1
|
Cancellieri MC, Nobbio C, Gatti FG, Brenna E, Parmeggiani F. Applications of biocatalytic CC bond reductions in the synthesis of flavours and fragrances. J Biotechnol 2024; 390:13-27. [PMID: 38761886 DOI: 10.1016/j.jbiotec.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Industrial biotechnology and biocatalysis can provide very effective synthetic tools to increase the sustainability of the production of fine chemicals, especially flavour and fragrance (F&F) ingredients, the market demand of which has been constantly increasing in the last years. One of the most important transformations in F&F chemistry is the reduction of CC bonds, typically carried out with metal-catalysed hydrogenations or hydride-based reagents. Its biocatalytic counterpart is a competitive alternative, showcasing a range of advantages such as excellent chemo-, regio- and stereoselectivity, ease of implementation, mild reaction conditions and modest environmental impact. In the present review, the application of biocatalysed alkene reductions (from microbial fermentations with wild-type strains to engineered isolated ene-reductase enzymes) to synthetic processes useful for the F&F industry will be described, highlighting not only the exquisite stereoselectivity achieved, but also the overall improvement when chirality is not involved. Multi-enzymatic cascades involving CC bioreductions are also examined, which allow much greater chemical complexity to be built in one-pot biocatalytic systems.
Collapse
Affiliation(s)
- Maria C Cancellieri
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Celeste Nobbio
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Francesco G Gatti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Elisabetta Brenna
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| | - Fabio Parmeggiani
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| |
Collapse
|
2
|
Lonardi G, Parolin R, Licini G, Orlandi M. Catalytic Asymmetric Conjugate Reduction. Angew Chem Int Ed Engl 2023; 62:e202216649. [PMID: 36757599 DOI: 10.1002/anie.202216649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/16/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
Enantioselective reduction reactions are privileged transformations for the construction of trisubstituted stereogenic centers. While these include established synthetic strategies, such as asymmetric hydrogenation, methods based on the enantioselective addition of hydridic reagents to electrophilic prochiral substrates have also gained importance. In this context, the asymmetric conjugate reduction (ACR) of α,β-unsaturated compounds has become a convenient approach for the synthesis of chiral compounds with trisubstituted stereocenters in α-, β-, or γ-position to electron-withdrawing functional groups. Because such activating groups are diverse and amenable of further derivatizations, ACRs provide a general and powerful synthetic entry towards a variety of valuable chiral building blocks. This Review provides a comprehensive collection of catalytic ACR methods involving transition-metal, organic, and enzymatic catalysis since its first versions dating back to the late 1970s.
Collapse
Affiliation(s)
- Giovanni Lonardi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Riccardo Parolin
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Giulia Licini
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Manuel Orlandi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| |
Collapse
|
3
|
Two Biotechnological Approaches to the Preparative Synthesis of Natural Dihydrocoumarin. Catalysts 2021. [DOI: 10.3390/catal12010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, we describe two different biotechnological processes that provide the natural flavour dihydrocoumarin in preparative scale. Both the presented approaches are based on the enzyme-mediated reduction of natural coumarin. The first one is a whole-cell process exploiting the reductive activity of the yeast Kluyveromyces marxianus, a Generally Recognized As Safe (GRAS) microorganism that possesses high resistance to the substrate toxicity. Differently, the second is based on the reduction of natural coumarin by nicotinamide adenine dinucleotide phosphate (NADPH) and using the Old Yellow Enzyme reductase OYE2 as catalyst. NADPH is used in catalytic amount since the co-factor regeneration is warranted employing an enzymatic system based on glucose oxidation, in turn catalysed by a further enzyme, namely glucose dehydrogenase (GDH). Both processes compare favourably over the previously reported industrial method as they work with higher coumarin concentration (up to 3 g/L for the enzymatic process) yet allowing the complete conversion of the substrate. Furthermore, the two approaches have significant differences. The microbial reduction is experimentally simple but the isolated dihydrocoumarin yield does not exceed 60%. On the contrary, the enzymatic approach requires the use of two specially prepared recombinant enzymes, however, it is more efficient, affording the product in 90% of isolated yield.
Collapse
|
4
|
Neukirch K, Alsabil K, Dinh CP, Bilancia R, Raasch M, Ville A, Cerqua I, Viault G, Bréard D, Pace S, Temml V, Brunner E, Jordan PM, Marques MC, Loeser K, Gollowitzer A, Permann S, Gerstmeier J, Lorkowski S, Stuppner H, Garscha U, Rodrigues T, Bernardes GJL, Schuster D, Séraphin D, Richomme P, Rossi A, Mosig AS, Roviezzo F, Werz O, Helesbeux JJ, Koeberle A. Exploration of Long-Chain Vitamin E Metabolites for the Discovery of a Highly Potent, Orally Effective, and Metabolically Stable 5-LOX Inhibitor that Limits Inflammation. J Med Chem 2021; 64:11496-11526. [PMID: 34279935 PMCID: PMC8365602 DOI: 10.1021/acs.jmedchem.1c00806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 12/15/2022]
Abstract
Endogenous long-chain metabolites of vitamin E (LCMs) mediate immune functions by targeting 5-lipoxygenase (5-LOX) and increasing the systemic concentrations of resolvin E3, a specialized proresolving lipid mediator. SAR studies on semisynthesized analogues highlight α-amplexichromanol (27a), which allosterically inhibits 5-LOX, being considerably more potent than endogenous LCMs in human primary immune cells and blood. Other enzymes within lipid mediator biosynthesis were not substantially inhibited, except for microsomal prostaglandin E2 synthase-1. Compound 27a is metabolized by sulfation and β-oxidation in human liver-on-chips and exhibits superior metabolic stability in mice over LCMs. Pharmacokinetic studies show distribution of 27a from plasma to the inflamed peritoneal cavity and lung. In parallel, 5-LOX-derived leukotriene levels decrease, and the inflammatory reaction is suppressed in reconstructed human epidermis, murine peritonitis, and experimental asthma in mice. Our study highlights 27a as an orally active, LCM-inspired drug candidate that limits inflammation with superior potency and metabolic stability to the endogenous lead.
Collapse
Affiliation(s)
- Konstantin Neukirch
- Michael
Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | - Chau-Phi Dinh
- Univ
Angers, SONAS, SFR QUASAV, F-49000 Angers, France
| | - Rossella Bilancia
- Department
of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Martin Raasch
- Institute
of Biochemistry II, Jena University Hospital, 07747 Jena, Germany
| | - Alexia Ville
- Univ
Angers, SONAS, SFR QUASAV, F-49000 Angers, France
| | - Ida Cerqua
- Department
of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | | | | | - Simona Pace
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Veronika Temml
- Department
of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Elena Brunner
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Paul M. Jordan
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Marta C. Marques
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Konstantin Loeser
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - André Gollowitzer
- Michael
Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Stephan Permann
- Michael
Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Jana Gerstmeier
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Stefan Lorkowski
- Department
of Nutritional Biochemistry and Physiology, Institute of Nutritional
Science and Competence Cluster for Nutrition and Cardiovascular Health
(nutriCARD), Halle-Jena-Leipzig, Friedrich
Schiller University Jena, 07743 Jena, Germany
| | - Hermann Stuppner
- Institute
of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck
(CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Ulrike Garscha
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Tiago Rodrigues
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Gonçalo J. L. Bernardes
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Department of Chemistry, University of
Cambridge, CB2 1EW Cambridge, U.K.
| | - Daniela Schuster
- Department
of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | | | | | - Antonietta Rossi
- Department
of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Alexander S. Mosig
- Institute
of Biochemistry II, Jena University Hospital, 07747 Jena, Germany
| | - Fiorentina Roviezzo
- Department
of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Oliver Werz
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | - Andreas Koeberle
- Michael
Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
5
|
Ye R, Zhu M, Yan X, Long Y, Xia Y, Zhou X. Pd(II)-Catalyzed C═C Bond Cleavage by a Formal Group-Exchange Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Runyou Ye
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Maoshuai Zhu
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Xufei Yan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yang Long
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
6
|
Venturi S, Brenna E, Colombo D, Fraaije MW, Gatti FG, Macchi P, Monti D, Trajkovic M, Zamboni E. Multienzymatic Stereoselective Reduction of Tetrasubstituted Cyclic Enones to Halohydrins with Three Contiguous Stereogenic Centers. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Silvia Venturi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica ”G. Natta”, Politecnico di Milano, P.zza Leonardo da Vinci 32, Milano 20133, Italy
| | - Elisabetta Brenna
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica ”G. Natta”, Politecnico di Milano, P.zza Leonardo da Vinci 32, Milano 20133, Italy
| | - Danilo Colombo
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica ”G. Natta”, Politecnico di Milano, P.zza Leonardo da Vinci 32, Milano 20133, Italy
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Francesco G. Gatti
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica ”G. Natta”, Politecnico di Milano, P.zza Leonardo da Vinci 32, Milano 20133, Italy
| | - Piero Macchi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica ”G. Natta”, Politecnico di Milano, P.zza Leonardo da Vinci 32, Milano 20133, Italy
| | - Daniela Monti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), C.N.R., Via Mario Bianco, 9, Milano 20131, Italy
| | - Milos Trajkovic
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Emilio Zamboni
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica ”G. Natta”, Politecnico di Milano, P.zza Leonardo da Vinci 32, Milano 20133, Italy
| |
Collapse
|
7
|
Ferreira IM, Fiamingo A, Campana-Filho SP, Porto ALM. Biotransformation of (E)-2-Methyl-3-Phenylacrylaldehyde Using Mycelia of Penicillium citrinum CBMAI 1186, Both Free and Immobilized on Chitosan. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:348-356. [PMID: 32080775 DOI: 10.1007/s10126-020-09954-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
This study applied the use of marine-derived fungus Penicillium citrinum CBMAI 1186 in the stereoselective reduction of the C=C double bond of the prochiral (E)-2-methyl-3-phenylacrylaldehyde 1. The fungus immobilized on chitosan, obtained by multistep ultrasound-assisted deacetylation process (Ch-USAD), produced the (S)-(+)-2-methyl-3-phenylpropan-1-ol 3 (c = 49%, 40% ee) isomer and (±)-2-methyl-3-phenylacrilic acid 4 (c = 35%); in contrast, immobilized mycelia on commercial chitosan (Ch-C) yielded the (S)-(+)-2-methyl-3-phenylpropan-1-ol 3 (c = 48%, 10% ee) and (±)-2-methyl-3-phenylpropanal 1a (c = 41%). The reaction using free mycelia gave a 40% yield of (S)-(+)-2-methyl-3-phenylpropan-1-ol 3 with 10% ee. These results showed that the crystallinity form and molecular weight of chitosan (Ch-C or Ch-USAD) used to immobilized mycelia of P. citrinum CBMAI 1186 influenced in the biotransformation of (E)-2-methyl-3-phenylacrylaldehyde 1. Therefore, marine-derived fungus P. citrinum CBMAI 1186 immobilized on chitosan can be a potential alternative in the studies of hydrogenation of the α,β-unsaturated carbon-carbon (α,β-C=C) double bond. Marine-derived fungus Penicillium citrinum CBMAI 1186 immobilized on chitosan in the stereoselective reduction of the C=C double bond of the prochiral (E)-2-methyl-3-phenylacrylaldehyde.
Collapse
Affiliation(s)
- Irlon M Ferreira
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas, Universidade Federal do Amapá, Rod. JK KM 02, Macapa, Amapá, 68902-280, Brazil.
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400,, Sao Carlos, São Paulo, 13566-590, Brazil.
| | - Anderson Fiamingo
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400,, Sao Carlos, São Paulo, 13566-590, Brazil
| | - Sergio P Campana-Filho
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400,, Sao Carlos, São Paulo, 13566-590, Brazil
| | - André L M Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina,, Sao Carlos, São Paulo, 13563-120, Brazil.
| |
Collapse
|
8
|
Kobayashi T, Takizawa I, Kawamoto Y, Ito H. Sequential condensation-6π-electrocyclization reaction of a chiral 1,3-Diketone possessing C2 symmetry. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Abstract
Dihydrocoumarin is a natural product of great relevance for the flavour industry. In this work, we describe a study on the biotransformation of the toxic compound coumarin into natural dihydrocoumarin, recognized as safe for food aromatization. To this end, we screened a variety of yeasts and filamentous fungi, isolated from different sources, in order to evaluate their ability to reduce selectively the conjugated double bond of coumarin. Moreover, since coumarin induces cytotoxicity and therefore inhibits cell growth as well as the cell metabolic activity, we tested out different substrate concentrations. All strains were able to convert the substrate, although showing very different conversion rates and different sensitivity to the coumarin concentration. In particular, the yeasts Torulaspora delbrueckii, Kluyveromyces marxianus and the fungus Penicillium camemberti displayed the higher activity and selectivity in the substrate transformation. Among the latter strains, Kluyveromyces marxianus presented the best resistance to substrate toxicity, allowing the biotransformation process even with coumarin concentration up to 1.8 g/L.
Collapse
|
10
|
Colombo D, Brenna E, Gatti FG, Ghezzi MC, Monti D, Parmeggiani F, Tentori F. Chemoselective Biohydrogenation of Alkenes in the Presence of Alkynes for the Homologation of 2‐Alkynals/3‐Alkyn‐2‐ones into 4‐Alkynals/Alkynols. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Danilo Colombo
- Dipartimento di ChimicaMateriali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Via Mancinelli, 7 20131 Milano Italy
| | - Elisabetta Brenna
- Dipartimento di ChimicaMateriali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Via Mancinelli, 7 20131 Milano Italy
| | - Francesco G. Gatti
- Dipartimento di ChimicaMateriali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Via Mancinelli, 7 20131 Milano Italy
| | - Maria Chiara Ghezzi
- Dipartimento di ChimicaMateriali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Via Mancinelli, 7 20131 Milano Italy
| | - Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R. Via Mario Bianco, 9 20131 Milano Italy
| | - Fabio Parmeggiani
- Dipartimento di ChimicaMateriali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Via Mancinelli, 7 20131 Milano Italy
| | - Francesca Tentori
- Dipartimento di ChimicaMateriali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Via Mancinelli, 7 20131 Milano Italy
| |
Collapse
|
11
|
Chen J, Yuan P, Wang L, Huang Y. Enantioselective β-Protonation of Enals via a Shuttling Strategy. J Am Chem Soc 2017; 139:7045-7051. [DOI: 10.1021/jacs.7b02889] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jiean Chen
- Key Laboratory of Chemical
Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| | - Pengfei Yuan
- Key Laboratory of Chemical
Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| | - Leming Wang
- Key Laboratory of Chemical
Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| | - Yong Huang
- Key Laboratory of Chemical
Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| |
Collapse
|
12
|
Ashida Y, Honda A, Sato Y, Nakatsuji H, Tanabe Y. Divergent Synthetic Access to E- and Z-Stereodefined All-Carbon-Substituted Olefin Scaffolds: Application to Parallel Synthesis of ( E)- and ( Z)-Tamoxifens. ChemistryOpen 2017; 6:73-89. [PMID: 28168153 PMCID: PMC5288768 DOI: 10.1002/open.201600124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/29/2016] [Indexed: 11/30/2022] Open
Abstract
A highly substrate-general synthesis of all-carbon-substituted E- and Z-stereodefined olefins is performed. The method comprises two sets of parallel and stereocomplementary preparations of (E)- and (Z)-α,β-unsaturated esters involving two robust and distinctive reactions: 1) stereocomplementary enol tosylations using readily available TsCl/diamine/(LiCl) base reagents, and 2) stereoretentive Negishi cross-coupling using the catalysts [Pd(dppe)Cl2] (for E) and [Pd(dppb)Cl2] (for Z). The present parallel approach is categorized as both type I (convergent approach: 16 examples, 56-87 % yield) and type II (divergent approach: 18 examples, 70-95 % yield). The obtained (E)- and (Z)-α,β-unsaturated ester scaffolds are successfully transformed into various E- and Z-stereodefined known and novel olefins (8×2 derivatization arrays). As a demonstration, application to the parallel synthesis of both (E)- and (Z)-tamoxifens, a representative motif of all-carbon-substituted olefins, is accomplished in a total of eight steps with an overall yield of 58 % (average 93 %) and 57 % (average 93 %), respectively.
Collapse
Affiliation(s)
- Yuichiro Ashida
- Department of ChemistrySchool of Science and TechnologyKwansei Gakuin University2-1 Gakuen, SandaHyogo669-1337Japan
| | - Atsushi Honda
- Department of ChemistrySchool of Science and TechnologyKwansei Gakuin University2-1 Gakuen, SandaHyogo669-1337Japan
| | - Yuka Sato
- Department of ChemistrySchool of Science and TechnologyKwansei Gakuin University2-1 Gakuen, SandaHyogo669-1337Japan
| | - Hidefumi Nakatsuji
- Department of ChemistrySchool of Science and TechnologyKwansei Gakuin University2-1 Gakuen, SandaHyogo669-1337Japan
| | - Yoo Tanabe
- Department of ChemistrySchool of Science and TechnologyKwansei Gakuin University2-1 Gakuen, SandaHyogo669-1337Japan
| |
Collapse
|
13
|
Yang Z, Lu N, Wei Z, Cao J, Liang D, Duan H, Lin Y. Base-Promoted Intermolecular Cyclization of Substituted 3-Aryl(Heteroaryl)-3-chloroacrylaldehydes and Tetrahydroisoquinolines: An Approach to Access Pyrrolo[2,1-a]isoquinolines. J Org Chem 2016; 81:11950-11955. [DOI: 10.1021/acs.joc.6b01781] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ziqi Yang
- Department of Organic Chemistry,
College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ning Lu
- Department of Organic Chemistry,
College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhonglin Wei
- Department of Organic Chemistry,
College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jungang Cao
- Department of Organic Chemistry,
College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Dapeng Liang
- Department of Organic Chemistry,
College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Haifeng Duan
- Department of Organic Chemistry,
College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yingjie Lin
- Department of Organic Chemistry,
College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
14
|
Paula BRS, Zampieri D, Rodrigues JAR, Moran PJS. Bioreduction of α-Acetoxymethyl Enones: Proposal for an SN2′ Mechanism Catalyzed by Enereductase. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bruno R. S. Paula
- Institute of Chemistry; University of Campinas; 13084-971 Campinas-SP Brazil
| | - Davila Zampieri
- Institute of Chemistry; University of Campinas; 13084-971 Campinas-SP Brazil
| | | | - Paulo J. S. Moran
- Institute of Chemistry; University of Campinas; 13084-971 Campinas-SP Brazil
| |
Collapse
|
15
|
Yan Q, Kong D, Zhao W, Zi G, Hou G. Enantioselective Hydrogenation of β,β-Disubstituted Unsaturated Carboxylic Acids under Base-Free Conditions. J Org Chem 2016; 81:2070-7. [DOI: 10.1021/acs.joc.6b00018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qiaozhi Yan
- Key Laboratory
of Radiopharmaceuticals,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Duanyang Kong
- Key Laboratory
of Radiopharmaceuticals,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei Zhao
- Key Laboratory
of Radiopharmaceuticals,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory
of Radiopharmaceuticals,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Key Laboratory
of Radiopharmaceuticals,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
16
|
Microbial Stereoselective One-Step Conversion of Diols to Chiral Lactones in Yeast Cultures. Catalysts 2015. [DOI: 10.3390/catal5042068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
Romagnolo A, Spina F, Brenna E, Crotti M, Parmeggiani F, Varese GC. Identification of fungal ene-reductase activity by means of a functional screening. Fungal Biol 2015; 119:487-93. [PMID: 25986545 DOI: 10.1016/j.funbio.2015.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 01/13/2015] [Accepted: 01/24/2015] [Indexed: 10/24/2022]
Abstract
Bioeconomy stresses the need of green processes promoting the development of new methods for biocatalyzed alkene reductions. A functional screening of 28 fungi belonging to Ascomycota, Basidiomycota, and Zygomycota isolated from different habitats was performed to analyze their capability to reduce C=C double bonds towards three substrates (cyclohexenone, α-methylnitrostyrene, and α-methylcinnamaldehyde) with different electron-withdrawing groups, i.e., ketone, nitro, and aldehyde, respectively. Almost all the fungi showed this reducing activity. Noteworthy Gliomastix masseei, Mucor circinelloides, and Mucor plumbeus resulted versatile and effective, being able to reduce all the model substrates quickly and with high yields.
Collapse
Affiliation(s)
- Alice Romagnolo
- Department of Life Science and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy.
| | - Federica Spina
- Department of Life Science and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy.
| | - Elisabetta Brenna
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milan, Italy.
| | - Michele Crotti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milan, Italy.
| | - Fabio Parmeggiani
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milan, Italy
| | - Giovanna Cristina Varese
- Department of Life Science and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy.
| |
Collapse
|
18
|
Abstract
This review article focuses mainly on the scientific developments concerning the enzyme-mediated synthesis of sesquiterpenes which have been reported in the academic and patent literature during the last twenty years. Nevertheless, this is not a comprehensive description of every single biotransformation involving sesquiterpenes. Only synthetic approaches that have represented a new and innovative perspective from a scientific standpoint are reported. More specifically, the review describes in depth how the use of metabolic engineering of the microbial biotransformations and of the isolated enzymes were exploited in order to perform chemo- and stereoselective chemical transformations of interest for sesquiterpenes synthesis.
Collapse
Affiliation(s)
- Stefano Serra
- C.N.R., Istituto di Chimica del Riconoscimento Molecolare; Via L. Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
19
|
Rationalisation of the stereochemical outcome of ene-reductase-mediated bioreduction of α,β-difunctionalised alkenes. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Li J, Chen H, Zhang-Negrerie D, Du Y, Zhao K. Synthesis of coumarins via PIDA/I2-mediated oxidative cyclization of substituted phenylacrylic acids. RSC Adv 2013. [DOI: 10.1039/c3ra23188g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Zampieri DS, de Paula BR, Zampieri LA, Vale JA, Rodrigues JAR, Moran PJ. Enhancements of enantio and diastereoselectivities in reduction of (Z)-3-halo-4-phenyl-3-buten-2-one mediated by microorganisms in ionic liquid/water biphasic system. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Brenna E, Fronza G, Fuganti C, Gatti FG, Manfredi A, Parmeggiani F, Ronchi P. On the stereochemistry of the Baker's Yeast-mediated reduction of regioisomeric unsaturated aldehydes: Examples of enantioselectivity switch promoted by substrate-engineering. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Durchschein K, Wallner S, Macheroux P, Schwab W, Winkler T, Kreis W, Faber K. Nicotinamide-Dependent Ene Reductases as Alternative Biocatalysts for the Reduction of Activated Alkenes. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200776] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Brenna E, Gatti FG, Monti D, Parmeggiani F, Serra S. Stereochemical Outcome of the Biocatalysed Reduction of Activated Tetrasubstituted Olefins by Old Yellow Enzymes 1–3. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201100504] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Elisabetta Brenna
- Politecnico di Milano, Dipartimento di Chimica, Materiali, Ingegneria Chimica, Via Mancinelli 7, I‐20131 Milano, Italy, Fax: (+39)‐02‐2399‐3180; phone: (+39)‐02‐2399‐3077
| | - Francesco G. Gatti
- Politecnico di Milano, Dipartimento di Chimica, Materiali, Ingegneria Chimica, Via Mancinelli 7, I‐20131 Milano, Italy, Fax: (+39)‐02‐2399‐3180; phone: (+39)‐02‐2399‐3077
| | - Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare – CNR, Via Mario Bianco 9, I‐20131 Milano, Italy
| | - Fabio Parmeggiani
- Politecnico di Milano, Dipartimento di Chimica, Materiali, Ingegneria Chimica, Via Mancinelli 7, I‐20131 Milano, Italy, Fax: (+39)‐02‐2399‐3180; phone: (+39)‐02‐2399‐3077
| | - Stefano Serra
- Istituto di Chimica del Riconoscimento Molecolare – CNR, Via Mario Bianco 9, I‐20131 Milano, Italy
| |
Collapse
|
25
|
Li P, Teng BT, Jin FG, Li XS, Zhu WD, Xie JW. Synthesis of functionalized 2,3-dihydroisoxazoles by domino reactions in water and unexpected ring-opening reactions of 2,3-dihydroisoxazoles. Org Biomol Chem 2012; 10:244-7. [DOI: 10.1039/c1ob06318a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Zampieri DS, Zampieri LA, Rodrigues JAR, de Paula BR, Moran PJ. Hydride transfer versus electron transfer in the reduction of 4-phenyl-3-halo-3-buten-2-ones mediated by Pichia stipitis. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Enantioselective bioreduction of 2-fluoro-2-alken-1-ols mediated by Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Yang W, Wei X, Pan Y, Lee R, Zhu B, Liu H, Yan L, Huang KW, Jiang Z, Tan CH. Highly Enantio- and Diastereoselective Synthesis of β-Methyl-γ-monofluoromethyl-Substituted Alcohols. Chemistry 2011; 17:8066-70. [DOI: 10.1002/chem.201100929] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Indexed: 11/07/2022]
|
29
|
Lipase-mediated resolution of substituted 2-aryl-propanols: application to the enantioselective synthesis of phenolic sesquiterpenes. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.tetasy.2011.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Brenna E, Fronza G, Fuganti C, Gatti FG. Stereochemical Analysis of the Enzymic Reduction of the Double Bond of α- and β-Substituted Nitrostyrenes and α-Ethoxycinnamaldehyde through Deuterium Labelling Experiments. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000442] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Toogood H, Gardiner J, Scrutton N. Biocatalytic Reductions and Chemical Versatility of the Old Yellow Enzyme Family of Flavoprotein Oxidoreductases. ChemCatChem 2010. [DOI: 10.1002/cctc.201000094] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|