1
|
Rosales Martínez A, Rodríguez-Maecker RN, Rodríguez-García I. Unifying the Synthesis of a Whole Family of Marine Meroterpenoids through a Biosynthetically Inspired Sequence of 1,2-Hydride and Methyl Shifts as Key Step. Mar Drugs 2023; 21:md21020118. [PMID: 36827159 PMCID: PMC9962294 DOI: 10.3390/md21020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Marine meroterpenoids have attracted a great deal of attention from synthetic research groups due to their attractive and varied biological activities and their unique and diverse structures. In most cases, however, further biological studies have been severely limited mainly to the scarcity of natural supply and because almost none of the reported syntheses methods has enabled unified access for a large number of marine meroterpenoids with aureane and avarane skeletons. Based on our previous publications and the study of recent manuscripts on marine meroterpenoids, we have conceived a unified strategy for these fascinating marine compounds with aureane or avarane skeletons using available drimane compounds as starting materials. The key step is a biosynthetic sequence of 1,2-hydride and methyl shifts. This strategy is of great synthetic value to access marine meroterpenoids through easy chemical synthetic procedures. Finally, several retrosynthetic proposals are made for the future synthesis of several members of this class of meroterpenoids, focused on consolidating these 1,2-rearrangements as a versatile and unified strategy that could be widely used in the preparation of these marine meroterpenoids.
Collapse
Affiliation(s)
- Antonio Rosales Martínez
- Department of Chemical Engineering, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain
- Correspondence:
| | - Román Nicolay Rodríguez-Maecker
- Department of Energy and Mechanics, Carrera de Ingeniería Petroquímica, Universidad de las Fuerzas Armadas-ESPE, Latacunga 050150, Ecuador
| | | |
Collapse
|
2
|
Cheng YF, Li HJ, Wu YC. Total Synthesis of Marine Natural Products (+)-Strongylin A and Corallidictyal D by Regio- and Stereoselective Cyclization of Alkenyl Benzenes. J Org Chem 2022; 87:16767-16775. [PMID: 36442492 DOI: 10.1021/acs.joc.2c02440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An expeditious access to marine natural products (+)-strongylin A and corallidictyal D is described. A TFA/Et3SiH-induced reductive isomerization of enols I to alkenyl benzenes II followed by a selectivity-controlled cyclization in the presence of HCl and BF3·Et2O affords benzofuran III and benzopyran IV, respectively. The applicability of this HCl-induced cyclization is showcased by a regio- and stereoselective synthesis of corallidictyal D, while BF3·Et2O-promoted cyclization posterior to rearrangement of an alkenyl benzene provides a regioselectively different benzopyran, (+)-strongylin A.
Collapse
Affiliation(s)
- Yun-Fei Cheng
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of echnology, Weihai 264209, P. R. China
| | - Hui-Jing Li
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of echnology, Weihai 264209, P. R. China
| | - Yan-Chao Wu
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of echnology, Weihai 264209, P. R. China
| |
Collapse
|
3
|
Wu Y, Du X, Wang X, Liu H, Zhou L, Tang Y, Li D. Bio-inspired construction of a tetracyclic ring system with an avarane skeleton: total synthesis of dactyloquinone A. Org Chem Front 2022. [DOI: 10.1039/d2qo00792d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the asymmetric construction of an avarane skeleton. The strategy involves a Lewis acid-catalyzed cyclization reaction, which drives the methyl groups of two different configurations at the C-4 site to migrate by 1, 2-rearrangement.
Collapse
Affiliation(s)
- Yumeng Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xuanxuan Du
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xianyang Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Hainan Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yu Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
4
|
Chong C, Zhang Q, Ke J, Zhang H, Yang X, Wang B, Ding W, Lu Z. Total Synthesis of Anti‐Cancer Meroterpenoids Dysideanone B and Dysiherbol A and Structural Reassignment of Dysiherbol A. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chuanke Chong
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
| | - Qunlong Zhang
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
| | - Jia Ke
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
| | - Haiming Zhang
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
| | - Xudong Yang
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
| | - Bingjian Wang
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
| | - Wei Ding
- Tianjin Key Laboratory of Human Development and Reproductive Regulation Tianjin Central Hospital of Gynecology Obstetrics Nankai University 156 Third Rd Tianjin 300052 China
| | - Zhaoyong Lu
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
- State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 China
| |
Collapse
|
5
|
Chong C, Zhang Q, Ke J, Zhang H, Yang X, Wang B, Ding W, Lu Z. Total Synthesis of Anti-Cancer Meroterpenoids Dysideanone B and Dysiherbol A and Structural Reassignment of Dysiherbol A. Angew Chem Int Ed Engl 2021; 60:13807-13813. [PMID: 33847042 DOI: 10.1002/anie.202100541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/30/2021] [Indexed: 01/01/2023]
Abstract
The first total synthesis of marine anti-cancer meroterpenoids dysideanone B and dysiherbol A have been accomplished in a divergent way. The synthetic route features: 1) a site and stereoselective α-position alkylation of a Wieland-Miescher ketone derivative with a bulky benzyl bromide to join the terpene and aromatic moieties together and set the stage for subsequent cyclization reactions; 2) an intramolecular radical cyclization to construct the 6/6/6/6-tetracycle of dysideanone B and an intramolecular Heck reaction to forge the 6/6/5/6-fused core structure of dysiherbol A. A late-stage introduction of the ethoxy group in dysideanone B reveals that this group might come from the solvent ethanol. The structure of dysiherbol A has been revised based on our chemical total synthesis.
Collapse
Affiliation(s)
- Chuanke Chong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China
| | - Qunlong Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China
| | - Jia Ke
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China
| | - Haiming Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China
| | - Xudong Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China
| | - Bingjian Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China
| | - Wei Ding
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University, 156 Third Rd, Tianjin, 300052, China
| | - Zhaoyong Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| |
Collapse
|
6
|
De S, Mahal E, Haque MA, Jana CK, Koley D. Computational Investigation of Multifaceted Cationic Rearrangement and Stereo- and Regioselectivity in the Formation of Dysideanone's Analogues. J Org Chem 2021; 86:1133-1140. [PMID: 33331777 DOI: 10.1021/acs.joc.0c02609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mechanistic studies of regiodivergent arylations of cycloalkanols to furnish enantioenriched dysideanone's analogues are performed by employing density functional theory (DFT) calculations (B3LYP-D3(SMD)/6-311++G**//B3LYP-D3/6-31+G** level of theory). On the basis of our calculations, remote γ'-C-H arylation is preferred for unsubstituted carbinol 1, an outcome from combined factors like carbocationic stability, less steric hindrance during C-C coupling, and facile dearomatization. Meanwhile, in the presence of dimethyl substituent 1Me, regioselective γ-arylation is favored by 3.4 kcal/mol, and both findings are in agreement with the reported experimental observations. Most importantly, we concur that the barrier associated with the formation of carbocation 6 and its substituted analogues correlates with the C-H arylation outcomes. Furthermore, the β-arylation route remains unlikely for all the reaction pathways explored in this study.
Collapse
Affiliation(s)
- Sriman De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Eti Mahal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Md Ashraful Haque
- Department of Chemistry, Indian Institute of Technology (IIT) Guwahati, Guwahati 781 039, India
| | - Chandan K Jana
- Department of Chemistry, Indian Institute of Technology (IIT) Guwahati, Guwahati 781 039, India
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| |
Collapse
|
7
|
A Concise Route for the Synthesis of Tetracyclic Meroterpenoids: (±)-Aureol Preparation and Mechanistic Interpretation. Mar Drugs 2020; 18:md18090441. [PMID: 32858988 PMCID: PMC7551916 DOI: 10.3390/md18090441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
A new concise general methodology for the synthesis of different tetracyclic meroterpenoids is reported: (±)-aureol (1), the key intermediate of this general route. The synthesis of (±)-aureol (1) was achieved in seven steps (28% overall yield) from (±)-albicanol. The key steps of this route include a C-C bond-forming reaction between (±)-albicanal and a lithiated arene unit and a rearrangement involving 1,2-hydride and 1,2-methyl shifts promoted by BF3•Et2O as activator and water as initiator.
Collapse
|
8
|
García PA, Hernández ÁP, San Feliciano A, Castro MÁ. Bioactive Prenyl- and Terpenyl-Quinones/Hydroquinones of Marine Origin †. Mar Drugs 2018; 16:E292. [PMID: 30134616 PMCID: PMC6165040 DOI: 10.3390/md16090292] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/05/2023] Open
Abstract
The sea is a rich source of biological active compounds, among which terpenyl-quinones/hydroquinones constitute a family of secondary metabolites with diverse pharmacological properties. The chemical diversity and bioactivity of those isolated from marine organisms in the last 10 years are summarized in this review. Aspects related to synthetic approaches towards the preparation of improved bioactive analogues from inactive terpenoids are also outlined.
Collapse
Affiliation(s)
- Pablo A García
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| | - Ángela P Hernández
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| | - Arturo San Feliciano
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| | - Mª Ángeles Castro
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| |
Collapse
|
9
|
Schiavo L, Lebedel L, Massé P, Choppin S, Hanquet G. Access to Wieland-Miescher Diketone-Derived Building Blocks by Stereoselective Construction of the C-9 Quaternary Carbon Center Using the Mukaiyama Aldol Reaction. J Org Chem 2018; 83:6247-6258. [PMID: 29601190 DOI: 10.1021/acs.joc.7b02862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Mukaiyama aldol reaction has been used to efficiently install a lateral chain at the C-9 position of the Wieland-Miescher ketone derivative 3 within two steps, representing a shortcut compared to that of the classical sequences. The treatment of the silylated enol ether 8 with a wide range of acetals in the presence of tin tetrachloride led to a the diastereoselective construction of the C-9 quaternary center of 33 new building blocks derived from the Wieland-Miescher ketone derivative 3.
Collapse
Affiliation(s)
- Lucie Schiavo
- Laboratoire d'Innovation Moléculaire et Applications, ECPM, UMR 7042 , Université de Strasbourg/Université de Haute-Alsace, CNRS , 67000 Strasbourg , France
| | - Ludivine Lebedel
- Laboratoire d'Innovation Moléculaire et Applications, ECPM, UMR 7042 , Université de Strasbourg/Université de Haute-Alsace, CNRS , 67000 Strasbourg , France
| | - Paul Massé
- Laboratoire d'Innovation Moléculaire et Applications, ECPM, UMR 7042 , Université de Strasbourg/Université de Haute-Alsace, CNRS , 67000 Strasbourg , France
| | - Sabine Choppin
- Laboratoire d'Innovation Moléculaire et Applications, ECPM, UMR 7042 , Université de Strasbourg/Université de Haute-Alsace, CNRS , 67000 Strasbourg , France
| | - Gilles Hanquet
- Laboratoire d'Innovation Moléculaire et Applications, ECPM, UMR 7042 , Université de Strasbourg/Université de Haute-Alsace, CNRS , 67000 Strasbourg , France
| |
Collapse
|
10
|
|
11
|
Takeda Y, Nakai K, Narita K, Katoh T. A novel approach to sesquiterpenoid benzoxazole synthesis from marine sponges: nakijinols A, B and E–G. Org Biomol Chem 2018; 16:3639-3647. [DOI: 10.1039/c8ob00721g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nakijinols A, B, E, F and G were efficiently synthesized via the ring closure of the N-(2-hydroxyphenyl)-formamide or -acetamide moiety.
Collapse
Affiliation(s)
- Yuki Takeda
- Faculty of Pharmaceutical Sciences
- Tohoku Medical and Pharmaceutical University
- Sendai
- Japan
| | - Keiyo Nakai
- Faculty of Pharmaceutical Sciences
- Tohoku Medical and Pharmaceutical University
- Sendai
- Japan
| | - Koichi Narita
- Faculty of Pharmaceutical Sciences
- Tohoku Medical and Pharmaceutical University
- Sendai
- Japan
| | - Tadashi Katoh
- Faculty of Pharmaceutical Sciences
- Tohoku Medical and Pharmaceutical University
- Sendai
- Japan
| |
Collapse
|
12
|
A modular synthesis of tetracyclic meroterpenoid antibiotics. Nat Commun 2017; 8:2083. [PMID: 29234008 PMCID: PMC5727219 DOI: 10.1038/s41467-017-02061-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/02/2017] [Indexed: 11/08/2022] Open
Abstract
Stachyflin, aureol, smenoqualone, strongylin A, and cyclosmenospongine belong to a family of tetracyclic meroterpenoids, which, by nature of their unique molecular structures and various biological properties, have attracted synthetic and medicinal chemists alike. Despite their obvious biosynthetic relationship, only scattered reports on the synthesis and biological investigation of individual meroterpenoids have appeared so far. Herein, we report a highly modular synthetic strategy that enabled the synthesis of each of these natural products and 15 non-natural derivatives. The route employs an auxiliary-controlled Diels-Alder reaction to enable the enantioselective construction of the decalin subunit, which is connected to variously substituted arenes by either carbonyl addition chemistry or sterically demanding sp2-sp3 cross-coupling reactions. The selective installation of either the cis- or trans-decalin stereochemistry is accomplished by an acid-mediated cyclization/isomerization reaction. Biological profiling reveals that strongylin A and a simplified derivative thereof have potent antibiotic activity against methicillin-resistant Staphylococcus aureus.
Collapse
|
13
|
Haque MA, Jana CK. Regiodivergent Remote Arylation of Cycloalkanols to Dysideanone's Fused Carbotetracycles and Its Bridged Isomers. Chemistry 2017; 23:13300-13304. [PMID: 28771837 DOI: 10.1002/chem.201703094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 01/22/2023]
Abstract
Regiodivergent γ and γ' arylations across an all-carbon quaternary center of cycloalkanols to access enantioenriched fused and bridged carbotetracycles are reported. The conformation of the carbocation guided either sequential stereospecific β-C-Me/γ-C-H-shifts or β-C-Me/γ'-C-H-shifts, providing fused carbotetracyclic analogs of dysideanone or bridged tetracycles, respectively. The reaction is highly stereoselective in building three contiguous stereocenters, where one, two, or three could be all-carbon quaternary centers. Interestingly, mechanistic studies revealed a crucial role of a methyl substituent in controlling regioselectivity.
Collapse
Affiliation(s)
- Md Ashraful Haque
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Chandan K Jana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
14
|
Unified Synthesis of the Marine Sesquiterpene Quinones (+)-Smenoqualone, (-)-Ilimaquinone, (+)-Smenospongine, and (+)-Isospongiaquinone. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700609] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Takeda Y, Narita K, Katoh T. Total Synthesis of Marine Sesquiterpene Quinones (+)-Cyclospongiaquinone-1 and (-)-Dehydrocyclospongiaquinone-1 with a Tetracyclic Benzo[a]xanthene Skeleton. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuki Takeda
- Laboratory of Synthetic and Medicinal Chemistry; Faculty of Pharmaceutical Sciences; Tohoku Medical and Pharmaceutical University; 4-4-1 Komatsushima, Aoba-ku 981-8558 Sendai Japan
| | - Koichi Narita
- Laboratory of Synthetic and Medicinal Chemistry; Faculty of Pharmaceutical Sciences; Tohoku Medical and Pharmaceutical University; 4-4-1 Komatsushima, Aoba-ku 981-8558 Sendai Japan
| | - Tadashi Katoh
- Laboratory of Synthetic and Medicinal Chemistry; Faculty of Pharmaceutical Sciences; Tohoku Medical and Pharmaceutical University; 4-4-1 Komatsushima, Aoba-ku 981-8558 Sendai Japan
| |
Collapse
|
16
|
Speck K, Magauer T. Evolution of a Polyene Cyclization Cascade for the Total Synthesis of (-)-Cyclosmenospongine. Chemistry 2016; 23:1157-1165. [PMID: 27859768 DOI: 10.1002/chem.201605029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Indexed: 01/07/2023]
Abstract
We report a full account on the development of a unique cationic polyene cyclization for the total synthesis of the tetracyclic meroterpenoid (-)-cyclosmenospongine. A highly convergent three-component coupling strategy enabled rapid access to individual cyclization precursors that were tested for their reactivity. The successful transformation generates three rings and sets four consecutive stereocenters in a single operation proceeding in a highly efficient manner to give exclusively the trans-decalin framework. In addition, we found that the enol ether geometry and the relative configuration of C3 and C8 are crucial for the success of the polyene cyclization.
Collapse
Affiliation(s)
- Klaus Speck
- Department of Chemistry and Pharmacy, Ludwig Maximillians University Munich, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Thomas Magauer
- Department of Chemistry and Pharmacy, Ludwig Maximillians University Munich, Butenandtstrasse 5-13, 81377, Munich, Germany
| |
Collapse
|
17
|
Abstract
This review covers the literature published in 2013 for marine natural products (MNPs), with 982 citations (644 for the period January to December 2013) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1163 for 2013), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
18
|
Katoh T. Total Synthesis of Decahydrobenzo[d]xanthene Sesquiterpenoids Aureol, Strongylin A, and Stachyflin: Development of a New Strategy for the Construction of a Common Tetracyclic Core Structure. HETEROCYCLES 2013. [DOI: 10.3987/rev-13-779] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|