1
|
Gorelik DJ, Desai SP, Jdanova S, Turner JA, Taylor MS. Transformations of carbohydrate derivatives enabled by photocatalysis and visible light photochemistry. Chem Sci 2024; 15:1204-1236. [PMID: 38274059 PMCID: PMC10806712 DOI: 10.1039/d3sc05400d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
This review article highlights the diverse ways in which recent developments in the areas of photocatalysis and visible light photochemistry are impacting synthetic carbohydrate chemistry. The major topics covered are photocatalytic glycosylations, generation of radicals at the anomeric position, transformations involving radical formation at non-anomeric positions, additions to glycals, processes initiated by photocatalytic hydrogen atom transfer from sugars, and functional group interconversions at OH and SH groups. Factors influencing stereo- and site-selectivity in these processes, along with mechanistic aspects, are discussed.
Collapse
Affiliation(s)
- Daniel J Gorelik
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Shrey P Desai
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Sofia Jdanova
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Julia A Turner
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|
2
|
Manzano VE, Dada L, Uhrig ML, Varela O. Synthesis of sugar enones and their use as powerful synthetic precursors of thiodisaccharides. Carbohydr Res 2023; 529:108833. [PMID: 37216699 DOI: 10.1016/j.carres.2023.108833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Monosaccharide derivatives having a double bond conjugated to a carbonyl (sugar enones or enuloses) are relevant synthetic tools. They are also suitable starting materials, or versatile intermediates, for the synthesis of a wide variety of natural or synthetic compounds with a broad spectrum of biological and pharmacological activities. The preparation of enones is mainly focused on the search for more efficient and diastereoselective synthetic methodologies. The usefulness of enuloses relies on the diverse reaction possibilities offered by alkene and carbonyl double bonds, which are prone to undergo varied reactions such as halogenation, nitration, epoxidation, reduction, addition, etc. The addition of thiol groups that led to sulfur glycomimetics, such as thiooligosaccharides, is particularly relevant. Therefore, the synthesis of enuloses and the Michael addition of sulfur nucleophiles to give thiosugars or thiodisaccharides are discussed here. Chemical modifications of the conjugate addition products to afford biologically active compounds are also reported.
Collapse
Affiliation(s)
- Verónica E Manzano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Lucas Dada
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - María Laura Uhrig
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina.
| | - Oscar Varela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Pillet L, Lim D, Almulhim N, Benítez-Mateos AI, Paradisi F. Novel triple mutant of an extremophilic glycosyl hydrolase enables the rapid synthesis of thioglycosides. Chem Commun (Camb) 2022; 58:12118-12121. [PMID: 36226508 PMCID: PMC9609006 DOI: 10.1039/d2cc04660a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 07/25/2023]
Abstract
In order to expand the toolbox of enzymes available for thioglycoside synthesis, we describe here the first example of an extremophilic glycosyl hydrolase from Halothermothrix orenii (HorGH1) engineered towards thioglycosynthase activity with a novel combination of mutations. Using the triple mutant, HorGH1 M299R/E166A/E354G, a range of thioglycosides from glycosyl fluoride donors and aromatic thiols could be synthesised with exquisite stereoselectivity and good to excellent conversions (61-93%).
Collapse
Affiliation(s)
- Lauriane Pillet
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - David Lim
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Nourah Almulhim
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Ana I Benítez-Mateos
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| |
Collapse
|
4
|
Affiliation(s)
- Giulio Goti
- Università degli Studi di Padova Dipartimento di Scienze Chimiche via Francesco Marzolo, 1 35131 Padova ITALY
| |
Collapse
|
5
|
Montes AS, León EI, Martin A, Pérez-Martín I, Suárez E. Free‐Radical Epimerization of D‐ into L‐C‐(glycosyl)methanol Compounds Using 1,5‐Hydrogen Atom Transfer Reaction. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Adrián S. Montes
- IPNA: Instituto de Productos Naturales y Agrobiologia Síntesis de Productos Naturales Avda. Astrofisico Francisco Sanchez 3 38206 La Laguna SPAIN
| | - Elisa I León
- IPNA: Instituto de Productos Naturales y Agrobiologia Síntesis de Productos Naturales Avda. Astrofisico Francisco Sanchez 3 38206 La Laguna SPAIN
| | - Angeles Martin
- Instituto de Productos Naturales Y Agrobiolog�a, CSIC Sintesis de Productos Naturales Avda. Astrofisico Fco. Sanchez 3 38205 La Laguna SPAIN
| | - Inés Pérez-Martín
- IPNA: Instituto de Productos Naturales y Agrobiologia Síntesis de Productos Naturales Avda. Astrofisico Francisco Sanchez 3 38206 La Laguna SPAIN
| | - Ernesto Suárez
- IPNA: Instituto de Productos Naturales y Agrobiologia Síntesis de Productos Naturales Avda. Astrofisico Francisco Sanchez 3 38206 La Laguna SPAIN
| |
Collapse
|
6
|
Transglycosylation by β-mannanase TrMan5A variants and enzyme synergy for synthesis of allyl glycosides from galactomannan. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Debreczeni N, Bege M, Borbás A. Synthesis of Potential Glycosyl Transferase Inhibitors by Thio‐Click Reactions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nóra Debreczeni
- Department of Pharmaceutical Chemistry University of Debrecen 4032 Debrecen, Egyetem tér 1 Hungary
- Doctoral School of Chemistry University of Debrecen 4032 Debrecen, Egyetem tér 1 Hungary
- Institute of Healthcare Industry University of Debrecen 4032 Debrecen, Nagyerdei körút 98 Hungary
| | - Miklós Bege
- Department of Pharmaceutical Chemistry University of Debrecen 4032 Debrecen, Egyetem tér 1 Hungary
- Institute of Healthcare Industry University of Debrecen 4032 Debrecen, Nagyerdei körút 98 Hungary
- MTA-DE Molecular Recognition and Interaction Research Group University of Debrecen Egyetem tér 1 4032 Debrecen Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry University of Debrecen 4032 Debrecen, Egyetem tér 1 Hungary
| |
Collapse
|
8
|
Teng S, Meng L, Xu B, Tu G, Wu P, Liao Z, Tan Y, Guo J, Zeng J, Wan Q. Togni‐II
Reagent Mediated Selective Hydrotrifluoromethylation and Hydrothiolation of Alkenes
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shuang Teng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Bingbing Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Guangsheng Tu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Peng Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Zhiwen Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Yulin Tan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Jian Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
- Institute of Brain Research Huazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| |
Collapse
|
9
|
Wang Y, Wang YJ, Liang XC, Shen MH, Xu HD, Xu D. An aryl thiol-vinyl azide coupling reaction and a thiol-vinyl azide coupling/cyclization cascade: efficient synthesis of β-ketosulfides and arene-fused 5-methylene-2-pyrrolidinone derivatives. Org Biomol Chem 2021; 19:5169-5176. [PMID: 34037057 DOI: 10.1039/d1ob00328c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The addition reaction of thiol to vinyl azide has been extensively studied. Variously substituted aryl thiols are all viable for this coupling process. The scope of the other partner is successfully expanded from α-aryl vinyl azide to α-alkyl vinyl azide. A thiol-vinyl azide coupling/cyclization cascade is realized with substituted aryl vinyl azides carrying a 2-methoxycarbonyl group. The value of β-ketosulfide products was demonstrated by its application in S-heterocycle synthesis.
Collapse
Affiliation(s)
- Yong Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Yu-Jiao Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Xian-Chen Liang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Mei-Hua Shen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hua-Dong Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Defeng Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
10
|
Hoyos P, Perona A, Juanes O, Rumbero Á, Hernáiz MJ. Synthesis of Glycodendrimers with Antiviral and Antibacterial Activity. Chemistry 2021; 27:7593-7624. [PMID: 33533096 DOI: 10.1002/chem.202005065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Indexed: 12/27/2022]
Abstract
Glycodendrimers are an important class of synthetic macromolecules that can be used to mimic many structural and functional features of cell-surface glycoconjugates. Their carbohydrate moieties perform key important functions in bacterial and viral infections, often regulated by carbohydrate-protein interactions. Several studies have shown that the molecular structure, valency and spatial organisation of carbohydrate epitopes in glycoconjugates are key factors in the specificity and avidity of carbohydrate-protein interactions. Choosing the right glycodendrimers almost always helps to interfere with such interactions and blocks bacterial or viral adhesion and entry into host cells as an effective strategy to inhibit bacterial or viral infections. Herein, the state of the art in the design and synthesis of glycodendrimers employed for the development of anti-adhesion therapy against bacterial and viral infections is described.
Collapse
Affiliation(s)
- Pilar Hoyos
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Almudena Perona
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Olga Juanes
- Organic Chemistry Department, Autónoma University of Madrid, Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Ángel Rumbero
- Organic Chemistry Department, Autónoma University of Madrid, Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - María J Hernáiz
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| |
Collapse
|
11
|
Qiao M, Zhang L, Jiao R, Zhang S, Li B, Zhang X. Chemical and enzymatic synthesis of S-linked sugars and glycoconjugates. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Teja C, Khan FRN. Radical Transformations towards the Synthesis of Quinoline: A Review. Chem Asian J 2020; 15:4153-4167. [PMID: 33135361 DOI: 10.1002/asia.202001156] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/25/2020] [Indexed: 12/21/2022]
Abstract
Quinoline is considered one of the most ubiquitous heterocycles due to its engaging biological activities and synthetic utility over organic transformations. Over the past few decades, numerous reports have been documented in the synthesis of quinolines. The classical methods including, Skraup, Friedlander, Doebner-von-Miller, Conrad-Limpach, Pfitzinger quinoline synthesis, and so forth, these are the well-known methods to construct principal quinoline scaffold with several advantages and limitations. Recently, radical insertion or catalyzed reactions have emerged as a powerful and efficient tool to construct heterocycles with high atom efficiency and step economy. In this concern, this minireview mainly focused on the developments of Quinoline synthesis via radical reactions. In addition, a brief description of the preparation procedure, reactivity, and mechanisms is also included, where as possible. Respectively, the synthesis of quinolines is classified and summarized based on its reactivity, so it will help the researchers to grab the information in this exploration area, as Quinolines are promising pharmacophores.
Collapse
Affiliation(s)
- Chitrala Teja
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Fazlur Rahman Nawaz Khan
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| |
Collapse
|
13
|
McCourt RO, Scanlan EM. Atmospheric Oxygen Mediated Radical Hydrothiolation of Alkenes. Chemistry 2020; 26:15804-15810. [DOI: 10.1002/chem.202002542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/08/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Ruairí O. McCourt
- School of Chemistry Trinity Biomedical Sciences Institute (TBSI) Trinity College Dublin The University of Dublin Dublin 2 Ireland
| | - Eoin M. Scanlan
- School of Chemistry Trinity Biomedical Sciences Institute (TBSI) Trinity College Dublin The University of Dublin Dublin 2 Ireland
| |
Collapse
|
14
|
Nolan MD, Scanlan EM. Applications of Thiol-Ene Chemistry for Peptide Science. Front Chem 2020; 8:583272. [PMID: 33282831 PMCID: PMC7689097 DOI: 10.3389/fchem.2020.583272] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Radical thiol-ene chemistry has been demonstrated for a range of applications in peptide science, including macrocyclization, glycosylation and lipidation amongst a myriad of others. The thiol-ene reaction offers a number of advantages in this area, primarily those characteristic of "click" reactions. This provides a chemical approach to peptide modification that is compatible with aqueous conditions with high orthogonality and functional group tolerance. Additionally, the use of a chemical approach for peptide modification affords homogeneous peptides, compared to heterogeneous mixtures often obtained through biological methods. In addition to peptide modification, thiol-ene chemistry has been applied in novel approaches to biological studies through synthesis of mimetics and use in development of probes. This review will cover the range of applications of the radical-mediated thiol-ene reaction in peptide and protein science.
Collapse
Affiliation(s)
- Mark D Nolan
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Eoin M Scanlan
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| |
Collapse
|
15
|
Bege M, Bereczki I, Molnár DJ, Kicsák M, Pénzes-Daku K, Bereczky Z, Ferenc G, Kovács L, Herczegh P, Borbás A. Synthesis and oligomerization of cysteinyl nucleosides. Org Biomol Chem 2020; 18:8161-8178. [PMID: 33020786 DOI: 10.1039/d0ob01890b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nucleoside and nucleic acid analogues are known to possess a considerable therapeutic potential. In this work, by coupling cysteine to nucleosides, we successfully synthesized compounds that may not only have interesting biological properties in their monomeric form, but can be used beyond that, for oligomerization, in order to produce new types of synthetic nucleic acids. We elaborated different strategies for the synthesis of cysteinyl nucleosides as monomers of cysteinyl nucleic acids using nucleophilic substitution or thiol-ene coupling as a synthetic tool, and utilised on two complementary nucleosides, uridine and adenosine. Dipeptidyl dinucleosides and pentameric cysteinyl uridine were prepared from the monomeric building blocks, which are the first members of a new class of peptide nucleic acids containing the entire ribofuranosyl nucleoside units bound to the peptide backbone.
Collapse
Affiliation(s)
- Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary. and Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, H-4032, Hungary and MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Debrecen, H-4032, Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary.
| | - Dénes J Molnár
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary.
| | - Máté Kicsák
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary.
| | - Krisztina Pénzes-Daku
- Division of Clinical Laboratory Science, University of Debrecen, Debrecen, H-4032, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Science, University of Debrecen, Debrecen, H-4032, Hungary
| | - Györgyi Ferenc
- Nucleic Acid Synthesis Laboratory, Biological Research Center, Szeged, H-6726, Hungary
| | - Lajos Kovács
- Nucleic Acids Laboratory, Department of Medicinal Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary.
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary.
| |
Collapse
|
16
|
Borbás A. Photoinitiated Thiol-ene Reactions of Enoses: A Powerful Tool for Stereoselective Synthesis of Glycomimetics with Challenging Glycosidic Linkages. Chemistry 2020; 26:6090-6101. [PMID: 31910299 PMCID: PMC7317871 DOI: 10.1002/chem.201905408] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/03/2020] [Indexed: 12/21/2022]
Abstract
Thioglycosides and C-glycosides represent pharmacologically useful classes of glycomimetics that possess a high degree of biological stability. One emerging tool for the stereoselective synthesis of thioglycosides is the photoinitiated addition of thiols to unsaturated sugars. Moreover, thiyl radical-mediated reactions of exo-glycals and 1-substituted endo-glycals offer facile routes to β-C-glycosidic structures. This Concept article summarizes the thiol-ene coupling strategies developed recently by our group and Somsák's group for the synthesis of several kinds of glycomimetics which are difficult to synthesize by conventional methods. One unusual characteristic of the thiol-ene reactions of endo-glycals is that heating inhibits, whereas cooling promotes the reaction. This unique temperature dependence as well as the effects of the enose structures and thiol configurations on the efficacy and stereoselectivity of the reactions are also discussed.
Collapse
Affiliation(s)
- Anikó Borbás
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| |
Collapse
|
17
|
Kelemen V, Csávás M, Hotzi J, Herczeg M, Poonam, Rathi B, Herczegh P, Jain N, Borbás A. Photoinitiated Thiol-Ene Reactions of Various 2,3-Unsaturated O-, C- S- and N-Glycosides - Scope and Limitations Study. Chem Asian J 2020; 15:876-891. [PMID: 32003941 PMCID: PMC7154673 DOI: 10.1002/asia.201901560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/08/2020] [Indexed: 12/13/2022]
Abstract
The photoinitiated thiol-ene addition reaction is a highly stereo- and regioselective, and environmentally friendly reaction proceeding under mild conditions, hence it is ideally suited for the synthesis of carbohydrate mimetics. A comprehensive study on UV-light-induced reactions of 2,3-unsaturated O-, C-, S- and N-glycosides with various thiols was performed. The effect of experimental parameters and structural variations of the alkenes and thiols on the efficacy and regio- and stereoselectivity of the reactions was systematically studied and optimized. The type of anomeric heteroatom was found to profoundly affect the reactivity of 2,3-unsaturated sugars in the thiol-ene couplings. Hydrothiolation of 2,3-dideoxy O-glycosyl enosides efficiently produced the axially C2-S-substituted addition products with high to complete regioselectivity. Moderate efficacy and varying regio- and stereoselectivity were observed with 2,3-unsaturated N-glycosides and no addition occurred onto the endocyclic double bond of C-glycosides. Upon hydrothiolation of 2,3-unsaturated S-glycosides, the addition of thiyl radicals was followed by elimination of the thiyl aglycone resulting in 3-S-substituted glycals.
Collapse
Affiliation(s)
- Viktor Kelemen
- Department of Pharmaceutical ChemistryUniversity of Debrecen4032DebrecenEgyetem tér 1Hungary
- Doctoral School of Pharmaceutical SciencesUniversity of Debrecen4032DebrecenEgyetem tér 1Hungary
| | - Magdolna Csávás
- Department of Pharmaceutical ChemistryUniversity of Debrecen4032DebrecenEgyetem tér 1Hungary
| | - Judit Hotzi
- Department of Pharmaceutical ChemistryUniversity of Debrecen4032DebrecenEgyetem tér 1Hungary
| | - Mihály Herczeg
- Department of Pharmaceutical ChemistryUniversity of Debrecen4032DebrecenEgyetem tér 1Hungary
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Research Group for Oligosaccharide Chemistry of the Hungarian Academy of SciencesUniversity of DebrecenH-4032DebrecenHungary
| | - Poonam
- Department of Chemistry Miranda HouseUniversity of DelhiIndia
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery Department of Chemistry Hansraj CollegeUniversity of DelhiIndia
| | - Pál Herczegh
- Department of Pharmaceutical ChemistryUniversity of Debrecen4032DebrecenEgyetem tér 1Hungary
| | - Nidhi Jain
- Department of ChemistryIndian Institute of TechnologyNew Delhi110016India
| | - Anikó Borbás
- Department of Pharmaceutical ChemistryUniversity of Debrecen4032DebrecenEgyetem tér 1Hungary
| |
Collapse
|
18
|
Abstract
Radical reactions have found many applications in carbohydrate chemistry, especially in the construction of carbon–carbon bonds. The formation of carbon–heteroatom bonds has been less intensively studied. This mini-review will summarize the efforts to add heteroatom radicals to unsaturated carbohydrates like endo-glycals. Starting from early examples, developed more than 50 years ago, the importance of such reactions for carbohydrate chemistry and recent applications will be discussed. After a short introduction, the mini-review is divided in sub-chapters according to the heteroatoms halogen, nitrogen, phosphorus, and sulfur. The mechanisms of radical generation by chemical or photochemical processes and the subsequent reactions of the radicals at the 1-position will be discussed. This mini-review cannot cover all aspects of heteroatom-centered radicals in carbohydrate chemistry, but should provide an overview of the various strategies and future perspectives.
Collapse
|
19
|
Lin L, Qiao M, Zhang X, Linhardt RJ. Site-selective reactions for the synthesis of glycoconjugates in polysaccharide vaccine development. Carbohydr Polym 2020; 230:115643. [DOI: 10.1016/j.carbpol.2019.115643] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/10/2019] [Accepted: 11/18/2019] [Indexed: 11/30/2022]
|
20
|
Csávás M, Eszenyi D, Mező E, Lázár L, Debreczeni N, Tóth M, Somsák L, Borbás A. Stereoselective Synthesis of Carbon-Sulfur-Bridged Glycomimetics by Photoinitiated Thiol-Ene Coupling Reactions. Int J Mol Sci 2020; 21:ijms21020573. [PMID: 31963149 PMCID: PMC7013897 DOI: 10.3390/ijms21020573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
Oligosaccharides and glycoconjugates are abundant in all living organisms, taking part in a multitude of biological processes. The application of natural O-glycosides in biological studies and drug development is limited by their sensitivity to enzymatic hydrolysis. This issue made it necessary to design hydrolytically stable carbohydrate mimetics, where sulfur, carbon, or longer interglycosidic connections comprising two or three atoms replace the glycosidic oxygen. However, the formation of the interglycosidic linkages between the sugar residues in high diastereoslectivity poses a major challenge. Here, we report on stereoselective synthesis of carbon-sulfur-bridged disaccharide mimetics by the free radical addition of carbohydrate thiols onto the exo-cyclic double bond of unsaturated sugars. A systematic study on UV-light initiated radical mediated hydrothiolation reactions of enoses bearing an exocyclic double bond at C1, C2, C3, C4, C5, and C6 positions of the pyranosyl ring with various sugar thiols was performed. The effect of temperature and structural variations of the alkenes and thiols on the efficacy and stereoselectivity of the reactions was systematically studied and optimized. The reactions proceeded with high efficacy and, in most cases, with complete diastereoselectivity producing a broad array of disaccharide mimetics coupling through an equatorially oriented methylensulfide bridge.
Collapse
Affiliation(s)
- Magdolna Csávás
- Department of Pharmaceutical Chemistry University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.C.); (D.E.); (E.M.); (N.D.)
| | - Dániel Eszenyi
- Department of Pharmaceutical Chemistry University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.C.); (D.E.); (E.M.); (N.D.)
| | - Erika Mező
- Department of Pharmaceutical Chemistry University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.C.); (D.E.); (E.M.); (N.D.)
| | - László Lázár
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (L.L.); (M.T.); (L.S.)
| | - Nóra Debreczeni
- Department of Pharmaceutical Chemistry University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.C.); (D.E.); (E.M.); (N.D.)
- Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Marietta Tóth
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (L.L.); (M.T.); (L.S.)
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (L.L.); (M.T.); (L.S.)
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.C.); (D.E.); (E.M.); (N.D.)
- Correspondence: ; Tel.: +36-52-512900-22472
| |
Collapse
|
21
|
Zelli R, Dumy P, Marra A. Metal-free synthesis of imino-disaccharides and calix-iminosugars by photoinduced radical thiol–ene coupling (TEC). Org Biomol Chem 2020; 18:2392-2397. [DOI: 10.1039/d0ob00198h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deprotected iminosugar alkenes were subjected to thiol–ene coupling with deprotected sugar thiols to afford new imino-disaccharides. Two thiol–ene couplings converted these alkenes into iminosugar thiols and then multivalent iminosugars.
Collapse
Affiliation(s)
- Renaud Zelli
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| |
Collapse
|
22
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
23
|
Kelemen V, Bege M, Eszenyi D, Debreczeni N, Bényei A, Stürzer T, Herczegh P, Borbás A. Stereoselective Thioconjugation by Photoinduced Thiol-ene Coupling Reactions of Hexo- and Pentopyranosyl d- and l-Glycals at Low-Temperature-Reactivity and Stereoselectivity Study. Chemistry 2019; 25:14555-14571. [PMID: 31368604 PMCID: PMC6900028 DOI: 10.1002/chem.201903095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/31/2019] [Indexed: 12/17/2022]
Abstract
A comprehensive optimization and mechanistic study on the photoinduced hydrothiolation of different d- and l- hexo- and pentoglycals with various thiols was performed, at the temperature range of RT to -120 °C. Addition of thiols onto 2-substituted hexoglycals proceeded with complete 1,2-cis-α-stereoselectivity in all cases. Hydrothiolation of 2-substituted pentoglycals resulted in mixtures of 1,2-cis-α- and -β-thioglycosides of varying ratio depending on the configuration of the reactants. Hydrothiolation of unsubstituted glycals at -80 °C proceeded with excellent yields and, except for galactal, provided the axially C2-S-linked isomers with high selectivity. Cooling was always beneficial to the efficacy, increased the yields and in most cases significantly raised the stereoselectivity. The suggested mechanism explains the different conformational preferences of the intermediate carbon-centered radicals, which is a crucial factor in the stereoselectivity of the reactions.
Collapse
Affiliation(s)
- Viktor Kelemen
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
- Doctoral School of Pharmaceutical SciencesUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Miklós Bege
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
- MTA-DE Molecular Recognition and Interaction Research GroupUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Dániel Eszenyi
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Nóra Debreczeni
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
- Doctoral School of ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Attila Bényei
- Department of Physical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Tobias Stürzer
- Bruker AXS GmbHÖstliche Rheinbrückenstraße 4976187KarlsruheGermany
| | - Pál Herczegh
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Anikó Borbás
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| |
Collapse
|
24
|
McCourt R, Scanlan EM. 5‐
exo versus
6‐
endo
Thiyl‐Radical Cyclizations in Organic Synthesis. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ruairí McCourt
- Trinity Biomedical Sciences Institute (TBSI), Trinity College DublinThe University of Dublin, Dublin 2 Ireland
| | - Eoin M. Scanlan
- Trinity Biomedical Sciences Institute (TBSI), Trinity College DublinThe University of Dublin, Dublin 2 Ireland
| |
Collapse
|
25
|
Sánchez-Fernández EM, García-Moreno MI, García-Hernández R, Padrón JM, García Fernández JM, Gamarro F, Ortiz Mellet C. Thiol-ene "Click" Synthesis and Pharmacological Evaluation of C-Glycoside sp 2-Iminosugar Glycolipids. Molecules 2019; 24:E2882. [PMID: 31398901 PMCID: PMC6720825 DOI: 10.3390/molecules24162882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/30/2022] Open
Abstract
The unique stereoelectronic properties of sp2-iminosugars enable their participation in glycosylation reactions, thereby behaving as true carbohydrate chemical mimics. Among sp2-iminosugar conjugates, the sp2-iminosugar glycolipids (sp2-IGLs) have shown a variety of interesting pharmacological properties ranging from glycosidase inhibition to antiproliferative, antiparasitic, and anti-inflammatory activities. Developing strategies compatible with molecular diversity-oriented strategies for structure-activity relationship studies was therefore highly wanted. Here we show that a reaction sequence consisting in stereoselective C-allylation followed by thiol-ene "click" coupling provides a very convenient access to α-C-glycoside sp2-IGLs. Both the glycone moiety and the aglycone tail can be modified by using sp2-iminosugar precursors with different configurational profiles (d-gluco or d-galacto in this work) and varied thiols, as well as by oxidation of the sulfide adducts (to the corresponding sulfones in this work). A series of derivatives was prepared in this manner and their glycosidase inhibitory, antiproliferative and antileishmanial activities were evaluated in different settings. The results confirm that the inhibition of glycosidases, particularly α-glucosidase, and the antitumor/leishmanicidal activities are unrelated. The data are also consistent with the two later activities arising from the ability of the sp2-IGLs to interfere in the immune system response in a cell line and cell context dependent manner.
Collapse
Affiliation(s)
- Elena M Sánchez-Fernández
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain.
| | - M Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain
| | - Raquel García-Hernández
- Instituto de Parasitología y Biomedicina "López-Neyra", IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBCAN), Universidad de La Laguna, 38206 La Laguna, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - University of Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina "López-Neyra", IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain.
| |
Collapse
|
26
|
Bege M, Kiss A, Kicsák M, Bereczki I, Baksa V, Király G, Szemán-Nagy G, Szigeti MZ, Herczegh P, Borbás A. Synthesis and Cytostatic Effect of 3'-deoxy-3'- C-Sulfanylmethyl Nucleoside Derivatives with d- xylo Configuration. Molecules 2019; 24:molecules24112173. [PMID: 31185601 PMCID: PMC6600393 DOI: 10.3390/molecules24112173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
A small library of 3’-deoxy-C3’-substituted xylofuranosyl-pyrimidine nucleoside analogues were prepared by photoinduced thiol-ene addition of various thiols, including normal and branched alkyl-, 2-hydroxyethyl, benzyl-, and sugar thiols, to 3’-exomethylene derivatives of 2’,5’-di-O-tert-butyldimethylsilyl-protected ribothymidine and uridine. The bioactivity of these derivatives was studied on tumorous SCC (mouse squamous carcinoma cell) and immortalized control HaCaT (human keratinocyte) cell lines. Several alkyl-substituted analogues elicited promising cytostatic activity in low micromolar concentrations with a slight selectivity toward tumor cells. Near-infrared live-cell imaging revealed SCC tumor cell-specific mitotic blockade via genotoxicity of analogue 10, bearing an n-butyl side chain. This analogue essentially affects the chromatin structure of SCC tumor cells, inducing a condensed nuclear material and micronuclei as also supported by fluorescent microscopy. The results highlight that thiol-ene chemistry represents an efficient strategy to discover novel nucleoside analogues with non-natural sugar structures as anticancer agents.
Collapse
Affiliation(s)
- Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| | - Alexandra Kiss
- Department of Biotechnology and Microbiology, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| | - Máté Kicsák
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| | - Viktória Baksa
- Department of Biotechnology and Microbiology, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| | - Gábor Király
- Department of Biotechnology and Microbiology, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| | - Gábor Szemán-Nagy
- Department of Biotechnology and Microbiology, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| | - M Zsuzsa Szigeti
- Department of Biotechnology and Microbiology, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032 Debrecen, Egyetem Tér 1, Hungary.
| |
Collapse
|
27
|
Fayolle D, Berthet N, Doumeche B, Renaudet O, Strazewski P, Fiore M. Towards the preparation of synthetic outer membrane vesicle models with micromolar affinity to wheat germ agglutinin using a dialkyl thioglycoside. Beilstein J Org Chem 2019; 15:937-946. [PMID: 31164930 PMCID: PMC6541351 DOI: 10.3762/bjoc.15.90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
A series of alkyl thioglycosides and alkyl thiodiglycosides bearing glucose and N-acetylglucosamine residues were prepared by thiol-ene coupling in moderate to good yields (40-85%). Their binding ability towards wheat germ agglutinin was measured by competitive enzyme-linked lectin assays. One of the synthetic compounds presenting two GlcNAc units showed the highest inhibitory effect of this study with an IC50 of 11 µM corresponding to a 3182-fold improvement compared to GlcNAc. These synthetic molecules were used to produce giant vesicles, alone or in mixture with phospholipids, mimicking bacterial outer membrane vesicles (OMV) with potential antiadhesive properties.
Collapse
Affiliation(s)
- Dimitri Fayolle
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 blvd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
| | - Nathalie Berthet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Bastien Doumeche
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 blvd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
| | - Olivier Renaudet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Peter Strazewski
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 blvd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
| | - Michele Fiore
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 blvd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
| |
Collapse
|
28
|
Zheng Y, Zheng W, Zhu D, Chang H. Theoretical modeling of pKa's of thiol compounds in aqueous solution. NEW J CHEM 2019. [DOI: 10.1039/c8nj06259e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The pKa's of different kinds of thiols (R-SH) were investigated by using the M06-2X method with a SMDsSAS model.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Wenrui Zheng
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Danfeng Zhu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Huifang Chang
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| |
Collapse
|
29
|
Lázár L, Borbás A, Somsák L. Synthesis of thiomaltooligosaccharides by a thio-click approach. Carbohydr Res 2018; 470:8-12. [DOI: 10.1016/j.carres.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 01/11/2023]
|
30
|
Sulfur Radicals and Their Application. Top Curr Chem (Cham) 2018; 376:22. [DOI: 10.1007/s41061-018-0197-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
|
31
|
McCourt RO, Dénès F, Scanlan EM. Radical-Mediated Reactions of α-Bromo Aluminium Thioacetals, α-Bromothioesters, and Xanthates for Thiolactone Synthesis. Molecules 2018; 23:molecules23040897. [PMID: 29652812 PMCID: PMC6017948 DOI: 10.3390/molecules23040897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 11/16/2022] Open
Abstract
Thiolactones have attracted considerable attention in recent years as bioactive natural products, lead compounds for drug discovery, molecular probes, and reagents for polymerisation. We have investigated radical-mediated C-C bond forming reactions as a strategy for thiolactone synthesis. Cyclisation of an α-bromo aluminium thioacetal was investigated under radical conditions. It was found that at low temperature, a radical fragmentation and rearrangement process occurs. A putative reaction mechanism involving a previously unreported aluminium templated thiol-ene step for the rearrangement process is presented. Cyclisation reactions of α-bromo thioesters and α-xanthate thioesters under radical mediated conditions furnished the desired thiolactones in moderate yields.
Collapse
Affiliation(s)
- Ruairí O McCourt
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Fabrice Dénès
- CEISAM UMR CNRS 6230, Université de Nantes, UFR des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes CEDEX 3, France.
| | - Eoin M Scanlan
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
32
|
Eszenyi D, Kelemen V, Balogh F, Bege M, Csávás M, Herczegh P, Borbás A. Promotion of a Reaction by Cooling: Stereoselective 1,2‐cis‐α‐Thioglycoconjugation by Thiol‐Ene Coupling at −80 °C. Chemistry 2018; 24:4532-4536. [DOI: 10.1002/chem.201800668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Dániel Eszenyi
- Department of Pharmaceutical ChemistryUniversity of Debrecen Egyetem tér 1 4032 Debrecen Hungary
| | - Viktor Kelemen
- Department of Pharmaceutical ChemistryUniversity of Debrecen Egyetem tér 1 4032 Debrecen Hungary
| | - Fanny Balogh
- Department of Pharmaceutical ChemistryUniversity of Debrecen Egyetem tér 1 4032 Debrecen Hungary
| | - Miklós Bege
- Department of Pharmaceutical ChemistryUniversity of Debrecen Egyetem tér 1 4032 Debrecen Hungary
| | - Magdolna Csávás
- Department of Pharmaceutical ChemistryUniversity of Debrecen Egyetem tér 1 4032 Debrecen Hungary
| | - Pál Herczegh
- Department of Pharmaceutical ChemistryUniversity of Debrecen Egyetem tér 1 4032 Debrecen Hungary
| | - Anikó Borbás
- Department of Pharmaceutical ChemistryUniversity of Debrecen Egyetem tér 1 4032 Debrecen Hungary
| |
Collapse
|
33
|
Latxague L, Gaubert A, Barthélémy P. Recent Advances in the Chemistry of Glycoconjugate Amphiphiles. Molecules 2018; 23:E89. [PMID: 29301326 PMCID: PMC6017060 DOI: 10.3390/molecules23010089] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 11/23/2022] Open
Abstract
Glyconanoparticles essentially result from the (covalent or noncovalent) association of nanometer-scale objects with carbohydrates. Such glyconanoparticles can take many different forms and this mini review will focus only on soft materials (colloids, liposomes, gels etc.) with a special emphasis on glycolipid-derived nanomaterials and the chemistry involved for their synthesis. Also this contribution presents Low Molecular Weight Gels (LMWGs) stabilized by glycoconjugate amphiphiles. Such soft materials are likely to be of interest for different biomedical applications.
Collapse
Affiliation(s)
- Laurent Latxague
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Alexandra Gaubert
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Philippe Barthélémy
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, F-33000 Bordeaux, France.
| |
Collapse
|
34
|
Heteroatom-Centred Radicals for the Synthesis of Heterocyclic Compounds. TOPICS IN HETEROCYCLIC CHEMISTRY 2018. [DOI: 10.1007/7081_2018_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Alexander SR, Williams GM, Brimble MA, Fairbanks AJ. A double-click approach to the protecting group free synthesis of glycoconjugates. Org Biomol Chem 2018; 16:1258-1262. [DOI: 10.1039/c8ob00072g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of a bi-functional linker, containing an alkyne and an alkene, allows the protecting group free conjugation of reducing sugars to thiols via a double click process.
Collapse
Affiliation(s)
- S. R. Alexander
- Department of Chemistry
- University of Canterbury
- Christchurch 8140
- New Zealand
| | - G. M. Williams
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| | - M. A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| | - A. J. Fairbanks
- Department of Chemistry
- University of Canterbury
- Christchurch 8140
- New Zealand
- Biomolecular Interaction Centre
| |
Collapse
|
36
|
Norberg O, Wu B, Thota N, Ge JT, Fauquet G, Saur AK, Aastrup T, Dong H, Yan M, Ramström O. Synthesis and binding affinity analysis of α1-2- and α1-6- O / S -linked dimannosides for the elucidation of sulfur in glycosidic bonds using quartz crystal microbalance sensors. Carbohydr Res 2017; 452:35-42. [DOI: 10.1016/j.carres.2017.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 01/05/2023]
|
37
|
Bege M, Bereczki I, Herczeg M, Kicsák M, Eszenyi D, Herczegh P, Borbás A. A low-temperature, photoinduced thiol–ene click reaction: a mild and efficient method for the synthesis of sugar-modified nucleosides. Org Biomol Chem 2017; 15:9226-9233. [DOI: 10.1039/c7ob02184d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While studying the radical mediated hydrothiolation of nucleoside enofuranosides, an unusual temperature effect was observed by the exploitation of which various thio-substituted nucleoside analogues were produced.
Collapse
Affiliation(s)
- Miklós Bege
- Department of Pharmaceutical Chemistry
- University of Debrecen
- H-4032 Debrecen Egyetem tér 1
- Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry
- University of Debrecen
- H-4032 Debrecen Egyetem tér 1
- Hungary
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry
- University of Debrecen
- H-4032 Debrecen Egyetem tér 1
- Hungary
| | - Máté Kicsák
- Department of Pharmaceutical Chemistry
- University of Debrecen
- H-4032 Debrecen Egyetem tér 1
- Hungary
| | - Dániel Eszenyi
- Department of Pharmaceutical Chemistry
- University of Debrecen
- H-4032 Debrecen Egyetem tér 1
- Hungary
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry
- University of Debrecen
- H-4032 Debrecen Egyetem tér 1
- Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry
- University of Debrecen
- H-4032 Debrecen Egyetem tér 1
- Hungary
| |
Collapse
|
38
|
Alexander SR, Lim D, Amso Z, Brimble MA, Fairbanks AJ. Protecting group free synthesis of glycosyl thiols from reducing sugars in water; application to the production of N-glycan glycoconjugates. Org Biomol Chem 2017; 15:2152-2156. [DOI: 10.1039/c7ob00112f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Un-protected 2-acetamido terminated reducing sugars may be converted into the corresponding glycosyl thiols in water, and conjugated to peptides using the thiol–ene click reaction without recourse to any protecting groups.
Collapse
Affiliation(s)
- S. R. Alexander
- Department of Chemistry
- University of Canterbury
- Christchurch 8140
- New Zealand
| | - D. Lim
- Department of Chemistry
- University of Canterbury
- Christchurch 8140
- New Zealand
| | - Z. Amso
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| | - M. A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| | - A. J. Fairbanks
- Department of Chemistry
- University of Canterbury
- Christchurch 8140
- New Zealand
- Biomolecular Interaction Centre
| |
Collapse
|
39
|
Lázár L, Juhász L, Batta G, Borbás A, Somsák L. Unprecedented β-manno type thiodisaccharides with a C-glycosylic function by photoinitiated hydrothiolation of 1-C-substituted glycals. NEW J CHEM 2017. [DOI: 10.1039/c6nj03751h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unique thiodisaccharides of β-manno type featuring C-glycosylic structure with an anomeric functional group for further elaboration were obtained by radical-mediated hydrothiolation of 1-C-acceptor-substituted glycals.
Collapse
Affiliation(s)
- László Lázár
- Department of Organic Chemistry
- University of Debrecen
- Hungary
| | - László Juhász
- Department of Organic Chemistry
- University of Debrecen
- Hungary
| | - Gyula Batta
- Department of Organic Chemistry
- University of Debrecen
- Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry
- University of Debrecen
- Hungary
| | - László Somsák
- Department of Organic Chemistry
- University of Debrecen
- Hungary
| |
Collapse
|
40
|
Naskar S, Das I. Elusive Thiyl Radical Migration in a Visible Light Induced Chemoselective Rearrangement of γ-Keto Acrylate Thioesters: Synthesis of Substituted Butenolides. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201601016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sandip Naskar
- Organic and Medicianl Chemistry Division; CSIR-Indian Institute of Chemical Biology; 4, Raja S. C. Mullick Road Jadavpur, Kolkata 700032 India, Fax: (+91)- 33-2473-5197
| | - Indrajit Das
- Organic and Medicianl Chemistry Division; CSIR-Indian Institute of Chemical Biology; 4, Raja S. C. Mullick Road Jadavpur, Kolkata 700032 India, Fax: (+91)- 33-2473-5197
| |
Collapse
|
41
|
Modem S, Kankala S, Balaboina R, Thirukovela NS, Jonnalagadda SB, Vadde R, Vasam CS. Decarbonylation of Salicylaldehyde Activated byp-Cymene Ruthenium(II) Dimer: Implication for Catalytic Alkyne Hydrothiolation. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sarangapani Modem
- Department of Chemistry; Kakatiya University; 506009 Warangal Telangana State India
| | - Shravankumar Kankala
- Department of Chemistry; Kakatiya University; 506009 Warangal Telangana State India
- School of Chemistry and Physics; University of Kwazulu-Natal; Westville Compus, Chiltern Hills 4000 Durban South Africa
| | - Ramesh Balaboina
- Department of Chemistry; Kakatiya University; 506009 Warangal Telangana State India
| | | | - Sreekantha B. Jonnalagadda
- School of Chemistry and Physics; University of Kwazulu-Natal; Westville Compus, Chiltern Hills 4000 Durban South Africa
| | - Ravinder Vadde
- Department of Chemistry; Kakatiya University; 506009 Warangal Telangana State India
| | - Chandra Sekhar Vasam
- Department of Chemistry; Satavahana University; Karimnagar Telangana State India
- Department of Pharmaceutical Chemistry; Telangana University; Nizamabad Telangana State India
| |
Collapse
|