1
|
Chen X, Yang D, Cao F, Mo Z. Multielectron Reduction of Nitrosoarene via Aluminylene-Silylene Cooperation. J Am Chem Soc 2024; 146:29278-29284. [PMID: 39418648 DOI: 10.1021/jacs.4c10323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The cooperative effects of main-group elements pave the way for novel chemical transformations. However, the potential of bimetallic complexes featuring the most abundant aluminum and silicon elements remains largely unexplored. In this study, we present the synthesis and characterization of bis(silylene)-stabilized aluminylene 2. The cooperation between aluminylene and silylene allows for the facile cleavage of the N-O bond in nitrosoarenes, producing an aluminum imide complex 4 and tetracyclic oxazasilaalanes 5 and 6, and also promotes the dearomatization of 2-methylquinoline, yielding a silylalane 7. In addition, 2 is an effective precatalyst for the reductive coupling of nitrosoarenes to azoxyarenes. These results outline an approach for orchestrating aluminum and silicon cooperation to facilitate chemical bond activation.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dezhi Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fanshu Cao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenbo Mo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Ding Y, Jin W, Zhang J, Cui C. A Masked Boryl-Substituted Oxo-Bridged Bis-Silylene: Synthesis and Reductive-Elimination and Synergistic Oxidative-Addition Reactivity. J Am Chem Soc 2024; 146:27925-27934. [PMID: 39319777 DOI: 10.1021/jacs.4c10961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Controlled oxidation of NHB-stabilized disilyne (NHB)Si ≡ Si(NHB) (1, NHB = [ArN(CMe)2NAr]B, Ar = 2,6-iPr2C6H3) with one equivalent of trimethylamine N-oxide (Me3N+─O-) in dry n-hexane gave oxo-bridged bis-silepin 2 in high yields. DFT calculations disclosed that silepin 2 is only more stable by 13.4 kcal/mol than the corresponding oxo-bridged bis-silylene intermediate 2' (NHB)Si(μ-O)Si(NHB), and 2 was very likely to be formed by the insertion of the two divalent Si atoms into the pendant aryl rings in bis-silylene intermediate 2'. The two silicon atoms in bis-silepin 2 could undergo formal reductive-elimination of the aryl rings and sequential oxidative-insertion reactions with small molecules and organic substrates. Treatment of 2 with H2O, S8, and P4 at 60 °C yielded compounds 3-5 via reductive-elimination of the aryl rings, followed by the sequential oxidative-addition of these molecules at the two Si(II) centers. Similarly, reactions of 2 with PhSiH3, a diphenylalkyne, pyridines, 1,3,4,5-tetramethylimidazolin-2-ylidene (IMe4), Ph2CO, and thiophene yielded the corresponding polycyclic bis-silanes 6-12 via reductive-elimination and oxidative-addition of C-H, Si-H, C≡C, and aromatic C═C, C-S, and C═N bonds at the two Si atoms. These novel reactions indicated the pronounced bis-silylene reactivity of bis-silepin 2, consistent with the low-energy barrier for the interconversion between 2 and 2', as disclosed by DFT calculations.
Collapse
Affiliation(s)
- Yazhou Ding
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Wen Jin
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| |
Collapse
|
3
|
Yao S, Budde MS, Yang X, Xiong Y, Zhao L, Driess M. Disilicon-Mediated Carbon Monoxide Activation: From a 1,2,3-Trisila- to 1,3-Disilacyclopentadienes with Hypercoordinate λ 4Si-λ 3C Double Bonds. Angew Chem Int Ed Engl 2024:e202414696. [PMID: 39305142 DOI: 10.1002/anie.202414696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 11/01/2024]
Abstract
The facile reaction of the SiPh2-bridged bis-silylene (LSi:)2SiPh2 (L=PhC(NBut)2) with diphenylacetylene affords the unprecedented 1,2,3-trisilacyclopentadiene (LSi)2(PhC)2SiPh2 1 with a hypercoordinate λ4Si-λ3Si double bond. Compound 1 is very oxophilic and consumes three molar equivalents of inert N2O to form the bicyclic oxygenation product 2 through O-atom insertion in the Si=Si and Si-Si bonds. Strikingly, 1 can completely split the C≡O bonds of carbon monoxide under ambient conditions (1 atm, room temperature), yielding the 1,3-disilacyclopentadiene 3, representing the first hypercoordinate example of a cyclosilene with a λ4Si-λ3C double bond. Likewise, reaction of Xyl-NC (Xyl=2,6-dimethylphenyl), an isocyanide isoelectronic with CO, with 1 furnishes the related 1,3-disilacyclopentadiene 4 but with an amidinato silylene pendent attached to the Si=C carbon ring atom.
Collapse
Affiliation(s)
- Shenglai Yao
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Markus Stefan Budde
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Xing Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yun Xiong
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Lili Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
4
|
Ohno R, Ota K, Nishimura N, Taniguchi K, Kurokawa S, Wakabayashi T, Hatanaka M, Rosas-Sánchez A, Hashizume D, Matsuo T. Silicon Analogues of Cyclopropyl Radical Derived from a Highly Stable Cyclic Disilene Compound Featuring a Si-Br Bond. J Am Chem Soc 2024; 146:24911-24924. [PMID: 39189610 DOI: 10.1021/jacs.4c06111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A halogen-substituted cyclic disilene compound, bromocyclotrisilene, Si3Br(Eind)3 (3a), bearing fused-ring bulky Eind (a: R1 = R2 = Et) groups, has been synthesized as an extraordinarily air-stable compound by the reduction of 1,2-dibromodisilene, (Eind)BrSi═SiBr(Eind) (2a), or tribromosilane, (Eind)SiBr3 (1a), with the Mg or Li metal. The X-ray diffraction analysis of 3a showed that the disilene moiety has an almost planar, but slightly trans-bent structure. Even though 3a is quite air-stable both in solutions and in the solid state, its Si-Br bond is reactive under reducing conditions. The further treatment of 3a with the Li metal leads to the formation of room-temperature thermally stable silicon homologues of the cyclopropyl radical, i.e., the cyclotrisilanyl radicals (6a) [6a(syn) and 6a(anti)], via intramolecular C-H bond activation in a transient silicon homologue of the cyclopropenyl radical, i.e., the cyclotrisilenyl radical, [Si3(Eind)3]• (5a). The formation mechanism of 6a from 5a is discussed based on the theoretical calculations. The unique structural and electronic properties of these Si3 three-membered ring species incorporating the Eind groups have been experimentally and theoretically investigated.
Collapse
Affiliation(s)
- Ryoma Ohno
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Osaka 577-8502, Japan
| | - Kei Ota
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Osaka 577-8502, Japan
| | - Nagisa Nishimura
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Osaka 577-8502, Japan
| | - Kanta Taniguchi
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Osaka 577-8502, Japan
| | - Shuma Kurokawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Osaka 577-8502, Japan
| | - Tomonari Wakabayashi
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Osaka 577-8502, Japan
| | - Miho Hatanaka
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kanagawa 223-8522, Japan
- Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
| | - Alfredo Rosas-Sánchez
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco 44430, México
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tsukasa Matsuo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Osaka 577-8502, Japan
| |
Collapse
|
5
|
Doleschal ME, Kostenko A, Liu JY, Inoue S. Isolation of a NHC-stabilized heavier nitrile and its conversion into an isonitrile analogue. Nat Chem 2024:10.1038/s41557-024-01618-6. [PMID: 39256544 DOI: 10.1038/s41557-024-01618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Nitriles (R-C≡N) have been investigated since the late eighteenth century and are ubiquitous encounters in organic and inorganic syntheses. In contrast, heavier nitriles, which contain the heavier analogues of carbon and nitrogen, are sparsely investigated species. Here we report the synthesis and isolation of a phosphino-silylene featuring an N-heterocyclic carbene-phosphinidene and a highly sterically demanding silyl group as substituents. Due to its unique structural motif, it can be regarded as a Lewis base-stabilized heavier nitrile. The Si-P bond displays multiple bond character and a bent R-Si-P geometry, the latter indicating fundamental differences between heavier and classical nitriles. In solution, a quantitative unusual rearrangement to a phosphasilenylidene occurs. This rearrangement is consistent with theoretical predictions of rearrangements from heavier nitriles to heavier isonitriles. Our preliminary reactivity studies revealed that both isomers exhibit highly nucleophilic silicon centres capable of oxidative addition and coordination to iron tetracarbonyl.
Collapse
Affiliation(s)
- Martin E Doleschal
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany
| | - Arseni Kostenko
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany
| | - Jin Yu Liu
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany.
| |
Collapse
|
6
|
Fan J, Wang Y, Shi T, Yang P, Zhou G, Xu J, Su B. Isolation and Diverse Reactivity of an Unsymmetrical 1,2-Bis(silylene)-Stabilized Pentacarbonyl Chromium(0) Species. Inorg Chem 2024. [PMID: 39225133 DOI: 10.1021/acs.inorgchem.4c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The construction of the unsymmetrical 1,2-bis(silylene) pentacarbonyl chromium(0) complex 1 was achieved through the reaction of chlorosilylene with half an equivalent of K2Cr(CO)5. X-ray diffraction analysis of 1 confirms the formation of the Si-Si bond and the coordination of one of the silicon atoms to the Cr center. Density functional theory (DFT) calculations disclose that highest occupied molecular orbital (HOMO) mainly corresponds to the lone pair of electrons on the silicon atom and the σ-bonding interaction between two Si atoms. Based on its unique electronic structure, its diverse reactivity toward the transition metal compounds and small molecules was investigated in detail. The reactions of 1 with Fe2(CO)9 or CuCl yielded the 1,2-bis(silylene)-stabilized heterobimetallic complex 2 or oxidized product 3, respectively. Additionally, treatments of 1 with selenium, CO2, or Me3SiN3 led to the formation of the corresponding selenium-, oxo-, and nitrogen-bridged complexes 4-7. All compounds were characterized by multinuclear NMR spectroscopy and X-ray crystallography.
Collapse
Affiliation(s)
- Jiawei Fan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuyi Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tao Shi
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Peng Yang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guijiang Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Xu
- Zhangye Dagong Pesticide Chemistry Co., Ltd., Zhangye 734000, China
| | - Bochao Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
7
|
Hendi Z, Pandey MK, Kushvaha SK, Roesky HW. Recent progress in transition metal complexes featuring silylene as ligands. Chem Commun (Camb) 2024; 60:9483-9512. [PMID: 39119696 DOI: 10.1039/d4cc01930j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Silylenes, divalent silicon(II) compounds, once considered highly reactive and transient species, are now widely employed as stable synthons in main-group and coordination chemistry for myriad applications. The synthesis of stable silylenes represents a major breakthrough, which led to extensive exploration of silylenes in stabilizing low-valent main-group elements and as versatile ligands in coordination chemistry and catalysis. In recent years, the exploration of transition metal complexes stabilized with silylene ligands has captivated significant research attention. This is due to their robust σ-donor characteristics and capacity to stabilize transition metals in low valent states. It has also been demonstrated that the transition metal complexes of silylenes are effective catalysts for hydroboration, hydrosilylation, hydrogenation, hydrogen isotope exchange reactions, and small molecule activation chemistry. This review article focuses on the recent progress in the synthesis and catalytic application of transition metal complexes of silylenes.
Collapse
Affiliation(s)
- Zohreh Hendi
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Madhusudan K Pandey
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Saroj Kumar Kushvaha
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| |
Collapse
|
8
|
Ghosh M, Chatterjee J, Panwaria P, Kudlu A, Tothadi S, Khan S. Silylene-Copper-Amide Emitters: From Thermally Activated Delayed Fluorescence to Dual Emission. Angew Chem Int Ed Engl 2024:e202410792. [PMID: 39148269 DOI: 10.1002/anie.202410792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Herein, we report the inaugural instance of N-heterocyclic silylene (NHSi)-coordinated copper amide emitters (2-5). These complexes exhibit thermally activated delayed fluorescence (TADF) and singlet-triplet dual emission in anaerobic conditions. The NHSi-Cu-diphenylamide (2) complex demonstrates TADF with a very small ΔEST gap (0.01 eV), an absolute quantum yield of 11 %, a radiative rate of 2.55×105 s-1, and a short τTADF of 0.45 μs in the solid state. The dual emissive complexes (3-5) achieve an absolute quantum yield of up to 20 % in the solid state with a kISC rate of 1.82×108 s-1 and exhibit room temperature phosphorescence (RTP) with lifetimes up to 9 ms. The gradual decrease in the intensity of the triplet state of complex 3 under controlled oxygen exposure demonstrates its potential for future oxygen-sensing applications. Complexes 2 and 3 have been further utilized to fabricate converted LEDs, paving the way for future OLED production using newly synthesized NHSi-Cu-amides.
Collapse
Affiliation(s)
- Moushakhi Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Joy Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Ashwath Kudlu
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Srinu Tothadi
- Analytical and Environmental Sciences Division and Centralized Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, 364002, India
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
9
|
Liu X, Dai Y, Bao Q, Li Q, Chen N, Su Y, Wang X. Isolable T-Shaped Planar Silyl Anion. Angew Chem Int Ed Engl 2024; 63:e202406089. [PMID: 38781000 DOI: 10.1002/anie.202406089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Silyl anions have garnered significant attention due to their synthetic abilities. However, previously reported silyl anions have been limited to either trigonal-pyramidal or trigonal-planar geometries, which confine them primarily as nucleophiles in substitution reactions. Herein, we report the isolation of the unprecedented T-shaped planar silyl anion salt 2 by employment of a geometrically constrained triamido pincer ligand. Theoretical calculations disclosed that the silicon centre in 2 possesses both a lone pair of electrons and an empty 3pz orbital. In addition to nucleophilic substitution reactions with Ph3PAuCl and W(CO)6, 2 readily undergoes oxidative additions with CO2 and 2,6-dimethylphenylisonitrile at room temperature. Furthermore, under mild conditions, compound 2 cleaves Csp2-H, Csp2-H, and H-H bonds in 1,2,4,5-tetrafluorobenzene, an intramolecular iPr group, and dihydrogen, representing the first examples of C-H and H-H activations mediated by a silyl anion, respectively. This work unveils new reactivity of silyl anions owing to the non-classical geometry and electronic structure.
Collapse
Affiliation(s)
- Xiaona Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yuyang Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qidi Bao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qianli Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xinping Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
10
|
Kushvaha SK, Gorantla SMNVT, Kallenbach P, Herbst-Irmer R, Stalke D, Roesky HW. Preparation of a high-coordinated-silicon-centered spiro-cyclic compound. Dalton Trans 2024; 53:11410-11416. [PMID: 38900062 DOI: 10.1039/d4dt00627e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Silicon compounds containing silicon-silicon bond with a variety of unusual oxidation states are quite important, because their high reactivity leads to the formation of a variety of silicon compounds. The isolation of such compounds with unusual oxidation states requires a resilient synthetic strategy. Herein, we report the synthesis of a silicon based spirocyclic compound containing a hyper-valent silicon atom and a silicon-silicon bond. The computational calculations employing natural bond orbital (NBO) analysis and energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV) reveal that the nature of bonding between the silicon atoms is of an electron sharing nature.
Collapse
Affiliation(s)
| | - Sai Manoj N V T Gorantla
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Paula Kallenbach
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany.
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany.
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany.
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany.
| |
Collapse
|
11
|
Jacob HL, Weyer N, Leibold M, Bruhn C, Siemeling U. Ferrocene-Based N-Heterocyclic Silylenes: Monomeric Silanechalcogenones, Silanimines, Silirenes, and Insertion Products with P 4. Chemistry 2024; 30:e202400850. [PMID: 38656583 DOI: 10.1002/chem.202400850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
The stable ferrocene-based N-heterocyclic silylenes fc[(N{B})2Si] (A; fc=1,1'-ferrocenylene, {B}=(HCNDipp)2B, Dipp=2,6-diisopropylphenyl) and fc[(NDipp)2Si] (B) are compared in a study focussing on their reactivity towards a range of small to moderately sized molecular substrates, viz. P4, S8, Se8, MesN3 (Mes=mesityl), RC≡CH, and RC≡CR (R=Ph, SiMe3). The Dipp-substituted congener B exhibits a more pronounced ambiphilicity and is sterically less congested than its 1,3,2-diazaborolyl-substituted relative A, in line with the higher reactivity of the former. The difference in reactivity is obviously due more to electronic than to steric reasons, as is illustrated by the fact that both A and B react with the comparatively bulky substrate MesN3 under mild conditions to afford the corresponding silanimine fc[(N{B})2Si=NMes] and fc[(NDipp)2Si=NMes], respectively. The heavier ketone analogues fc[(N{B})2Si=E] (E=S, Se, Te) are readily available from A and the corresponding chalcogen. In contrast, the reaction of the more reactive silylene B with elemental sulfur or selenium is unspecific, affording product mixtures. However, fc[(NDipp)2Si=Se] is selectively prepared from B and (Et2N)3PSe; the Te analogue is also accessible, but crystallises as head-to-tail dimer.
Collapse
Affiliation(s)
- Hannes L Jacob
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Nadine Weyer
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Michael Leibold
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Clemens Bruhn
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Ulrich Siemeling
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| |
Collapse
|
12
|
Akhtar R, Gaurav K, Khan S. Applications of low-valent compounds with heavy group-14 elements. Chem Soc Rev 2024; 53:6150-6243. [PMID: 38757535 DOI: 10.1039/d4cs00101j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Over the last two decades, the low-valent compounds of group-14 elements have received significant attention in several fields of chemistry owing to their unique electronic properties. The low-valent group-14 species include tetrylenes, tetryliumylidene, tetrylones, dimetallenes and dimetallynes. These low-valent group-14 species have shown applications in various areas such as organic transformations (hydroboration, cyanosilylation, N-functionalisation of amines, and hydroamination), small molecule activation (e.g. P4, As4, CO2, CO, H2, alkene, and alkyne) and materials. This review presents an in-depth discussion on low-valent group-14 species-catalyzed reactions, including polymerization of rac-lactide, L-lactide, DL-lactide, and caprolactone, followed by their photophysical properties (phosphorescence and fluorescence), thin film deposition (atomic layer deposition and vapor phase deposition), and medicinal applications. This review concisely summarizes current developments of low-valent heavier group-14 compounds, covering synthetic methodologies, structural aspects, and their applications in various fields of chemistry. Finally, their opportunities and challenges are examined and emphasized.
Collapse
Affiliation(s)
- Ruksana Akhtar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Kumar Gaurav
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
13
|
Bourne C, Dong H, McKain K, Mayer LC, McKay AP, Cordes DB, Slawin AMZ, Stasch A. Alkyl backbone variations in common β-diketiminate ligands and applications to N-heterocyclic silylene chemistry. Dalton Trans 2024; 53:9887-9895. [PMID: 38807511 DOI: 10.1039/d4dt01298d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We report the extension of the common β-diketimine proligand class, RArnacnacH (HC(RCNAr)2H), where R is an alkyl group such as Et or iPr, plus Ph, and Ar is a sterically demanding aryl substituent such as Dip = 2,6-diispropylphenyl, Dep = 2,6-diethylphenyl, Mes = 2,4,6-trimethylphenyl or mesityl, Xyl = 2,6-dimethylphenyl, via one-pot condensation procedures. When a condensation reaction is carried out using the chemical dehydrating agent PPSE (polyphosphoric acid trimethylsilylester), β-diketiminate phosphorus(V) products such as (iPrMesnacnac)PO2 can also be obtained, which can be converted to the respective proligand iPrMesnacnacH via alkaline hydrolysis. The RArnacnacH proligands can be converted to their alkali metal complexes with common methods and we have found that deprotonation of iPrDipnacnacH is significantly more sluggish than that of related β-diketimines with smaller backbone alkyl groups. The basicity of the RArnacnac- anions can play a role in the success of their salt metathesis chemistry and we have prepared and structurally characterised the EtDipnacnac-derived silicon(II) compounds (EtDipnacnac)SiBr and (EtDipnacnac')Si, where EtDipnacnac' is the deprotonated variant MeCHC(NDip)CHC(NDip)Et.
Collapse
Affiliation(s)
- Connor Bourne
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Huanhuan Dong
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Katharine McKain
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Lena C Mayer
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Aidan P McKay
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - David B Cordes
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Alexandra M Z Slawin
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Andreas Stasch
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| |
Collapse
|
14
|
Hendi Z, Pandey MK, Rachuy K, Singh MK, Herbst-Irmer R, Stalke D, Roesky HW. Synthesis, Reactivity, and Complexation with Fe(0) of a Tight-bite Bis(N-heterocyclic silylene). Chemistry 2024; 30:e202400389. [PMID: 38494463 DOI: 10.1002/chem.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
The synthesis, reactivity, and complexation with Fe(0) precursor of a tight-bite bis(N-heterocyclic silylene) (bis(NHSi)) ligand 1 are reported. The reaction of 1 with p-toluidine led to the activation of both N-H bonds across Si(II) atoms to afford a four-membered heterocyclic cyclodisilazane 2, with hydride substituents attached to five-coordinate Si atoms. A 1 : 2 reaction of 1 with Fe(CO)5 led to an intriguing dinuclear complex 3 featuring a five-membered (N-Si-Fe-Fe-Si) ring with a Fe-Fe bond distance of 2.6892(13) Å. All compounds (1-3) were thoroughly characterized by various spectroscopic methods and X-ray diffraction studies conclusively established their molecular structures. DFT calculations were carried out to shed light on bonding and energetic aspects in 1-3.
Collapse
Affiliation(s)
- Zohreh Hendi
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
| | - Madhusudan K Pandey
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
| | - Katharina Rachuy
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
| | - Mukesh K Singh
- School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
| |
Collapse
|
15
|
Tran PM, Wang Y, Lahm ME, Wei P, Schaefer HF, Robinson GH. Unusual nucleophilic reactivity of a dithiolene-based N-heterocyclic silane. Dalton Trans 2024; 53:6178-6183. [PMID: 38506299 DOI: 10.1039/d3dt03843b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
While the dithiolene-based N-heterocyclic silane (4) reacts with two equivalents of BX3 (X = Br, I) to give zwitterionic Lewis adducts 5 and 8, respectively, the parallel reaction of 4 with BCl3 results in 10, a dithiolene-substituted N-heterocyclic silane, via the Si-S bond cleavage. Unlike 5, the labile 8 may be readily converted to 9via BI3-mediated cleavage of the Si-N bond. The formation of 5 and 8 confirms that 4 uniquely possesses dual nucleophilic sites: (a) the terminal sulphur atom of the dithiolene moiety; and (b) the backbone carbon of the N-heterocyclic silane unit.
Collapse
Affiliation(s)
- Phuong M Tran
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| | - Yuzhong Wang
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| | - Mitchell E Lahm
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| | - Pingrong Wei
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| | - Henry F Schaefer
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| | - Gregory H Robinson
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| |
Collapse
|
16
|
Benzan Lantigua PA, Lutz M, Moret ME. Polar X-H Bond (X=O, S, N) Activation at a Cage Silanide. Angew Chem Int Ed Engl 2024; 63:e202319899. [PMID: 38226565 DOI: 10.1002/anie.202319899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Low-valent silicon compounds such as neutral silylenes display versatile reactivity for the activation of small molecules. In contrast, their anionic congeners silanides ([R3 Si- ]) have primarily been investigated for their nucleophilic reactivity. Here we show that incorporating a silanide center in a bicyclic cage structure allows for formal oxidative addition of polar element-hydrogen bonds (RX-H, R=aromatic residue, X=O, S, NH). The resulting hydrosilicates were isolated and characterized structurally and spectroscopically. Density Functional Theory (DFT) calculations and experimental observations support an ionic mechanism for RX-H bond activation. Finally, the reactivity of the RS-H bond adduct was further investigated, revealing that it behaves as a Lewis pair upon facile heterolytic cleavage of the Si-S bond.
Collapse
Affiliation(s)
- Pamela Adienes Benzan Lantigua
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Marc-Etienne Moret
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
17
|
Kushvaha SK, Kallenbach P, Gorantla SMNVT, Herbst-Irmer R, Stalke D, Roesky HW. Preparation of a Compound with a Si II -Si IV -Si II Bonding Arrangement. Chemistry 2024; 30:e202303113. [PMID: 37933699 DOI: 10.1002/chem.202303113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Herein, we report the synthesis of a rare bis-silylene, 1, in which two SiII atoms are bridged by a SiIV atom. Compound 1 contains an unusual SiII -SiIV -SiII bonding arrangement with SiII -SiIV bond distances of 2.4212(8) and 2.4157(7) Å. Treatment of 1 with Fe(CO)5 afforded a dinuclear Fe0 complex 2 with two unusually long Si-Si bonds (2.4515(8) and 2.4488(10) Å). We have also carried out a detailed computational study to understand the nature of the Si-Si bonds in these compounds. Natural bond orbital (NBO) and energy decomposition analysis-natural orbital for chemical valence (EDA-NOCV) analyses reveal that the Si-Si bonds in 1 and 2 are of an electron-sharing nature.
Collapse
Affiliation(s)
| | - Paula Kallenbach
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany
| | - Sai Manoj N V T Gorantla
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany
| |
Collapse
|
18
|
Alonso C, Cabeza JA, García-Álvarez P, García-Soriano R, Pérez-Carreño E. Amidinatotetrylenes Donor Functionalized on Both N Atoms: Structures and Coordination Chemistry. Inorg Chem 2024; 63:3118-3128. [PMID: 38289155 PMCID: PMC10865366 DOI: 10.1021/acs.inorgchem.3c04135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
E(hmds)(bqfam) (E = Ge (1a), Sn (1b); hmds = N(SiMe3)2, bqfam = N,N'-bis(quinol-8-yl)formamidinate), which are amidinatotetrylenes equipped with quinol-8-yl fragments on the amidinate N atoms, have been synthesized from the formamidine Hbqfam and Ge(hmds)2 or SnCl(hmds). Both 1a and 1b are fluxional in solution at room temperature, as the E atom oscillates from being attached to the two amidinate N atoms to being chelated by an amidinate N atom and its closest quinolyl N atom (both situations are similarly stable according to density functional theory calculations). The hmds group of 1a and 1b is still reactive and the deprotonation of another equivalent of Hbqfam can be achieved, allowing the formation of the homoleptic derivatives E(bqfam)2 (E = Ge, Sn). The reactions of 1a and 1b with [AuCl(tht)] (tht = tetrahydrothiophene), [PdCl2(MeCN)2], [PtCl2(cod)] (cod = cycloocta-1,5-diene), [Ru3(CO)12] and [Co2(CO)8] have been investigated. The gold(I) complexes [AuCl{κE-E(hmds)(bqfam)}] (E = Ge, Sn) have a monodentate κE-tetrylene ligand and display fluxional behavior in solution the same as that of 1a and 1b. However, the palladium(II) and platinum(II) complexes [MCl{κ3E,N,N'-ECl(hmds)(bqfam)}] (M = Pd, Pt; E = Ge, Sn) contain a κ3E,N,N'-chloridotetryl ligand that arises from the insertion of the tetrylene E atom into an M-Cl bond and the coordination of an amidinate N atom and its closest quinolyl N atom to the metal center. Finally, the binuclear ruthenium(0) and cobalt(0) complexes [Ru2{μE-κ3E,N,N'-E(hmds)(bqfam)}(CO)6] and [Co2{μE-κ3E,N,N'-E(hmds)(bqfam)}(μ-CO)(CO)4] (E = Ge, Sn) have a related κ3E,N,N'-tetrylene ligand that bridges two metal atoms through the E atom. For the κ3E,N,N'-metal complexes, the quinolyl fragment not attached to the metal is pendant in all the germanium compounds but, for the tin derivatives, is attached to (in the Pd and Pt complexes) or may interact with (in the Ru2 and Co2 complexes) the tin atom.
Collapse
Affiliation(s)
- Christian Alonso
- Departamento
de Química Orgánica e Inorgánica, Centro de Innovación
en Química Avanzada ORFEO−CINQA, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Javier A. Cabeza
- Departamento
de Química Orgánica e Inorgánica, Centro de Innovación
en Química Avanzada ORFEO−CINQA, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Pablo García-Álvarez
- Departamento
de Química Orgánica e Inorgánica, Centro de Innovación
en Química Avanzada ORFEO−CINQA, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Rubén García-Soriano
- Departamento
de Química Orgánica e Inorgánica, Centro de Innovación
en Química Avanzada ORFEO−CINQA, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Enrique Pérez-Carreño
- Departamento
de Química Física y Analítica, Universidad de Oviedo, E-33071 Oviedo, Spain
| |
Collapse
|
19
|
Guthardt R, Jones C. A bromo(boryloxy) silylene and its heavier analogues. Chem Commun (Camb) 2024; 60:1583-1586. [PMID: 38224168 DOI: 10.1039/d3cc05760g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
A N-heterocylic boryloxy ligand equipped with bulky diazaboryl N-substituents is used to synthesize divalent and dicoordinate group 14 compounds which represent the first examples of acyclic halo(boryloxy) tetrylenes. The bromo(boryloxy) silylene reacts swiftly with benzophenone to a siloxindane.
Collapse
|
20
|
Sorbelli D, Belpassi L, Belanzoni P. Cooperative small molecule activation by apolar and weakly polar bonds through the lens of a suitable computational protocol. Chem Commun (Camb) 2024; 60:1222-1238. [PMID: 38126734 DOI: 10.1039/d3cc05614g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Small molecule activation processes are central in chemical research and cooperativity is a valuable tool for the fine-tuning of the efficiency of these reactions. In this contribution, we discuss recent and remarkable examples in which activation processes are mediated by bimetallic compounds featuring apolar or weakly polar metal-metal bonds. Relevant experimental breakthroughs are thoroughly analyzed from a computational perspective. We highlight how the rational and non-trivial application of selected computational approaches not only allows rationalization of the observed reactivities but also inferring of general principles applicable to activation processes, such as the breakdown of the structure-reactivity relationship in carbon dioxide activation in a cooperative framework. We finally provide a simple yet unbiased computational protocol to study these reactions, which can support experimental advances aimed at expanding the range of applications of apolar and weakly polar bonds as catalysts for small molecule activation.
Collapse
Affiliation(s)
- Diego Sorbelli
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA.
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto, 8 - 06123, Perugia, Italy.
| | - Paola Belanzoni
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto, 8 - 06123, Perugia, Italy.
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8 - 06123, Perugia, Italy.
| |
Collapse
|
21
|
Groll L, Kelly JA, Inoue S. Reactivity of NHI-Stabilized Heavier Tetrylenes towards CO 2 and N 2 O. Chem Asian J 2024; 19:e202300941. [PMID: 37996985 DOI: 10.1002/asia.202300941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
A heteroleptic amino(imino)stannylene (TMS2 N)(It BuN)Sn: (TMS=trimethylsilyl, It Bu=C[(N-t Bu)CH]2 ) as well as two homoleptic NHI-stabilized tetrylenes, (It BuN)2 E: (NHI=N-heterocyclic imine, E=Ge, Sn) are presented. VT-NMR investigations of (It BuN)2 Sn: (2) reveal an equilibrium between the monomeric stannylene at room temperature and the dimeric form at -80 °C as well as in the solid state. Upon reaction of the homoleptic tetrylenes with CO2 , both compounds insert two equivalents of CO2 , however differing bonding modes can be observed. (It BuN)2 Sn: (2) inserts one equivalent of CO2 into each Sn-N bond, giving carbamato groups coordinated κ2 O,O' to the metal center. With (It BuN)2 Ge: (3), the Ge-N bonds stay intact upon activation, being bridged by one molecule of CO2 respectively, forming 4-membered rings. Furthermore, the reactivity of 2 towards N2 O was investigated, resulting in partial oxidation to form stannylene dimer [((It BuN)3 SnO)(It BuN)Sn:]2 (6).
Collapse
Affiliation(s)
- Lisa Groll
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - John A Kelly
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| |
Collapse
|
22
|
Bücker A, Wölper C, Siera H, Haberhauer G, Schulz S. Multiple ethylene activation by heteroleptic L(Cl)Ga-substituted germylenes. Dalton Trans 2024; 53:640-646. [PMID: 38073505 DOI: 10.1039/d3dt03944g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Ethylene insertion into the Ga-Ge bond of the L(Cl)Ga-substituted germylene LGa(μ-Cl)GeDMP 1 (L = HC(C(Me)NAr)2, Ar = 2,6-iPr2C6H3; DMP = 2,6-Mes2C6H3, Mes = 2,4,6-Me3C6H2) at ambient temperature is followed by dimerization of the as-formed germylene to give the digermene 3, which further reacted with ethylene in a [2 + 2] cycloaddition to give the 1,2-digermacyclobutane 4. In marked contrast, the amino-substituted germylene L(Cl)GaGeN(SiMe3)Ar 2 reacted directly to the 1,2-digermacyclobutane 5. Quantum chemical calculations confirmed the assumed reaction mechanism, hence demonstrating the crucial role of the substituent on the reaction mechanism.
Collapse
Affiliation(s)
- Anna Bücker
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Hannah Siera
- Institute of Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
23
|
Chen J, Wang J, Wang X, Wei D, Duan Z. π-Electron Fluctuation-Induced P + /C - Ambiphilic Interaction for Intramolecular C Ar -H Bond Activation. Chemistry 2023:e202302889. [PMID: 37974486 DOI: 10.1002/chem.202302889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
Herein, we describe how computational mechanistic understanding has led directly to the discovery of new 2H-phosphindole for C-CAr bond activation and dearomatization reaction. We uncover an unexpected intramolecular C-H bond activation with a 2H-phosphindole derivative. This new intriguing experimental observation and further theoretical studies led to an extension of the reaction mechanism with 2H-phosphindole. Through DFT calculations, we confirm that within a five-membered ring, the polarizable PC3 unit orchestrates the formation of an electrophilic phosphorus atom (P+ ) and a nucleophilic carbon atom (C- ). This kinetically accessible ambiphilic phosphorus/carbon couple is spatially separated by geometric constraints, and their reactivity is modulated through structural resonance.
Collapse
Affiliation(s)
- Jianzhou Chen
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Junjian Wang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Xinghua Wang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Donghui Wei
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| |
Collapse
|
24
|
Cabeza JA, Reynes JF, García F, García-Álvarez P, García-Soriano R. Fast and scalable solvent-free access to Lappert's heavier tetrylenes E{N(SiMe 3) 2} 2 (E = Ge, Sn, Pb) and ECl{N(SiMe 3) 2} (E = Ge, Sn). Chem Sci 2023; 14:12477-12483. [PMID: 38020393 PMCID: PMC10646885 DOI: 10.1039/d3sc02709k] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/03/2023] [Accepted: 09/24/2023] [Indexed: 12/01/2023] Open
Abstract
Iconic Lappert's heavier tetrylenes E{N(SiMe3)2}2 (E = Ge (1), Sn (2), Pb (3)) have been efficiently prepared from GeCl2·(1,4-dioxane), SnCl2 or PbCl2 and Li{N(SiMe3)2} via a completely solvent-free one-pot mechanochemical route followed by sublimation. This fast, high-yielding and scalable approach (2 has been prepared in a 100 mmol scale), which involves a small environmental footprint, represents a remarkable improvement over any synthetic route reported over the last five decades, being a so far rare example of the use of mechanochemistry in the realm of main group chemistry. This solventless route has been successfully extended to the preparation of other heavier tetrylenes, such as ECl{N(SiMe3)2} (E = Ge (4), Sn (5)).
Collapse
Affiliation(s)
- Javier A Cabeza
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| | - Javier F Reynes
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Pablo García-Álvarez
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| | - Rubén García-Soriano
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| |
Collapse
|
25
|
Dabringhaus P, Heizmann T, Krossing I. Activation of the Ga I Cation for Bond Activation: from Oxidative Additions into C-Cl and H-P Bonds to Reversible Insertion into P 4. Chemistry 2023; 29:e202302212. [PMID: 37583347 DOI: 10.1002/chem.202302212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Although the discovery of the GaI complex salt [Ga(PhF)2-3 ][Al(ORF )4 ] (RF =C(CF3 )3 , PhF=C6 H5 F) invoked the preparation of a diverse library of cationic Ga(I) coordination complexes and clusters, studies on small molecule activation with low-valent GaI cations are scarce. Herein, a first experimental study on the reactivity of a monomeric Ga(I) cation activated with a pyridine-diimine pincer ligand (in [Ga(PDIdipp )][Al(ORF )4 ]) towards small-molecules is reported. First controlled oxidative additions of the GaI cation into C-Cl, H-P and P-P bonds are presented. Moreover, the [4+1]cycloaddition to butadienes was achieved. Intriguingly, the isolated, blue insertion product into the P-P bond of P4 allows for the quantitative release of the P4 molecule upon reaction with AlEt3 and butadienes. Reversible P4 insertion of main-group metals has previously been reported for Ge and Sn, respectively. The experimental study is supported by high-level computational analysis of the in-part reversible oxidative additions at the DLPNO-CCSD(T)/def2-TZVPP//PBEh-3c/def2-mSVP level of theory with COSMO-RS solvation in 1,2-difluorobenzene.
Collapse
Affiliation(s)
- Philipp Dabringhaus
- Albert-Ludwigs-Universität Freiburg, Institute for Inorganic and Analytical Chemistry, Freiburg Materials Research Center FMF, Albertstrasse 21, 79104, Freiburg i. Br., Germany
| | - Tim Heizmann
- Albert-Ludwigs-Universität Freiburg, Institute for Inorganic and Analytical Chemistry, Freiburg Materials Research Center FMF, Albertstrasse 21, 79104, Freiburg i. Br., Germany
| | - Ingo Krossing
- Albert-Ludwigs-Universität Freiburg, Institute for Inorganic and Analytical Chemistry, Freiburg Materials Research Center FMF, Albertstrasse 21, 79104, Freiburg i. Br., Germany
| |
Collapse
|
26
|
Guthardt R, Jacob HL, Bruhn C, Siemeling U. A complete series of N-heterocyclic tetrylenes (Si-Pb) with a 1,1'-ferrocenediyl backbone enabled by 1,3,2-diazaborolyl N-substituents. Dalton Trans 2023; 52:14380-14389. [PMID: 37781741 DOI: 10.1039/d3dt02684a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The use of bulky 1,3,2-diazaborolyl N-substituents has allowed the synthesis of the complete series of ferrocene-based N-heterocyclic tetrylenes fc[(N{B})2E] (fc = 1,1'-ferrocenediyl, {B} = (HCNC6H3-2,6-iPr2)2B, E = Si-Pb). The silylene fc[(N{B})2Si] is inert towards NH3, CO2 or N2O under ambient conditions and thus significantly less reactive than the N-aryl homologue fc[(NC6H3-2,6-iPr2)2Si]. In accord with its higher reactivity, computational results indicate a more pronounced ambiphilicity of fc[(NC6H3-2,6-iPr2)2Si]. Our computational investigation of the model compound fc[(NBMe2)2Si] suggests that silylenes of this type may be superior to fc[(NC6H3-2,6-iPr2)2Si] in terms of ambiphilicity.
Collapse
Affiliation(s)
- Robin Guthardt
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Hannes L Jacob
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Clemens Bruhn
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Ulrich Siemeling
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| |
Collapse
|
27
|
Zaitsev KV, Trubachev AD, Poleshchuk OK. Germanium Complexes with ONO Tridentate Ligands: O-H Bond Activation Control According to DFT Calculations. Int J Mol Sci 2023; 24:10218. [PMID: 37373364 DOI: 10.3390/ijms241210218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Polydentate ligands are used for thermodynamic stabilization of tetrylenes-low-valent derivatives of Group 14 elements (E = Si, Ge, Sn, Pb). This work shows by DFT calculations how the structure (the presence or absence of substituents) and type (alcoholic, Alk, or phenolic, Ar) of tridentate ligands 2,6-pyridinobis(1,2-ethanols) [AlkONOR]H2 and 2,6-pyridinobis(1,2-phenols) [ArONOR]H2 (R = H, Me) may affect the reactivity or stabilization of tetrylene, indicating the unprecedented behavior of Main Group elements. This enables the unique control of the type of the occurring reaction. We found that unhindered [ONOH]H2 ligands predominantly led to hypercoordinated bis-liganded {[ONOH]}2Ge complexes, where an E(+2) intermediate was inserted into the ArO-H bond with subsequent H2 evolution. In contrast, substituted [ONOMe]H2 ligands gave [ONOMe]Ge: germylenes, which may be regarded as kinetic stabilized products; their transformation into E(+4) species is also thermodynamically favorable. The latter reaction is more probable for phenolic [ArONO]H2 ligands than for alcoholic [AlkONO]H2. The thermodynamics and possible intermediates of the reactions were also investigated.
Collapse
Affiliation(s)
- Kirill V Zaitsev
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskye Gory 1, 3, 119991 Moscow, Russia
| | - Andrey D Trubachev
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskye Gory 1, 3, 119991 Moscow, Russia
| | - Oleg Kh Poleshchuk
- Faculty of Chemistry, National Research Tomsk State University, Lenin Av., 36, 634050 Tomsk, Russia
- Department of Chemistry, Tomsk State Pedagogical University, Kievskaya Str., 60, 634061 Tomsk, Russia
| |
Collapse
|
28
|
Zhu H, Hanusch F, Inoue S. Facile Bond Activation of Small Molecules by an Acyclic Imino(silyl)silylene. Isr J Chem 2023. [DOI: 10.1002/ijch.202300012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Huaiyuan Zhu
- School of Natural Sciences Department of Chemistry Catalysis Research Center and Institute of Silicon Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Franziska Hanusch
- School of Natural Sciences Department of Chemistry Catalysis Research Center and Institute of Silicon Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Shigeyoshi Inoue
- School of Natural Sciences Department of Chemistry Catalysis Research Center and Institute of Silicon Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| |
Collapse
|
29
|
Yanagisawa D, Ishida S, Iwamoto T. Silacyclopropenylsilylene-NHC Complex: Synthesis by (1+2) Retro-cycloaddition, Dynamic Behavior in Solution, and Ring-expansion Reaction. CHEM LETT 2023. [DOI: 10.1246/cl.220528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Daichi Yanagisawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
30
|
Zhang Y, Wu L, Wang H. Application of N-heterocyclic silylenes in low-valent group 13, 14 and 15 chemistry. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Zhu H, Kostenko A, Franz D, Hanusch F, Inoue S. Room Temperature Intermolecular Dearomatization of Arenes by an Acyclic Iminosilylene. J Am Chem Soc 2023; 145:1011-1021. [PMID: 36597967 DOI: 10.1021/jacs.2c10467] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel nontransient acyclic iminosilylene (1), bearing a bulky super silyl group (-SitBu3) and N-heterocyclic imine ligand with a methylated backbone, was prepared and isolated. The methylated backbone is the feature of 1 that distinguishes it from the previously reported nonisolable iminosilylenes, as it prevents the intramolecular silylene center insertion into an aromatic C-C bond of an aryl substituent. Instead, 1 exhibits an intermolecular Büchner-ring-expansion-type reactivity; the silylene is capable of dearomatization of benzene and its derivatives, giving the corresponding silicon analogs of cycloheptatrienes, i.e. silepins, featuring seven-membered SiC6 rings with nearly planar geometry. The ring expansion reactions of 1 with benzene and 1,4-bis(trifluoromethyl)benzene are reversible. Similar reactions of 1 with N-heteroarenes (pyridine and DMAP) proceed more rapidly and irreversibly forming the corresponding azasilepins, also with nearly planar seven-membered SiNC5 rings. DFT calculations reveal an ambiphilic nature of 1 that allows the intermolecular aromatic C-C bond insertion to occur. Additional computational studies, which elucidate the inherent reactivity of 1, the role of the substituent effect, and reaction mechanisms behind the ring expansion transformations, are presented.
Collapse
Affiliation(s)
- Huaiyuan Zhu
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Arseni Kostenko
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Daniel Franz
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Franziska Hanusch
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| |
Collapse
|
32
|
Omaña AA, Frenette BL, Dornsiepen E, Kobayashi R, Ferguson MJ, Iwamoto T, Rivard E. Frustrated Lewis pair-ligated tetrelenes. Dalton Trans 2023; 52:774-786. [PMID: 36594250 DOI: 10.1039/d2dt03807b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The reactivity of [PB{SiX2}] (X = Cl, Br; PB = 1,2-iPr2(C6H4)BCy2; E = Si, Ge) adducts is described, with an initial focus on reduction attempts to access [PB{E}]x species; however, in all cases only free PB ligand was formed as the soluble product. Moreover, computations were performed to evaluate the energy penalty associated with EX2 dissociation from the PB chelates. Moving up the periodic table, the formal methylene adduct [PB{CH2}] was isolated and its reactivity was compared with its heavier element congeners of [PB{EH2}]. We also introduce new phosphine-borane frustrated Lewis pair (FLP) chelates and explore preliminary coordination chemistry with these ligands.
Collapse
Affiliation(s)
- Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada.
| | - Brandon L Frenette
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada.
| | - Eike Dornsiepen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada.
| | - Ryo Kobayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada.
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
33
|
Eisner T, Kostenko A, Hanusch F, Inoue S. Room-Temperature-Observable Interconversion Between Si(IV) and Si(II) via Reversible Intramolecular Insertion Into an Aromatic C-C Bond. Chemistry 2022; 28:e202202330. [PMID: 36098491 PMCID: PMC10092829 DOI: 10.1002/chem.202202330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 12/14/2022]
Abstract
An easily isolable silacycloheptatriene (silepin) 1 b was synthesized from the reaction of a N-heterocyclic imino (IPrN) substituted tribromosilane IPrNSiBr3 with the sterically congested bis(trimethylsilyl)triisopropylsilyl silanide KSi(TMS)2 Si(i Pr)3 (BTTPS). In solution, the Si(IV) silepin 1 b is in a thermodynamic equilibrium with the acyclic Si(II) silylene 1 a. The relative concentration of the Si(II) or Si(IV) isomers can be controlled by temperature variation and observed by variable temperature NMR and UV/Vis spectroscopy. DFT calculations show a small reaction barrier for the Si(II)⇌Si(IV) interconversion and a small energy gap between the Si(II) and Si(IV) species. The reactivity of 1 a/b is demonstrated on a variety of small molecules.
Collapse
Affiliation(s)
- Teresa Eisner
- School of Natural Sciences, Department of Chemistry WACKER-Institute of Silicon Chemistry and Catalysis Research Centre Technical University of Munich, Lichtenbergstraße 4, 85748, Garching bei München, Germany
| | - Arseni Kostenko
- School of Natural Sciences, Department of Chemistry WACKER-Institute of Silicon Chemistry and Catalysis Research Centre Technical University of Munich, Lichtenbergstraße 4, 85748, Garching bei München, Germany
| | - Franziska Hanusch
- School of Natural Sciences, Department of Chemistry WACKER-Institute of Silicon Chemistry and Catalysis Research Centre Technical University of Munich, Lichtenbergstraße 4, 85748, Garching bei München, Germany
| | - Shigeyoshi Inoue
- School of Natural Sciences, Department of Chemistry WACKER-Institute of Silicon Chemistry and Catalysis Research Centre Technical University of Munich, Lichtenbergstraße 4, 85748, Garching bei München, Germany
| |
Collapse
|
34
|
Saurwein A, Eisner T, Inoue S, Rieger B. Steric and Electronic Properties of Phosphinimide-Based Silylenes─The Influence of the Phosphine Moiety. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andreas Saurwein
- WACKER-Chair of Macromolecular Chemistry, Technical University of Munich, 85748 Garching, Germany
- WACKER-Institute of Silicon Chemistry, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Teresa Eisner
- WACKER-Institute of Silicon Chemistry, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Shigeyoshi Inoue
- WACKER-Institute of Silicon Chemistry, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
35
|
Sun X, Hinz A, Kucher H, Gamer MT, Roesky PW. Stereoselective Activation of Small Molecules by a Stable Chiral Silene. Chemistry 2022; 28:e202201963. [PMID: 35762907 DOI: 10.1002/chem.202201963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 01/07/2023]
Abstract
The reaction of the dilithium salt of the enantiopure (S)-BINOL (1,1'-bi-2-naphthol) with two equivalents of the amidinate-stabilized chlorosilylene [LPh SiCl] (LPh =PhC(NtBu)2 ) led to the formation of the first example of a chiral cyclic silene species comprising an (S)-BINOL ligand. The reactivity of the Si=C bond was investigated by reaction with elemental sulfur, CO2 and HCl. The reaction with S8 led to a Si=C bond cleavage and concomitantly to a ring-opened product with imine and silanethione functional groups. The reaction with CO2 resulted in the cleavage of the CO2 molecule into a carbonyl group and an isolated O atom, while a new stereocenter is formed in a highly selective manner. According to DFT calculations, the [2+2] cycloaddition product is the key intermediate. Further reactivity studies of the chiral cyclic silene with HCl resulted in a stereoselective addition to the Si=C bond, while the fully selective formation of two stereocenters was achieved. The quantitative stereoselective addition of CO2 and HCl to a Si=C bond is unprecedented.
Collapse
Affiliation(s)
- Xiaofei Sun
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Alexander Hinz
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Hannes Kucher
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Michael T Gamer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| |
Collapse
|
36
|
Ghosh B, Phukan AK. Unravelling the Potential of Ylides in Stabilizing Low-Valent Group 13 Compounds: Theoretical Predictions of Stable, Five-Membered Group 13 (Aluminum and Gallium) Carbenoids Capable of Small-Molecule Activation. Inorg Chem 2022; 61:14606-14615. [PMID: 36059112 DOI: 10.1021/acs.inorgchem.2c01630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Computational investigations provide evidence toward the remarkable ability of strongly electron-donating ylidic functionalities in stabilizing singlet group 13 carbenoids with promising ligand properties. All of the proposed carbenoids are found to be considerably nucleophilic and possess significant singlet-triplet energy separation values. The calculated activation barriers and reaction free energies obtained for the cleavage of different enthalpically strong bonds by these carbenoids are found to be either comparable to or lower than those of the experimentally evaluated aluminum and gallium carbenoids, thereby indicating their potential in small-molecule activation.
Collapse
Affiliation(s)
- Bijoy Ghosh
- Department of Chemical Sciences, Tezpur University, Napam 784028, Assam, India
| | - Ashwini K Phukan
- Department of Chemical Sciences, Tezpur University, Napam 784028, Assam, India
| |
Collapse
|
37
|
Wang Y, Tran PM, Lahm ME, Xie Y, Wei P, Adams ER, Glushka JN, Ren Z, Popik VV, Schaefer HF, Robinson GH. Activation of Ammonia by a Carbene-Stabilized Dithiolene Zwitterion. J Am Chem Soc 2022; 144:16325-16331. [PMID: 36037279 DOI: 10.1021/jacs.2c07920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A carbene-stabilized dithiolene zwitterion (3) activates ammonia, affording 4• and 5, through both single-electron transfer (SET) and hydrogen atom transfer (HAT). Reaction products were characterized spectroscopically and by single-crystal X-ray diffraction. The mechanism of the formation of 4• and 5 was probed by experimental and computational methods. This discovery is the first example of metal-free ammonia activation via HAT.
Collapse
Affiliation(s)
- Yuzhong Wang
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Phuong M Tran
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Mitchell E Lahm
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Yaoming Xie
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Pingrong Wei
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Earle R Adams
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - John N Glushka
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Zichun Ren
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Vladimir V Popik
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Henry F Schaefer
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Gregory H Robinson
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| |
Collapse
|
38
|
Sarkar D, Groll L, Munz D, Hanusch F, Inoue S. Ligand Assisted CO2 Sequestration and Catalytic Valorization by an NHI‐Stabilized Stannylene. ChemCatChem 2022. [DOI: 10.1002/cctc.202201048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Debotra Sarkar
- Technical University of Munich: Technische Universitat Munchen Department of Chemistry GERMANY
| | - Lisa Groll
- Technical University Munich: Technische Universitat Munchen Department of Chemistry GERMANY
| | - Dominik Munz
- Saarland University - Campus Saarbrucken: Universitat des Saarlandes Inorganic Chemistry GERMANY
| | - Franziska Hanusch
- Technical University of Munich: Technische Universitat Munchen Department of Chemistry GERMANY
| | - Shigeyoshi Inoue
- Technische Universität München Fakultät für Chemie Lichtenbergstraße 485748 Garching 85748 Garching bei München GERMANY
| |
Collapse
|
39
|
Akhtar R, Kaulage SH, Sangole MP, Tothadi S, Parvathy P, Parameswaran P, Singh K, Khan S. First-Row Transition Metal Complexes of a Phosphine-Silylene-Based Hybrid Ligand. Inorg Chem 2022; 61:13330-13341. [PMID: 35969438 DOI: 10.1021/acs.inorgchem.2c01233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have prepared two new silylene-phosphine-based hybrid ligands Si{N(R)C6H4(PPh2)}{PhC(NtBu)2} [R = TMS {trimethylsilyl} (1) and TBDMS {tert-butyldimethylsilyl} (2)], which possess two donor sites. Furthermore, the treatment of the bidentate ligand 1 with base metal halides {FeBr2, CoBr2, NiCl2·dme [nickel chloride(II) ethylene glycol dimethyl ether]} and 2 with NiBr2·dme [nickel bromide(II) ethylene glycol dimethyl ether] afforded four-coordinate six-membered metal complexes 3-6, respectively, which feature coordination from both Si(II) and P(III) sites. Subsequently, complexes 3 [(FeBr2)Si{N(SiMe3)C6H4(PPh2)}{PhC(NtBu)2}], 4 [(CoBr2)Si{N(SiMe3)C6H4(PPh2)}{PhC(NtBu)2}], 5 [(NiCl2)Si{N(SiMe3)C6H4(PPh2)}{PhC(NtBu)2}], and 6 [(NiBr2)Si{N(SitBuMe2)C6H4(PPh2)}{PhC(NtBu)2}] are studied for their redox and magnetic properties with the help of UV-vis spectroscopy, cyclic voltammetry, SQUID magnetometry, and theoretical calculations. Complexes 3-6 were found to display a paramagnetic behavior. All the compounds are well established by single-crystal X-ray diffraction studies.
Collapse
Affiliation(s)
- Ruksana Akhtar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sandeep H Kaulage
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Mayur P Sangole
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Srinu Tothadi
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijub Badheka Marg, Bhavnagar 364002, India
| | - Parameswaran Parvathy
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Pattiyil Parameswaran
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Kirandeep Singh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
40
|
Inoue S, Melen RL, Harder S. Main Group Catalysis. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shigeyoshi Inoue
- Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Rebecca L. Melen
- Cardiff Catalysis Institute, School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Wales UK
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry Alexander-Friedrich-University Erlangen-Nürnberg Egerlandstrasse 1 91058 Erlangen Germany
| |
Collapse
|
41
|
Banerjee S, Vanka K. Computational insights into hydroboration with acyclic α-Borylamido-germylene and stannylene catalysts: Cooperative dual catalysis the key to system efficiency. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Synthesis of an N‐Heterocylic Boryl‐Stabilized Disilyne and Its Application to the Activation of Dihydrogen and C−H Bonds. Angew Chem Int Ed Engl 2022; 61:e202205785. [DOI: 10.1002/anie.202205785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/07/2022]
|
43
|
Schoening J, Gehlhaar A, Wölper C, Schulz S. Selective [2+1+1] Fragmentation of P 4 by heteroleptic Metallasilylenes. Chemistry 2022; 28:e202201031. [PMID: 35638137 PMCID: PMC9400957 DOI: 10.1002/chem.202201031] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/30/2022]
Abstract
Small-molecule activation by low-valent main-group element compounds is of general interest. We here report the synthesis and characterization (1 H, 13 C, 29 Si NMR, IR, sc-XRD) of heteroleptic metallasilylenes L1 (Cl)MSiL2 (M=Al 1, Ga 2, L1 =HC[C(Me)NDipp]2 , Dipp=2,6-i Pr2 C6 H3 ; L2 =PhC(Nt Bu)2 ). Their electronic nature was analyzed by quantum chemical computations, while their promising potential in small-molecule activation was demonstrated in reactions with P4 , which occurred with unprecedented [2+1+1] fragmentation of the P4 tetrahedron and formation of L1 (Cl)MPSi(L2 )PPSi(L2 )PM(Cl)L1 (M=Al 3, Ga 4).
Collapse
Affiliation(s)
- Juliane Schoening
- Institute for Inorganic Chemistry and Center forNanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstrasse 5–745117EssenGermany
| | - Alexander Gehlhaar
- Institute for Inorganic Chemistry and Center forNanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstrasse 5–745117EssenGermany
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center forNanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstrasse 5–745117EssenGermany
| | - Stephan Schulz
- Institute for Inorganic Chemistry and Center forNanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstrasse 5–745117EssenGermany
| |
Collapse
|
44
|
Saurwein A, Nobis M, Inoue S, Rieger B. Synthesis of a Triphenylphosphinimide-Substituted Silirane as a "Masked" Acyclic Silylene. Inorg Chem 2022; 61:9983-9989. [PMID: 35736818 DOI: 10.1021/acs.inorgchem.2c00790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphinimides are long known as useful ligands in transition metal chemistry, but examples of these in low-valent silicon chemistry are rather rare. Hence, in this work, we report on the implementation of a triphenylphosphinimide moiety as a ligand of a novel silylene that is trapped as a silirane with cyclohexene. By performing activation reactions with B(p-Tol)3, HSiEt3, N2O, and NH3, we demonstrate that the silirane exhibits a silylene-like behavior, making it a "masked" silylene. Furthermore, we treated the silirane with ethylene, propylene, and trans-butene, which led to an olefin exchange. In the case of ethylene and propylene, an additional insertion of the olefin into the silicon-silicon bonds of the respective siliranes could be achieved. As the insertion of trans-butene was not feasible, we surmise that the scope of this reactivity is restricted by the steric demand of the olefin.
Collapse
Affiliation(s)
- Andreas Saurwein
- WACKER-Chair of Macromolecular Chemistry, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.,WACKER-Institute of Silicon Chemistry, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Matthias Nobis
- WACKER-Chair of Macromolecular Chemistry, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.,WACKER-Institute of Silicon Chemistry, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Shigeyoshi Inoue
- WACKER-Institute of Silicon Chemistry, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
45
|
Ding Y, Li Y, Zhang J, Cui C. Synthesis of an N‐Heterocylic Boryl‐Stabilized Disilyne and its Application to the Activation of Dihydrogen and C−H Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yazhou Ding
- Nankai University Institute of elemento-organic chemistry CHINA
| | - Yang Li
- Nankai University College of Chemistry Institute of elemento-organic chemistry CHINA
| | - Jianying Zhang
- Nankai University College of Chemistry Institute of elemento-organic chemistry CHINA
| | - Chunming Cui
- Nankai University Institute of Elemento-Organic Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
46
|
Garg P, Dange D, Jiang Y, Jones C. Facile activation of inert small molecules using a 1,2-disilylene. Dalton Trans 2022; 51:7838-7844. [PMID: 35536565 DOI: 10.1039/d2dt00721e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions of the known amidinate stabilised 1,2-disilylene, [{ArC(NDip)2}Si]21 (Dip = 2,6-diisopropylphenyl, Ar = 4-C6H4But) with a series of inert, unsaturated small molecule substrates have been carried out. Compound 1 reduces ButNC: to give the singlet biradicaloid 1,3-disilacyclobutanediyl [{ArC(NDip)2}Si(μ-CNBut)]23, which can be oxidised by 1,2-dibromoethane to give [{ArC(NDip)2}(Br)Si(μ-CNBut)]24. Disilylene 1 reduces two molecules of ethylene to give an unprecedented disilabicyclo[2.2.0]hexane, [{ArC(NDip)2}Si(μ-C2H4)]25. In contrast, only one molecule of ethylene inserts in the Ge-Ge bond of the digermylene analogue of 1, viz. [{ArC(NDip)2}Ge]26, leading to the formation of the bis(germylene), [{ArC(NDip)2}Ge]2(μ-C2H4) 7. Compound 1 reduces CO2, generating CO, and the oxo/carbonate-bridged disilicon(IV) system, {ArC(NDip)2}Si(μ-CO3)2(μ-O)Si{(NDip)2CAr} 10, while its reaction with N2O proceeds via generation of N2, and a hydrogen abstraction process, to give the oxo/hydroxy disilicon(IV) species, [{ArC(NDip)2}(HO)Si(μ-O)]211. This study highlights new small molecule activation chemistry for 1,2-disilylenes, which could lead to further adoption of compound 1 as a potent reducing reagent for the transformation of inert unsaturated molecules into value added products.
Collapse
Affiliation(s)
- Palak Garg
- School of Chemistry, PO Box 23, Monash University, VIC, 3800, Australia.
| | - Deepak Dange
- School of Chemistry, PO Box 23, Monash University, VIC, 3800, Australia.
| | - Yixiao Jiang
- School of Chemistry, PO Box 23, Monash University, VIC, 3800, Australia.
| | - Cameron Jones
- School of Chemistry, PO Box 23, Monash University, VIC, 3800, Australia.
| |
Collapse
|
47
|
Uchida K, Ishida S, Iwamoto T. Dearomative Cycloaddition of an Isolable Dialkylsilylene with Diaryl Ketones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kenya Uchida
- Tohoku University: Tohoku Daigaku Chemistry 6-3 Aramakiazaaoba, Aoba-ku 9808578 Sendai JAPAN
| | - Shintaro Ishida
- Tohoku University: Tohoku Daigaku Chemistry 6-3 Aramakiazaaoba, Aoba-ku 9808578 Sendai JAPAN
| | - Takeaki Iwamoto
- Tohoku University Department of Chemistry, Graduate School of Science 6-3 Aramaki-aza-aoba, Aoba-ku 980-8578 Sendai JAPAN
| |
Collapse
|
48
|
Demissie TB, Kessete JM. Mechanistic Studies of the Catalytic Reduction of CO 2 to CO: Efficient CO-Releasing Si- and Ge-Based Catalysts. ACS OMEGA 2022; 7:4694-4702. [PMID: 35155961 PMCID: PMC8829931 DOI: 10.1021/acsomega.1c07142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Besides its significant challenges, efficient catalytic conversion of CO2 to value-added chemicals is highly desired. Herein, we report efficient silicon- and germanium-based catalysts for CO2 activation and its reduction to CO studied using B3LYP-GD3/6-31++G(d,p)/tetrahydrofuran (THF) and M06-2X/6-311++g(d,p)/THF density functional theory methods. The catalysts were systematically designed based on the previously reported silicon- and germanium-based compounds. The germanium-based catalysts are reported for the first time in this study. The calculated transition state energy barriers (5.7-15.8 kcal/mol) indicate that all the catalysts can easily activate CO2. Among all the B3LYP-GD3-calculated transition-state energy barriers, the highest energy barrier found (27.2-28.3 kcal/mol) is for the protonation of the carboxylic acid group of the silacarboxylic and germacarboxylic acids. Once the silacarboxylic and germacarboxylic acids are protonated, the water molecule can easily dehydrate and leave the catalysts with CO. The electrochemical reduction of the M-CO (M = Si and Ge) complexes further enhances the complexes to easily release CO, with all transition state energy barriers being lower than 10 kcal/mol. The results show that both CO2 activation and its reduction to CO using the studied catalysts are thermodynamically and kinetically favorable. This work provides an important insight for CO2 activation and its reduction to CO using earth-abundant and nontoxic main group element-based catalysts.
Collapse
Affiliation(s)
- Taye B. Demissie
- Department
of Chemistry, University of Botswana, P. Bag 0074, Gaborone 0074, Botswana
| | - Jenbrie M. Kessete
- Department
of Chemistry, Addis Ababa University, Addis Ababa 1176, Ethiopia
| |
Collapse
|
49
|
Affiliation(s)
- Shiori Fujimori
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| |
Collapse
|
50
|
Luecke M, Giarrana L, Kostenko A, Gensch T, Yao S, Driess M. A Striking Mode of Activation of Carbon Disulfide with a Cooperative Bis(silylene). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marcel‐Philip Luecke
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 115, Sekr. C2 10623 Berlin Germany
| | - Luisa Giarrana
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 115, Sekr. C2 10623 Berlin Germany
| | - Arseni Kostenko
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 115, Sekr. C2 10623 Berlin Germany
| | - Tobias Gensch
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 115, Sekr. C2 10623 Berlin Germany
| | - Shenglai Yao
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 115, Sekr. C2 10623 Berlin Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 115, Sekr. C2 10623 Berlin Germany
| |
Collapse
|