically opposite silanol groups that are able to coordinate, under mild conditions, different luminescent ions through a simple corner-capping method. The two metal-containing POSS functionalized with Tb3+ and with an equimolar combination of Tb3+ and Eu3+ show a completely condensed structure with different luminescent properties. Their emission features depend on the chemical nature of the metal ions incorporated in the framework. An improved stokes shift was detected in the bimetallic compound containing both the Tb3+ and Eu3+ ions, promoted by the occurrence of a Tb3+→Eu3+ energy transfer mechanism. These characteristics identify this metal-functionalized silica platform as a potential candidate for the development of novel luminescent devices.
Collapse
|
10
|
Carniato F, Ricci M, Tei L, Garello F, Terreno E, Ravera E, Parigi G, Luchinat C, Botta M. High Relaxivity with No Coordinated Waters: A Seemingly Paradoxical Behavior of [Gd(DOTP)] 5- Embedded in Nanogels. Inorg Chem 2022; 61:5380-5387. [PMID: 35316037 PMCID: PMC8985129 DOI: 10.1021/acs.inorgchem.2c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Nanogels (NGs) obtained
by electrostatic interactions between chitosan
and hyaluronic acid and comprising paramagnetic Gd chelates are gaining
increasing attention for their potential application in magnetic resonance
bioimaging. Herein, the macrocyclic complexes [Gd(DOTP)]5−, lacking metal-bound water molecules (q = 0), were
confined or used as a cross-linker in this type of NG. Unlike the
typical behavior of Gd complexes with q = 0, a remarkable
relaxivity value of 78.0 mM–1 s–1 was measured at 20 MHz and 298 K, nearly 20 times greater than that
found for the free complex. A careful analysis of the relaxation data
emphasizes the fundamental role of second sphere water molecules with
strong and long-lived hydrogen bonding interactions with the complex.
Finally, PEGylated derivatives of nanoparticles were used for the
first in vivo magnetic resonance imaging study of
this type of NG, revealing a fast renal excretion of paramagnetic
complexes after their release from the NGs. Nanogels incorporating [Gd(DOTP)]5− complexes
(q = 0) exhibit remarkable relaxivity values, thanks
to structured water molecules in the second coordination shell of
the metal ion involved in strong H-bonding interactions with the phosphonate
groups.
Collapse
Affiliation(s)
- Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Marco Ricci
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Francesca Garello
- Molecular Imaging Centre, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Enzo Terreno
- Molecular Imaging Centre, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, Alessandria 15121, Italy
| |
Collapse
|
11
|
Marchesi S, Nascimbene S, Guidotti M, Bisio C, Carniato F. Application of NMR relaxometry for the real-time monitoring of the removal of metal ions from water by synthetic clays. Dalton Trans 2022; 51:4502-4509. [DOI: 10.1039/d1dt04344g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The removal of paramagnetic metal ions with different charge and ionic radius (i.e. Gd3+, Cu2+, Co2+) from aqueous solutions was carried out by using a Na+-exchanged synthetic saponite clay. Saponite,...
Collapse
|
12
|
Marsden CJ, Breen C, Tinkler J, Berki T, Lester DW, Martinelli J, Tei L, Butler SJ, Willcock H. Crosslinked p(MMA) Particles by RAFT Emulsion Polymerisation: Tuning Size and Stability. Polym Chem 2022. [DOI: 10.1039/d2py00337f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The controlled synthesis of amphiphilic di-block copolymers allows a large array of nanostructures to be created, including block copolymer particles, which have proved valuable for biomedical applications. Despite progress in...
Collapse
|
13
|
Mallik R, Saha M, Mukherjee C. Porous Silica Nanospheres with a Confined Mono(aquated) Mn(II)-Complex: A Potential T1- T2 Dual Contrast Agent for Magnetic Resonance Imaging. ACS APPLIED BIO MATERIALS 2021; 4:8356-8367. [PMID: 35005912 DOI: 10.1021/acsabm.1c00937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetic resonance imaging has emerged as an indispensable imaging modality for the early-stage diagnosis of many diseases. The imaging in the presence of a contrast agent is always advantageous, as it mitigates the low-sensitivity issue of the measurements and provides excellent contrast in the acquired images even in a short acquisition time. However, the stability and high relaxivity of the contrast agents remained a challenge. Here, molecules of a mononuclear, mono(aquated), thermodynamically stable [log KMnL = 14.80(7) and pMn = 8.97] Mn(II)-complex (1), based on a hexadentate pyridine-picolinate unit-containing ligand (H2PyDPA), were confined within a porous silica nanosphere in a noncovalent fashion to render a stable nanosystem, complex 1@SiO2NP. The entrapped complex 1 (complex 1@SiO2) exhibited r1 = 8.46 mM-1 s-1 and r2 = 33.15 mM-1 s-1 at pH = 7.4, 25 °C, and 1.41 T in N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid buffer. The values were about 2.9 times higher compared to the free (unentrapped)-complex 1 molecules. The synthesized complex 1@SiO2NP interacted significantly with albumin protein and consequently boosted both the relaxivity values to r1 = 24.76 mM-1 s-1 and r2 = 63.96 mM-1 s-1 at pH = 7.4, 37 °C, and 1.41 T. The kinetic inertness of the entrapped molecules was established by recognizing no appreciable change in the r1 value upon challenging complex 1@SiO2NP with 30 and 40 times excess of Zn(II) ions at pH 6 and 25 °C. The water molecule coordinated to the Mn(II) ion in complex 1@SiO2 was also impervious to the physiologically relevant anions (bicarbonate, biphosphate, and citrate) and pH of the medium. Thus, it ensured the availability of the inner-coordination site of complex 1 for the coordination of water molecules in the biological media. The concentration-dependent changes in image intensities in T1- and T2-weighted phantom images and uptake of the nanoparticles by the HeLa cell put forward the biocompatible complex 1@SiO2NP as a potential dual-mode MRI contrast agent, an alternative to Gd(III)-containing contrast agents.
Collapse
Affiliation(s)
- Riya Mallik
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Muktashree Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
14
|
Lalli D, Ferrauto G, Terreno E, Carniato F, Botta M. Mn(II)-Conjugated silica nanoparticles as potential MRI probes. J Mater Chem B 2021; 9:8994-9004. [PMID: 34585711 DOI: 10.1039/d1tb01600h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel Mn(II)-based nanoprobes were rationally designed as high contrast enhancing agents for magnetic resonance imaging (MRI) and obtained by anchoring a Mn(II)-CDTA derivative to the surface of organo-modified silica nanoparticles (SiNPs). Large payloads of paramagnetic metal-chelates have been immobilized on biocompatible SiNPs with spherical shape and narrow size distribution of 80-90 nm, resulting in a relaxivity gain of 250% at clinical fields (0.5 T) as compared to the free chelate. Such substantial efficacy enhancement of the nanoprobes is mainly attributed to the restriction of the rotational dynamics of the conjugated complex, as revealed by comprehensive 1H-NMR relaxometric investigations. The paramagnetic nanospheres exhibit good colloidal stability over time in biological matrices, allowing for MRI applications. High image contrast was found in T1w-MRI images collected at 1 T on phantoms containing relatively small amounts of contrast agent (CA), for which low cellular toxicity was observed on three different cell lines. Preliminary in vivo studies on healthy mice demonstrated the efficiency of the novel Mn-based silica nanoparticle as T1w-MRI probes, resulting in significant contrast enhancement in the liver. These findings demonstrate that these novel Mn-SiNPs are high efficacy CAs suitable for preclinical MRI applications.
Collapse
Affiliation(s)
- Daniela Lalli
- Magnetic Resonance Platform (PRISMA-UPO), Department of Sciences and Technological Innovation, University of Eastern Piedmont "Amedeo Avogadro", Viale Teresa Michel 11, 15121-Alessandria, Italy.
| | - Giuseppe Ferrauto
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Enzo Terreno
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Fabio Carniato
- Magnetic Resonance Platform (PRISMA-UPO), Department of Sciences and Technological Innovation, University of Eastern Piedmont "Amedeo Avogadro", Viale Teresa Michel 11, 15121-Alessandria, Italy.
| | - Mauro Botta
- Magnetic Resonance Platform (PRISMA-UPO), Department of Sciences and Technological Innovation, University of Eastern Piedmont "Amedeo Avogadro", Viale Teresa Michel 11, 15121-Alessandria, Italy.
| |
Collapse
|
15
|
Garifo S, Stanicki D, Boutry S, Larbanoix L, Ternad I, Muller RN, Laurent S. Functionalized silica nanoplatform as a bimodal contrast agent for MRI and optical imaging. NANOSCALE 2021; 13:16509-16524. [PMID: 34590110 DOI: 10.1039/d1nr04972k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The preparation of an efficient bimodal single probe for magnetic resonance (MRI) and optical imaging (OI) is reported. Paramagnetic properties have been obtained by the non-covalent encapsulation of the clinically used Gd3+ chelate (i.e., Gd-HP-DO3A) within silica nanoparticles through a water-in-oil microemulsion process. To ensure colloidal stability, the surface of the particles was modified by means of treatment using PEG-silane, and further functionalized photochemically using a diazirine linker bearing carboxylic functions. Optical properties were obtained by the covalent grafting of a near-infrared emitting probe (NIR) on the resulting surface. The confinement of Gd complexes within the permeable matrix resulted in a significant increase in longitudinal relaxivities (>500% at 20 MHz) in comparison with the relaxivities of free chelate, while the post-functionalization process of PEG with fluorescent compounds appeared promising for the derivatization procedure. Several physico-chemical properties attested to the efficient surface modification and confirmed covalent grafting. Preliminary imaging experiments complete this study and confirm the potential of the presented system for preclinical imaging experiments.
Collapse
Affiliation(s)
- Sarah Garifo
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
| | - Dimitri Stanicki
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
| | - Sébastien Boutry
- Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Gosselies, Belgium
| | - Lionel Larbanoix
- Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Gosselies, Belgium
| | - Indiana Ternad
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
| | - Robert N Muller
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
- Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Gosselies, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
- Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Gosselies, Belgium
| |
Collapse
|
16
|
Carvalho RFS, Pereira GAL, Rocha J, Castro MMCA, Granadeiro CM, Nogueira HIS, Peters JA, Geraldes CFGC. Lanthanopolyoxometalate‐Silica Core/Shell Nanoparticles as Potential MRI Contrast Agents. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rui F. S. Carvalho
- Department of Life Sciences Faculty of Science and Technology University of Coimbra Calçada Martim de Freitas 3000-393 Coimbra Portugal
| | - Giovannia A. L. Pereira
- Department of Life Sciences Faculty of Science and Technology University of Coimbra Calçada Martim de Freitas 3000-393 Coimbra Portugal
- CICECO Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
- Fundamental Chemistry Department UFPE Recife, Pernambuco Brazil
| | - João Rocha
- CICECO Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - M. Margarida C. A. Castro
- Department of Life Sciences Faculty of Science and Technology University of Coimbra Calçada Martim de Freitas 3000-393 Coimbra Portugal
- Coimbra Chemistry Center Rua Larga University of Coimbra 3004-535 Coimbra Portugal
| | - Carlos M. Granadeiro
- CICECO Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
- LAQV-REQUIMTE Department of Chemistry and Biochemistry Faculty of Sciences University of Porto Rua do Campo Alegre 4169-007 Porto Portugal
| | - Helena I. S. Nogueira
- CICECO Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Joop A. Peters
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Carlos F. G. C. Geraldes
- Department of Life Sciences Faculty of Science and Technology University of Coimbra Calçada Martim de Freitas 3000-393 Coimbra Portugal
- Coimbra Chemistry Center Rua Larga University of Coimbra 3004-535 Coimbra Portugal
- CIBIT/ICNAS–Instituto de Ciências Nucleares Aplicadas à Saúde Pólo das Ciências da Saúde Azinhaga de Santa Comba 3000-548 Coimbra Portugal
| |
Collapse
|
17
|
Bellomo G, Ravera E, Calderone V, Botta M, Fragai M, Parigi G, Luchinat C. Revisiting paramagnetic relaxation enhancements in slowly rotating systems: how long is the long range? MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:25-31. [PMID: 37904766 PMCID: PMC10539754 DOI: 10.5194/mr-2-25-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/11/2021] [Indexed: 11/01/2023]
Abstract
Cross-relaxation terms in paramagnetic systems that reorient rigidly with slow tumbling times can increase the effective longitudinal relaxation rates of protons of more than 1 order of magnitude. This is evaluated by simulating the time evolution of the nuclear magnetization using a complete relaxation rate-matrix approach. The calculations show that the Solomon dependence of the paramagnetic relaxation rates on the metal-proton distance (as r - 6 ) can be incorrect for protons farther than 15 Å from the metal and thus can cause sizable errors in R 1 -derived distance restraints used, for instance, for protein structure determination. Furthermore, the chemical exchange of these protons with bulk water protons can enhance the relaxation rate of the solvent protons by far more than expected from the paramagnetic Solomon equation. Therefore, it may contribute significantly to the water proton relaxation rates measured at magnetic resonance imaging (MRI) magnetic fields in the presence of slow-rotating nanoparticles containing paramagnetic ions and a large number of exchangeable surface protons.
Collapse
Affiliation(s)
- Giovanni Bellomo
- Magnetic Resonance Center (CERM) and Department of Chemistry,
University of Florence, via Sacconi 6, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Sesto Fiorentino, Italy
- present address: Laboratory of Clinical Neurochemistry, Neurology
Clinic, University of Perugia, Piazzale Lucio Severi 1/8, 06132 Perugia
(PG), Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry,
University of Florence, via Sacconi 6, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Sesto Fiorentino, Italy
| | - Vito Calderone
- Magnetic Resonance Center (CERM) and Department of Chemistry,
University of Florence, via Sacconi 6, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Sesto Fiorentino, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Department of Chemistry,
University of Florence, via Sacconi 6, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Department of Chemistry,
University of Florence, via Sacconi 6, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry,
University of Florence, via Sacconi 6, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Sesto Fiorentino, Italy
| |
Collapse
|
18
|
Kataoka S, Inagaki S. Microreactor Coated with Mesoporous Organosilica Thin Film as a Support for Metal Complex Catalysts. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sho Kataoka
- National Institute of Advanced Industrial Science and Technology (AIST) 1‐1‐1 Higashi, Tsukuba 305‐8565 Ibaraki Japan
| | - Shinji Inagaki
- National Institute of Advanced Industrial Science and Technology (AIST) 1‐1‐1 Higashi, Tsukuba 305‐8565 Ibaraki Japan
| |
Collapse
|
19
|
Huang R, Shen YW, Guan YY, Jiang YX, Wu Y, Rahman K, Zhang LJ, Liu HJ, Luan X. Mesoporous silica nanoparticles: facile surface functionalization and versatile biomedical applications in oncology. Acta Biomater 2020; 116:1-15. [PMID: 32911102 DOI: 10.1016/j.actbio.2020.09.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have received increasing interest due to their tunable particle size, large surface area, stable framework, and easy surface modification. They are increasingly being used in varying applications as delivery vehicles including bio-imaging, drug delivery, biosensors and tissue engineering etc. Precise structure control and the ability to modify surface properties of MSNs are important for their applications. This review summarises the different synthetic methods for the preparation of well-ordered MSNs with tunable pore volume as well as the approaches of drugs loading, especially highlighting the facile surface functionalization for various purposes and versatile biomedical applications in oncology. Finally, the challenges of clinical transformation of MSNs-based nanomedicines are further discussed.
Collapse
|
20
|
McLeod SM, Robison L, Parigi G, Olszewski A, Drout RJ, Gong X, Islamoglu T, Luchinat C, Farha OK, Meade TJ. Maximizing Magnetic Resonance Contrast in Gd(III) Nanoconjugates: Investigation of Proton Relaxation in Zirconium Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41157-41166. [PMID: 32852198 DOI: 10.1021/acsami.0c13571] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gadolinium(III) nanoconjugate contrast agents (CAs) provide significant advantages over small-molecule complexes for magnetic resonance imaging (MRI), namely increased Gd(III) payload and enhanced proton relaxation efficiency (relaxivity, r1). Previous research has demonstrated that both the structure and surface chemistry of the nanomaterial substantially influence contrast. We hypothesized that inserting Gd(III) complexes in the pores of a metal-organic framework (MOF) might offer a unique strategy to further explore the parameters of nanomaterial structure and composition, which influence relaxivity. Herein, we postsynthetically incorporate Gd(III) complexes into Zr-MOFs using solvent-assisted ligand incorporation (SALI). Through the study of Zr-based MOFs, NU-1000 (nano and micronsize particles) and NU-901, we investigated the impact of particle size and pore shape on proton relaxivity. The SALI-functionalized Gd nano NU-1000 hybrid material displayed the highest loading of the Gd(III) complex (1.9 ± 0.1 complexes per node) and exhibited the most enhanced proton relaxivity (r1 of 26 ± 1 mM-1 s-1 at 1.4 T). Based on nuclear magnetic relaxation dispersion (NMRD) analysis, we can attribute the performance of Gd nano NU-1000 to the nanoscale size of the MOF particles and larger pore size that allows for rapid water exchange. We have demonstrated that SALI is a promising method for incorporating Gd(III) complexes into MOF materials and identified crucial design parameters for the preparation of next generation Gd(III)-functionalized MOF MRI contrast agents.
Collapse
Affiliation(s)
- Shaunna M McLeod
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Lee Robison
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Alyssa Olszewski
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Riki J Drout
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xinyi Gong
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Omar K Farha
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas J Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
Li H, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Functional gadolinium-based nanoscale systems for cancer theranostics. J Control Release 2020; 329:482-512. [PMID: 32898594 DOI: 10.1016/j.jconrel.2020.08.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer theranostics is a new strategy for combating cancer that integrates cancer imaging and treatment through theranostic agents to provide an efficient and safe way to improve cancer prognosis. Design and synthesis of these cancer theranostic agents are crucial since these agents are required to be biocompatible, tumor-specific, imaging distinguishable and therapeutically efficacious. In this regard, several types of gadolinium (Gd)-based nanomaterials have been introduced to combine different therapeutic agents with Gd to enhance the efficacy of therapeutic agents. At the same time, the entire treatment procedure could be monitored via imaging tools due to incorporation of Gd ions, Gd chelates and Gd/other imaging probes in the theranostic agents. This review aims to overview recent advances in the Gd-based nanomaterials for cancer theranostics and perspectives for Gd nanomaterial-based cancer theranostics are provided.
Collapse
Affiliation(s)
- Haonan Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
22
|
Abstract
The anchoring of lanthanide(III) chelates on the surface of mesoporous silica nanoparticles (MSNs) allowed their investigation as magnetic resonance imaging (MRI) and chemical exchange saturation transfer (CEST) contrast agents. Since their efficiency is strongly related to the interaction occurring between Ln-chelates and “bulk” water, an estimation of the water diffusion inside MSNs channels is very relevant. Herein, a method based on the exploitation of the CEST properties of TbDO3A-MSNs was applied to evaluate the effect of water diffusion inside MSN channels. Two MSNs, namely MCM-41 and SBA-15, with different pores size distributions were functionalized with TbDO3A-like chelates and polyethylene glycol (PEG) molecules and characterized by HR-TEM microscopy, IR spectroscopy, N2 physisorption, and thermogravimetric analysis (TGA). The different distribution of Tb-complexes in the two systems, mainly on the external surface in case of MCM-41 or inside the internal pores for SBA-15, resulted in variable CEST efficiency. Since water molecules diffuse slowly inside silica channels, the CEST effect of the LnDO3A-SBA-15 system was found to be one order of magnitude lower than in the case of TbDO3A-MCM-41. The latter system reaches an excellent sensitivity of ca. 55 ± 5 μM, which is useful for future theranostic or imaging applications.
Collapse
|
23
|
Marchesi S, Bisio C, Carniato F. Novel light-emitting clays with structural Tb 3+ and Eu 3+ for chromate anion detection. RSC Adv 2020; 10:29765-29771. [PMID: 35518223 PMCID: PMC9056159 DOI: 10.1039/d0ra05693f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/05/2020] [Indexed: 11/24/2022] Open
Abstract
Tb3+ and Eu3+ ions were encapsulated for the first time in the inorganic layers of a synthetic saponite clay following a one-pot synthetic approach. The co-presence of the two metal ions led to tuneable light-emitting properties, promoted by an efficient Tb3+ → Eu3+ energy transfer and enhanced Stokes shift character. To our knowledge, the so-prepared luminescent material was tested for the first time as an optical sensor for the detection of chromate anions in water.
Collapse
Affiliation(s)
- Stefano Marchesi
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale "Amedeo Avogadro" Viale Teresa Michel 11 15121-Alessandria Italy
| | - Chiara Bisio
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale "Amedeo Avogadro" Viale Teresa Michel 11 15121-Alessandria Italy
- CNR-SCITEC, Istituto di Scienze e Tecnologie Chimiche "G. Natta" Via C. Golgi 19 20133-Milano Italy
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale "Amedeo Avogadro" Viale Teresa Michel 11 15121-Alessandria Italy
| |
Collapse
|
24
|
Abstract
Iron oxide nanoparticles have been extensively utilised as negative (T2) contrast agents in magnetic resonance imaging. In the past few years, researchers have also exploited their application as positive (T1) contrast agents to overcome the limitation of traditional Gd3+ contrast agents. To provide T1 contrast, these particles must present certain physicochemical properties with control over the size, morphology and surface of the particles. In this review, we summarise the reported T1 iron oxide nanoparticles and critically revise their properties, synthetic protocols and application, not only in MRI but also in multimodal imaging. In addition, we briefly summarise the most important nanoparticulate Gd and Mn agents to evaluate whether T1 iron oxide nanoparticles can reach Gd/Mn contrast capabilities.
Collapse
|
25
|
Marchesi S, Carniato F, Guidotti M, Botta M, Marchese L, Bisio C. Synthetic saponite clays as promising solids for lanthanide ion recovery. NEW J CHEM 2020. [DOI: 10.1039/c9nj05983k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The extraction of lanthanide ions (Ln3+) from aqueous solutions was accomplished with layered materials based on synthetic saponite clays, showing interesting uptake performance and good selectivity.
Collapse
Affiliation(s)
- Stefano Marchesi
- Dipartimento di Scienze e Innovazione Tecnologica
- Università degli Studi del Piemonte Orientale “Amedeo Avogadro”
- 15121-Alessandria
- Italy
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica
- Università degli Studi del Piemonte Orientale “Amedeo Avogadro”
- 15121-Alessandria
- Italy
| | - Matteo Guidotti
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “G. Natta”
- 20133-Milano
- Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica
- Università degli Studi del Piemonte Orientale “Amedeo Avogadro”
- 15121-Alessandria
- Italy
| | - Leonardo Marchese
- Dipartimento di Scienze e Innovazione Tecnologica
- Università degli Studi del Piemonte Orientale “Amedeo Avogadro”
- 15121-Alessandria
- Italy
| | - Chiara Bisio
- Dipartimento di Scienze e Innovazione Tecnologica
- Università degli Studi del Piemonte Orientale “Amedeo Avogadro”
- 15121-Alessandria
- Italy
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “G. Natta”
| |
Collapse
|
26
|
Mathieu P, Chalet M, Clain MM, Teulon L, Benoist E, Leygue N, Picard C, Boutry S, Laurent S, Stanicki D, Hénoumont C, Novio F, Lorenzo J, Montpeyó D, Ciuculescu-Pradines D, Amiens C. Surface engineering of silica nanoparticles with a gadolinium–PCTA complex for efficient T1-weighted MRI contrast agents. NEW J CHEM 2020. [DOI: 10.1039/d0nj04430j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent grafting of diaqua Gd(iii)-complexes onto dense silica nanoparticles affords non-toxic contrast agents suitable for high field MRI pre-clinical studies.
Collapse
|
27
|
Rajendran A, Rajendiran M, Yang ZF, Fan HX, Cui TY, Zhang YG, Li WY. Functionalized Silicas for Metal-Free and Metal-Based Catalytic Applications: A Review in Perspective of Green Chemistry. CHEM REC 2019; 20:513-540. [PMID: 31631504 DOI: 10.1002/tcr.201900056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Heterogeneous catalysis plays a key role in promoting green chemistry through many routes. The functionalizable reactive silanols highlight silica as a beguiling support for the preparation of heterogeneous catalysts. Metal active sites anchored on functionalized silica (FS) usually demonstrate the better dispersion and stability due to their firm chemical interaction with FSs. Having certain functional groups in structure, FSs can act as the useful catalysts for few organic reactions even without the need of metal active sites which are termed as the covetous reusable organocatalysts. Magnetic FSs have laid the platform where the effortless recovery of catalysts is realized just using an external magnet, resulting in the simplified reaction procedure. Using FSs of multiple functional groups, we can envisage the shortened reaction pathway and, reduced chemical uses and chemical wastes. Unstable bio-molecules like enzymes have been stabilized when they get chemically anchored on FSs. The resultant solid bio-catalysts exhibited very good reusability in many catalytic reactions. Getting provoked from the green chemistry aspects and benefits of FS-based catalysts, we confer the recent literature and progress focusing on the significance of FSs in heterogeneous catalysis. This review covers the preparative methods, types and catalytic applications of FSs. A special emphasis is given to the metal-free FS catalysts, multiple FS-based catalysts and magnetic FSs. Through this review, we presume that the contribution of FSs to green chemistry can be well understood. The future perspective of FSs and the improvements still required for implementing FS-based catalysts in practical applications have been narrated at the end of this review.
Collapse
Affiliation(s)
- Antony Rajendran
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Marimuthu Rajendiran
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Zhi-Fen Yang
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Hong-Xia Fan
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Tian-You Cui
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Ya-Gang Zhang
- Department of Chemistry and Chemical Engineering, Xi'an University of Technology, Xi'an, 710054, PR China
| | - Wen-Ying Li
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China.,Department of Chemistry and Chemical Engineering, Xi'an University of Technology, Xi'an, 710054, PR China
| |
Collapse
|
28
|
Ferrauto G, Carniato F, Di Gregorio E, Botta M, Tei L. Photoacoustic ratiometric assessment of mitoxantrone release from theranostic ICG-conjugated mesoporous silica nanoparticles. NANOSCALE 2019; 11:18031-18036. [PMID: 31570915 DOI: 10.1039/c9nr06524e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A theranostic nanosystem based on indocyanine green (ICG) covalently conjugated to mesoporous silica nanoparticles (MSNs) loaded with the anticancer drug mitoxantrone (MTX) is proposed as an innovative photoacoustic probe. Taking advantage of the characteristic PA signal displayed by both ICG and MTX, a PA-ratiometric approach was applied to assess the drug release profile from the MSNs. After complete in vitro characterization of the nanoprobe, a proof-of-concept study has been carried out in tumour-bearing mice to evaluate in vivo its effectiveness for cancer imaging and chemotherapeutic agent delivery.
Collapse
Affiliation(s)
- Giuseppe Ferrauto
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126 Torino, Italy.
| | | | | | | | | |
Collapse
|
29
|
Sun Zhou XD, Marzke R, Peng Z, Szilágyi I, Dey SK. Understanding the High Longitudinal Relaxivity of Gd(DTPA)-Intercalated (Zn,Al)-Layered Double Hydroxide Nanoparticles. Inorg Chem 2019; 58:12112-12121. [PMID: 31483639 DOI: 10.1021/acs.inorgchem.9b01401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, biocompatible gadolinium diethylenetriaminepentaacetate (Gd(DTPA))-intercalated (Zn,Al)-layered double hydroxide (LDH) nanoparticles were synthesized, characterized for Gd(DTPA) loading percentage and nanostructure, and the spin-lattice relaxation times (T1) measured to determine their suitability as a potential T1-weighted contrast agent for magnetic resonance imaging (MRI). Compared to the most commonly used contrast agent in clinical MRI (i.e., molecular Gd(DTPA)), significant increases in longitudinal relaxivity (r1) were measured for all Gd(DTPA)-intercalated nanoparticles. For a specific Zn2Al(OH)6(Cl,0.5CO3)0.56Gd(DTPA)0.086·xH2O composition, r1 was found to be 28.38 s-1 mM-1, which is over 6 times the r1 of molecular Gd(DTPA). This dramatic increase in r1 is attributed to (a) the much longer rotational correlation time (τR) of nanoparticles and (b) the inherent water of LDH that forms the second-/outer-sphere in the vicinity of intercalated Gd(DTPA)2-. The latter, with an extensive hydrogen bonding network and insignificant translational motion, results in a longer mean residence lifetime (τM), which makes the contribution of second-/outer-sphere significant. Therefore, when the Gd(DTPA)2- loading percentage increases from 8.6 to 55%, the diminution of the ratio of inherent water to Gd(DTPA)2- concomitantly diminishes the contributions by second-/outer-sphere water to r1. Additionally, the modest increase in r1 with decreasing particle size (∼315-540 nm) is perhaps due to the shortening of τM. Finally, the spin-spin relaxation times (T2) of 17O, determined at various temperatures, show a negligible exchange of water molecules at room temperature. Therefore, the very high r1 of nanoparticles indicate that protons of the bulk water are still accessible to the Gd3+ centers, possibly dominated by prototropic exchange through the hydrogen bonding network.
Collapse
|
30
|
Abstract
Mn(II) has several favorable physicochemical characteristics and a good toxicity profile, which makes it a viable alternative to the Gd(III)-based MRI contrast agents currently used in clinics. Although many studies have been undertaken in the last 10 years, this is a field of investigation still in rapid and continuous development. This review aims to critically discuss the chemical and magnetic properties of Mn(II) compounds relevant as MRI probes, both small complexes and nanosystems containing a large number of metal centers, the possible approaches for optimizing their efficiency by understanding the role of various molecular parameters that control the relaxation processes, and the most important issues related to stability and kinetic inertness.
Collapse
|
31
|
1H NMR Relaxometric Analysis of Paramagnetic Gd2O3:Yb Nanoparticles Functionalized with Citrate Groups. INORGANICS 2019. [DOI: 10.3390/inorganics7030034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gd2O3 nanoparticles doped with different amount of Yb3+ ions and coated with citrate molecules were prepared by a cheap and fast co-precipitation procedure and proposed as potential “positive” contrast agents in magnetic resonance imaging. The citrate was used to improve the aqueous suspension, limiting particles precipitation. The relaxometric properties of the samples were studied in aqueous solution as a function of the magnetic field strength in order to evaluate the interaction of the paramagnetic ions exposed on the surface with the water molecules in proximity. The nanoparticles showed high relaxivity values at a high magnetic field with respect to the clinically used Gd3+-chelates and comparable to those of similar nanosytems. Special attention was also addressed to the investigation of the chemical stability of the nanoparticles in biological fluid (reconstructed human serum) and in the presence of a chelating agent.
Collapse
|
32
|
Carniato F, Alberti D, Lapadula A, Martinelli J, Isidoro C, Geninatti Crich S, Tei L. Multifunctional Gd-based mesoporous silica nanotheranostic for anticancer drug delivery. J Mater Chem B 2019. [DOI: 10.1039/c9tb00375d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A theranostic MRI nanoprobe based on mesoporous silica nanoparticles with attached stable Gd-complexes with high relaxivity, rhodamine dyes, PEG and cyclooctyne moieties was synthesized and loaded with mitoxantrone for bio-orthogonal targeted anticancer drug delivery.
Collapse
Affiliation(s)
- Fabio Carniato
- Department of Science and Technological Innovation
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| | - Diego Alberti
- Department of Molecular Biotechnology and Health Science
- University of Turin
- 10126 Torino
- Italy
| | - Angelica Lapadula
- Department of Molecular Biotechnology and Health Science
- University of Turin
- 10126 Torino
- Italy
- Department of Health Sciences
| | - Jonathan Martinelli
- Department of Science and Technological Innovation
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| | - Ciro Isidoro
- Department of Health Sciences
- Università del Piemonte Orientale
- Novara
- Italy
| | | | - Lorenzo Tei
- Department of Science and Technological Innovation
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| |
Collapse
|