1
|
Park S, Myeong IS, Ham WH. Recent advances in the total synthesis of polyhydroxylated alkaloids via chiral oxazines. Org Biomol Chem 2024; 22:894-926. [PMID: 38230703 DOI: 10.1039/d3ob01624b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
This review summarizes recently established methodologies developed for the enantioselective and diastereoselective synthesis of chiral 1,3-oxazines. These compounds are of interest as advanced synthetic intermediates in the total synthesis of structurally complex and biologically active polyhydroxylated alkaloids such as (+)-1-deoxynojirimycin, (-)-anisomycin, (+)-castanospermine, (+)-casuarine, (-)-conduramine F-1, (-)-sphingofungin B, Neu5Ac methyl ester, and other natural products. The devised synthetic approach aims to offer a direct, efficient, and adaptable method for obtaining both pure enantiomers and pure diastereomers. It revolves around utilizing chiral building blocks like syn,syn-, syn,syn,anti-, syn,anti-, syn,anti,syn-, anti,syn-, anti,syn,syn-, and anti,syn,anti-oxazines. By integrating oxazine chemistry with established and innovative transformations, this approach enabled the synthesis of 30 polyhydroxylated amines across various studies conducted between 2007 and 2022.
Collapse
Affiliation(s)
- Seokhwi Park
- YS Life Science Co., Ltd, 207, Sujeong-ro, Jangan-myeon, Hwaseong-si, Gyeonggi-do, 18581, Republic of Korea.
| | - In-Soo Myeong
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do, 38430, Republic of Korea.
| | - Won-Hun Ham
- YS Life Science Co., Ltd, 207, Sujeong-ro, Jangan-myeon, Hwaseong-si, Gyeonggi-do, 18581, Republic of Korea.
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
2
|
Dhara D, Dhara A, Bennett J, Murphy PV. Cyclisations and Strategies for Stereoselective Synthesis of Piperidine Iminosugars. CHEM REC 2021; 21:2958-2979. [PMID: 34713557 DOI: 10.1002/tcr.202100221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022]
Abstract
This personal account focuses on synthesis of polyhydroxylated piperidines, a subset of compounds within the iminosugar family. Cyclisations to form the piperidine ring include reductive amination, substitution via amines, iminium ions and cyclic nitrones, transamidification (N-acyl transfer), addition to alkenes, ring contraction and expansion, photoinduced electron transfer, multicomponent Ugi reaction and ring closing metathesis. Enantiomerically pure piperidines are obtained from chiral pool precursors (e. g. sugars, amino acids, Garner's aldehyde) or asymmetric reactions (e. g. epoxidation, dihydroxylation, aminohydroxylation, aldol, biotransformation). Our laboratory have contributed cascades based on reductive amination from glycosyl azide precursors as well as Huisgen azide-alkene cycloaddition. The latter's combination with allylic azide rearrangement has given substituted piperidines, including those with quaternary centres adjacent to nitrogen.
Collapse
Affiliation(s)
- Debashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.,Unité de Chimie des Biomolécules, UMR 3523 CNRS, Institut Pasteur, Université de Paris, 28 rue du Dr Roux, 75015, Paris, France
| | - Ashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Jack Bennett
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.,SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, NUI Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
3
|
Lumbroso A, Berthonneau C, Beaudet I, Quintard JP, Planchat A, García-Moreno MI, Ortiz Mellet C, Le Grognec E. A versatile stereocontrolled synthesis of 2-deoxyiminosugar C-glycosides and their evaluation as glycosidase inhibitors. Org Biomol Chem 2021; 19:1083-1099. [PMID: 33427829 DOI: 10.1039/d0ob02249g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A highly enantioselective synthesis of (R,S) or (S,S)-2,6-disubstituted dehydropiperidines has been previously achieved through Sn/Li transmetalation of the corresponding stannylated dehydropiperidines or of their precursors. Herein, we successively consider their Upjohn's syn dihydroxylation and their anti-dihydroxylation via an epoxidation reaction followed by epoxide opening reaction. The stereochemical course of these reactions was first reported including the use of appropriate protecting groups before considering the conversion of the obtained compounds into NH or NMe iminosugar hydrochlorides. A primary evaluation of the designed iminosugar C-glycosides as glycosidase inhibitors suggests candidates for the selective inhibition of α-galactosidase, amyloglycosidase and naringinase. Beyond the reported results, the method constitutes a highly modulable route for the synthesis of well stereodefined iminosugar C-glycosides, an advantage which might be used for the design of iminosugars to enhance their biological properties.
Collapse
|
4
|
Chatterjee S, Kuilya TK, Goswami RK. Studies Directed toward the Stereoselective Synthesis of Cytospolide E. ACS OMEGA 2018; 3:1041-1059. [PMID: 31457947 PMCID: PMC6641448 DOI: 10.1021/acsomega.7b01893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/15/2018] [Indexed: 06/10/2023]
Abstract
Our exhaustive effort toward the total synthesis of cytotoxic marine nonanolide cytospolide E has been detailed. To achieve this synthesis, we have explored both the ring-closing metathesis and lactonization-based macrocyclization strategies using a variety of precursors. Unfortunately, none of them provided the desired product. The ring-closing metathesis approach provided mainly the macrocycle with Z-olefin, whereas the macrolactonization strategy culminated in 8-epi-9-epi-cytospolide E following the regioselective formation of a 10-membered macrocycle over a 9-membered macrocycle.
Collapse
Affiliation(s)
- Shamba Chatterjee
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tapan Kumar Kuilya
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rajib Kumar Goswami
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
Kuilya TK, Das S, Saha D, Goswami RK. Studies toward the synthesis of strevertenes A and G: stereoselective construction of C1–C19segments of the molecules. Org Biomol Chem 2018; 16:7595-7608. [DOI: 10.1039/c8ob01754a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient route for the stereoselective synthesis of common C1–C19segment of strevertenes A and G has been developed.
Collapse
Affiliation(s)
- Tapan Kumar Kuilya
- Department of Organic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Subhendu Das
- Department of Organic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Dhiman Saha
- Department of Organic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Rajib Kumar Goswami
- Department of Organic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| |
Collapse
|
6
|
Lumbroso A, Coeffard V, Gatineau D, Stecko S, Beaudet I, Quintard JP, Le Grognec E. Stereoselective Synthesis of Stannylated Dehydropiperidines and Dehydroazepanes. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Alexandre Lumbroso
- Université de Nantes; CNRS; Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM); UMR CNRS 6230; UFR des Sciences et des Techniques; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Vincent Coeffard
- Université de Nantes; CNRS; Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM); UMR CNRS 6230; UFR des Sciences et des Techniques; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - David Gatineau
- Université de Nantes; CNRS; Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM); UMR CNRS 6230; UFR des Sciences et des Techniques; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Sebastian Stecko
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Isabelle Beaudet
- Université de Nantes; CNRS; Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM); UMR CNRS 6230; UFR des Sciences et des Techniques; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Jean-Paul Quintard
- Université de Nantes; CNRS; Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM); UMR CNRS 6230; UFR des Sciences et des Techniques; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Erwan Le Grognec
- Université de Nantes; CNRS; Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM); UMR CNRS 6230; UFR des Sciences et des Techniques; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| |
Collapse
|
7
|
Zamoner LOB, Aragão-Leoneti V, Mantoani SP, Rugen MD, Nepogodiev SA, Field RA, Carvalho I. CuAAC click chemistry with N-propargyl 1,5-dideoxy-1,5-imino-D-gulitol and N-propargyl 1,6-dideoxy-1,6-imino-D-mannitol provides access to triazole-linked piperidine and azepane pseudo-disaccharide iminosugars displaying glycosidase inhibitory properties. Carbohydr Res 2016; 429:29-37. [PMID: 27160849 DOI: 10.1016/j.carres.2016.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 11/20/2022]
Abstract
Protecting group-free synthesis of 1,2:5,6-di-anhydro-D-mannitol, followed by ring opening with propargylamine and subsequent ring closure produced a separable mix of piperidine N-propargyl 1,5-dideoxy-1,5-imino-D-gulitol and azepane N-propargyl 1,6-dideoxy-1,6-imino-D-mannitol. In O-acetylated form, these two building blocks were subjected to CuAAC click chemistry with a panel of three differently azide-substituted glucose building blocks, producing iminosugar pseudo-disaccharides in good yield. The overall panel of eight compounds, plus 1-deoxynojirimycin (DNJ) as a benchmark, was evaluated as prospective inhibitors of almond β-glucosidase, yeast α-glucosidase and barley β-amylase. The iminosugar pseudo-disaccharides showed no inhibitory activity against almond β-glucosidase, while the parent N-propargyl 1,5-dideoxy-1,5-imino-D-gulitol and N-propargyl 1,6-dideoxy-1,6-imino-D-mannitol likewise proved to be inactive against yeast α-glucosidase. Inhibitory activity could be reinstated in the former series by appropriate substitution on nitrogen. The greater activity of the piperidine could be rationalized based on docking studies. Further, potent inhibition of β-amylase was observed with compounds from both the piperidine and azepane series.
Collapse
Affiliation(s)
- Luís Otávio B Zamoner
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto 14040-930, Brazil
| | - Valquíria Aragão-Leoneti
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto 14040-930, Brazil
| | - Susimaire P Mantoani
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto 14040-930, Brazil
| | - Michael D Rugen
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sergey A Nepogodiev
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto 14040-930, Brazil.
| |
Collapse
|
8
|
Muniraju C, Rao MV, Rajender A, Rao BV. A common approach to the total synthesis of l-1-deoxyallonojirimycin, l-homo-1-deoxyazaallose and triacetyl derivative of 5-epi hyacinthacine A5. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Mailyan AK, Eickhoff JA, Minakova AS, Gu Z, Lu P, Zakarian A. Cutting-Edge and Time-Honored Strategies for Stereoselective Construction of C–N Bonds in Total Synthesis. Chem Rev 2016; 116:4441-557. [DOI: 10.1021/acs.chemrev.5b00712] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Artur K. Mailyan
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - John A. Eickhoff
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Anastasiia S. Minakova
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ping Lu
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Armen Zakarian
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
10
|
Deprés JP, Delair P, Poisson JF, Kanazawa A, Greene AE. Diverse Natural Products from Dichlorocyclobutanones: An Evolutionary Tale. Acc Chem Res 2016; 49:252-61. [PMID: 26807483 DOI: 10.1021/acs.accounts.5b00493] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
11-Nor PGE2 was prepared in our laboratory several years ago and used to obtain the corresponding ring-expanded γ-butyrolactam, γ-butyrolactone, and cyclopentanone derivatives. The conversion of a cyclobutanone into a cyclopentanone had relatively little precedent and merited further study. It was soon found that the presence of a single chlorine adjacent to the carbonyl not only greatly accelerated the reaction with ethereal diazomethane, but also substantially enhanced its regioselectivity; not surprisingly, a second chlorine further increased both. The confluence of this finding and the discovery by Krepski and Hassner that the presence of phosphorus oxychloride significantly improved the Zn-mediated dehalogenation procedure for the preparation of α,α-dichlorocyclobutanones from olefins provided the starting point for decades' worth of exciting adventures in natural product synthesis. A wide variety of naturally occurring 5-membered carbocycles (e.g., hirsutanes, cuparenones, bakkanes, guaianolides, azulenes) could thus be prepared by using dichloroketene-olefin cycloaddition, followed by regioselective one-carbon ring expansion with diazomethane. Importantly, it was also found that natural γ-butyrolactones (e.g., β-oxygenated γ-butyrolactones, lactone fatty acids) could be secured through regioselective Baeyer-Villiger oxidation of cycloadducts with m-CPBA and that naturally occurring γ-butyrolactam derivatives (e.g., amino acids, pyrrolidines, pyrrolizidines, indolizidines) could be efficiently obtained by regioselective Beckmann ring expansion of the adducts with O-(mesitylenesulfonyl)hydroxylamine (Tamura's reagent). These 5-membered carbocycles, γ-butyrolactones, and γ-butyrolactam derivatives were generally secured in enantiopure form through the use of either intrinsically chiral olefins or olefins bearing Stericol, a highly effective chiral auxiliary developed specifically for this "three-atom olefin annelation" approach. In addition, considerable useful chemistry has been developed in the context of this synthesis program. This includes new methods for olefin vicinal dicarboxylation, β-methylene-γ-butyrolactonization, γ-butyrolactone and δ-valerolactone α-methylenations, transesterification, angelic ester synthesis, chiral enol and ynol ether preparations, dichloroacetylene synthesis, and trans, trans hydroxy triad introduction. This versatile dichlorocyclobutanone-centered approach to natural product synthesis, together with the attendant new methods that have been developed, forms the basis of this Account, which is presented as an evolutionary tale. It is hoped that the Account will stimulate other research groups to seek to exploit the rich chemistry of dichlorocyclobutanones for possible solutions to problems in organic synthesis.
Collapse
Affiliation(s)
- Jean-Pierre Deprés
- SERCO, Département
de Chimie Moléculaire,
Univ. Grenoble Alpes, ICMG FR-2607, UMR-5250, 38041 Cedex 9 Grenoble, France
| | - Philippe Delair
- SERCO, Département
de Chimie Moléculaire,
Univ. Grenoble Alpes, ICMG FR-2607, UMR-5250, 38041 Cedex 9 Grenoble, France
| | - Jean-François Poisson
- SERCO, Département
de Chimie Moléculaire,
Univ. Grenoble Alpes, ICMG FR-2607, UMR-5250, 38041 Cedex 9 Grenoble, France
| | - Alice Kanazawa
- SERCO, Département
de Chimie Moléculaire,
Univ. Grenoble Alpes, ICMG FR-2607, UMR-5250, 38041 Cedex 9 Grenoble, France
| | - Andrew E. Greene
- SERCO, Département
de Chimie Moléculaire,
Univ. Grenoble Alpes, ICMG FR-2607, UMR-5250, 38041 Cedex 9 Grenoble, France
| |
Collapse
|
11
|
Malik M, Jarosz S. Synthesis of polyhydroxylated pyrrolidines from sugar-derived bromonitriles through a cascade addition of allylmagnesium bromide/cyclization/reduction. Org Biomol Chem 2016; 14:1764-76. [DOI: 10.1039/c5ob02573g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Boisson J, Thomasset A, Racine E, Cividino P, Banchelin Sainte-Luce T, Poisson JF, Behr JB, Py S. Hydroxymethyl-Branched Polyhydroxylated Indolizidines: Novel Selective α-Glucosidase Inhibitors. Org Lett 2015; 17:3662-5. [DOI: 10.1021/acs.orglett.5b01505] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Julien Boisson
- Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France
- CNRS, DCM, F-38000 Grenoble, France
| | - Amélia Thomasset
- Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France
- CNRS, DCM, F-38000 Grenoble, France
| | - Emilie Racine
- Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France
- CNRS, DCM, F-38000 Grenoble, France
| | - Pascale Cividino
- Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France
- CNRS, DCM, F-38000 Grenoble, France
| | | | - Jean-François Poisson
- Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France
- CNRS, DCM, F-38000 Grenoble, France
| | - Jean-Bernard Behr
- Université de Reims Champagne-Ardenne, Institut de
Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, UFR Sciences
Exactes et Naturelles, BP
1039, 51687 Reims Cedex 2, France
| | - Sandrine Py
- Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France
- CNRS, DCM, F-38000 Grenoble, France
| |
Collapse
|
13
|
Park SH, Kim JY, Kim JS, Jung C, Song DK, Ham WH. 1,3-Oxazine as a chiral building block used in the total synthesis of (+)-1-deoxynojirimycin and (2R,5R)-dihydroxymethyl-(3R,4R)-dihydroxypyrrolidine. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.tetasy.2015.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Petakamsetty R, Jain VK, Majhi PK, Ramapanicker R. Divergent synthesis of various iminocyclitols from d-ribose. Org Biomol Chem 2015; 13:8512-23. [DOI: 10.1039/c5ob01042j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A very efficient route to the diastereoselective synthesis of polyhydroxy pyrrolidines, piperidines and azepanes from an aldehyde derivative of ribose is reported.
Collapse
Affiliation(s)
- Ramu Petakamsetty
- Department of Chemistry and Center for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Vipin Kumar Jain
- Department of Chemistry and Center for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Pankaj Kumar Majhi
- Department of Chemistry and Center for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Ramesh Ramapanicker
- Department of Chemistry and Center for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur
- India
| |
Collapse
|
15
|
Chatterjee S, Guchhait S, Goswami RK. Stereoselective Total Synthesis of Cytospolide P. J Org Chem 2014; 79:7689-95. [DOI: 10.1021/jo501184t] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shamba Chatterjee
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Sandip Guchhait
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Rajib Kumar Goswami
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
16
|
Bates JM, Lummiss JAM, Bailey GA, Fogg DE. Operation of the Boomerang Mechanism in Olefin Metathesis Reactions Promoted by the Second-Generation Hoveyda Catalyst. ACS Catal 2014. [DOI: 10.1021/cs500539m] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jennifer M. Bates
- Centre for Catalysis Research & Innovation; Department of Chemistry, University of Ottawa, Ottawa, Canada K1N 6N5
| | - Justin A. M. Lummiss
- Centre for Catalysis Research & Innovation; Department of Chemistry, University of Ottawa, Ottawa, Canada K1N 6N5
| | - Gwendolyn A. Bailey
- Centre for Catalysis Research & Innovation; Department of Chemistry, University of Ottawa, Ottawa, Canada K1N 6N5
| | - Deryn E. Fogg
- Centre for Catalysis Research & Innovation; Department of Chemistry, University of Ottawa, Ottawa, Canada K1N 6N5
| |
Collapse
|
17
|
Affiliation(s)
- Jiayun He
- Department of Chemistry and
State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jesse Ling
- Department of Chemistry and
State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Pauline Chiu
- Department of Chemistry and
State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
18
|
Lumbroso A, Beaudet I, Toupet L, Le Grognec E, Quintard JP. Stereodivergent Synthesis of Iminosugars from Stannylated Derivatives of (S)-Vinylglycinol. Org Lett 2012; 15:160-3. [DOI: 10.1021/ol303213r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Alexandre Lumbroso
- Université de Nantes, CNRS, CEISAM, UMR 6230, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 France, and Institut de Physique de Rennes, CNRS, UMR 6251−Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Isabelle Beaudet
- Université de Nantes, CNRS, CEISAM, UMR 6230, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 France, and Institut de Physique de Rennes, CNRS, UMR 6251−Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Loïc Toupet
- Université de Nantes, CNRS, CEISAM, UMR 6230, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 France, and Institut de Physique de Rennes, CNRS, UMR 6251−Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Erwan Le Grognec
- Université de Nantes, CNRS, CEISAM, UMR 6230, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 France, and Institut de Physique de Rennes, CNRS, UMR 6251−Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Jean-Paul Quintard
- Université de Nantes, CNRS, CEISAM, UMR 6230, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 France, and Institut de Physique de Rennes, CNRS, UMR 6251−Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| |
Collapse
|
19
|
|
20
|
Dragutan I, Dragutan V, Demonceau A. Targeted drugs by olefin metathesis: piperidine-based iminosugars. RSC Adv 2012. [DOI: 10.1039/c1ra00910a] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Chevallier F, Lumbroso A, Beaudet I, Le Grognec E, Toupet L, Quintard JP. syn-Allylstannation of N-Acyliminium Intermediates by Tributyl[γ-(silyloxy)allyl]stannanes: A Key Reaction for the Diastereoselective Synthesis of Polyhydroxypiperidines and Polyhydroxyazepanes. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100302] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Dragutan I, Dragutan V, Mitan C, Vosloo HCM, Delaude L, Demonceau A. Metathesis access to monocyclic iminocyclitol-based therapeutic agents. Beilstein J Org Chem 2011; 7:699-716. [PMID: 21804866 PMCID: PMC3135129 DOI: 10.3762/bjoc.7.81] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 05/05/2011] [Indexed: 02/05/2023] Open
Abstract
By focusing on recent developments on natural and non-natural azasugars (iminocyclitols), this review bolsters the case for the role of olefin metathesis reactions (RCM, CM) as key transformations in the multistep syntheses of pyrrolidine-, piperidine- and azepane-based iminocyclitols, as important therapeutic agents against a range of common diseases and as tools for studying metabolic disorders. Considerable improvements brought about by introduction of one or more metathesis steps are outlined, with emphasis on the exquisite steric control and atom-economical outcome of the overall process. The comparative performance of several established metathesis catalysts is also highlighted.
Collapse
Affiliation(s)
- Ileana Dragutan
- Institute of Organic Chemistry, Romanian Academy, 202B Spl. Independentei, P.O. Box 35-108, Bucharest 060023, Romania
| | - Valerian Dragutan
- Institute of Organic Chemistry, Romanian Academy, 202B Spl. Independentei, P.O. Box 35-108, Bucharest 060023, Romania
| | - Carmen Mitan
- Institute of Organic Chemistry, Romanian Academy, 202B Spl. Independentei, P.O. Box 35-108, Bucharest 060023, Romania
| | - Hermanus CM Vosloo
- School of Physical and Chemical Sciences, North-West University, Hoffman Street, Potchefstroom 2520, South Africa
| | - Lionel Delaude
- Macromolecular Chemistry and Organic Catalysis, Institute of Chemistry (B6a), University of Liège, Sart Tilman, Liège 4000, Belgium
| | - Albert Demonceau
- Macromolecular Chemistry and Organic Catalysis, Institute of Chemistry (B6a), University of Liège, Sart Tilman, Liège 4000, Belgium
| |
Collapse
|
23
|
Herndon JW. The chemistry of the carbon–transition metal double and triple bond: Annual survey covering the year 2009. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2010.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
López-García MÁ, Maya I, Fernández-Bolaños JG, Bosica G, Ballini R. 1-Alkoxyamino-2-nitroalkanes as Key Building Blocks for a Chemo- and Diastereoselective Synthesis of a New Type of Polyfunctionalized N-Alkoxypiperidine. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Wardrop DJ, Waidyarachchi SL. Synthesis and biological activity of naturally occurring α-glucosidase inhibitors. Nat Prod Rep 2010; 27:1431-68. [DOI: 10.1039/b914958a] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|