1
|
Das S, Dey S, Patra S, Bera A, Ghosh T, Prasad B, Sayala KD, Maji K, Bedi A, Debnath S. BODIPY-Based Molecules for Biomedical Applications. Biomolecules 2023; 13:1723. [PMID: 38136594 PMCID: PMC10741882 DOI: 10.3390/biom13121723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) derivatives have attracted attention as probes in applications like imaging and sensing due to their unique properties like (1) strong absorption and emission in the visible and near-infrared regions of the electromagnetic spectrum, (2) strong fluorescence and (3) supreme photostability. They have also been employed in areas like photodynamic therapy. Over the last decade, BODIPY-based molecules have even emerged as candidates for cancer treatments. Cancer remains a significant health issue world-wide, necessitating a continuing search for novel therapeutic options. BODIPY is a flexible fluorophore with distinct photophysical characteristics and is a fascinating drug development platform. This review provides a comprehensive overview of the most recent breakthroughs in BODIPY-based small molecules for cancer or disease detection and therapy, including their functional potential.
Collapse
Affiliation(s)
- Sarasija Das
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA;
| | - Sudipto Dey
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India;
| | - Sanujit Patra
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India; (S.P.); (A.B.); (T.G.)
| | - Arindam Bera
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India; (S.P.); (A.B.); (T.G.)
| | - Totan Ghosh
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India; (S.P.); (A.B.); (T.G.)
| | - Bibin Prasad
- Solenic Medical, Inc., 4275 Kellway Circle, Suite 146, Addison, TX 75001, USA;
| | - Kapil Dev Sayala
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75206, USA;
| | - Krishnendu Maji
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India; (S.P.); (A.B.); (T.G.)
| | - Anjan Bedi
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sashi Debnath
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Yu S, Reddy O, Abaci A, Ai Y, Li Y, Chen H, Guvendiren M, Belfield KD, Zhang Y. Novel BODIPY-Based Photobase Generators for Photoinduced Polymerization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45281-45289. [PMID: 37708358 DOI: 10.1021/acsami.3c09326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Photobase generators (PBGs) are compounds that utilize light-sensitive chemical-protecting groups to offer spatiotemporal control of releasing organic bases upon targeted light irradiation. PBGs can be implemented as an external control to initiate anionic polymerizations such as thiol-ene Michael addition reactions. However, there are limitations for common PBGs, including a short absorption wavelength and weak base release that lead to poor efficiency in photopolymerization. Therefore, there is a great need for visible-light-triggered PBGs that are capable of releasing strong bases efficiently. Here, we report two novel BODIPY-based visible-light-sensitive PBGs for light-induced activation of the thiol-ene Michael "click" reaction and polymerization. These PBGs were designed by connecting the BODIPY-based light-sensitive protecting group with tetramethylguanidine (TMG), a strong base. Moreover, we exploited the heavy atom effect to increase the efficiency of releasing TMG and the polymerization rate. These BODIPY-based PBGs exhibit extraordinary activity toward thiol-ene Michael addition-based polymerization, and they can be used in surface coating and polymer network formation of different thiol and vinyl monomers.
Collapse
Affiliation(s)
- Shupei Yu
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Ojasvita Reddy
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Alperen Abaci
- . . Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 161 Warren Street, Newark, New Jersey 07102, United States
| | - Yongling Ai
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Yanmei Li
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Hao Chen
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Murat Guvendiren
- . . Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 161 Warren Street, Newark, New Jersey 07102, United States
| | - Kevin D Belfield
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Yuanwei Zhang
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| |
Collapse
|
3
|
Mahanta CS, Ravichandiran V, Swain SP. Recent Developments in the Design of New Water-Soluble Boron Dipyrromethenes and Their Applications: An Updated Review. ACS APPLIED BIO MATERIALS 2023; 6:2995-3018. [PMID: 37462316 DOI: 10.1021/acsabm.3c00289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Boron-dipyrromethene (BODIPY) and its derivatives play an important role in the area of organic fluorophore chemistry. Recently, the water-soluble boron-dipyrromethene dyes have increasingly received interest. The structural modification of the BODIPY core by incorporating different neutral and ionic hydrophilic groups makes it water-soluble. The important hydrophilic groups, such as quaternary ammonium, sulfonate, oligoethylene glycol, dicarboxylic acid, and sugar moieties significantly increase the solubility of these dyes in water while preserving their photophysical properties. As a result, these fluorescent dyes are utilized in aqueous systems for applications such as chemosensors, cell imaging, anticancer, biolabeling, biomedicine, metal ion detection, and photodynamic treatment. This review covers the most current developments in the design and synthesis of water-soluble BODIPY derivatives and their wide applications since 2014.
Collapse
Affiliation(s)
- Chandra Sekhara Mahanta
- Department of Medicinal Chemistry and Centre for Marine Therapeutics, National Institute of Pharmaceutical Education and Research- Kolkata, 168, Chunilal Bhawan, Maniktala Main Road, Kolkata 700054, India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry and Centre for Marine Therapeutics, National Institute of Pharmaceutical Education and Research- Kolkata, 168, Chunilal Bhawan, Maniktala Main Road, Kolkata 700054, India
| | - Sharada Prasanna Swain
- Department of Medicinal Chemistry and Centre for Marine Therapeutics, National Institute of Pharmaceutical Education and Research- Kolkata, 168, Chunilal Bhawan, Maniktala Main Road, Kolkata 700054, India
| |
Collapse
|
4
|
Hohlfeld BF, Steen D, Wieland GD, Achazi K, Kulak N, Haag R, Wiehe A. Bromo- and glycosyl-substituted BODIPYs for application in photodynamic therapy and imaging. Org Biomol Chem 2023; 21:3105-3120. [PMID: 36799212 DOI: 10.1039/d2ob02174a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The introduction of heavy atoms into the BODIPY-core structure has proven to be a straightforward strategy for optimizing the design of such dyes towards enhanced generation of singlet oxygen rendering them suitable as photosensitizers for photodynamic therapy (PDT). In this work, BODIPYs are presented by combining the concept of bromination with nucleophilic aromatic substitution (SNAr) of a pentafluorophenyl or a 4-fluoro-3-nitrophenyl moiety to introduce functional groups, thus improving the phototoxic effect of the BODIPYs as well as their solubility in the biological environment. The nucleophilic substitution enabled functionalization with various amines and alcohols as well as unprotected thiocarbohydrates. The phototoxic activity of these more than 50 BODIPYs has been assessed in cellular assays against four cancer cell lines in order to more broadly evaluate their PDT potential, thus accounting for the known variability between cell lines with respect to PDT activity. In these investigations, dibrominated polar-substituted BODIPYs, particularly dibrominated glyco-substituted compounds, showed promising potential as photomedicine candidates. Furthermore, the cellular uptake of the glycosylated BODIPYs has been confirmed via fluorescence microscopy.
Collapse
Affiliation(s)
- Benjamin F Hohlfeld
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany.
| | - Dorika Steen
- Biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany.
| | | | - Katharina Achazi
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Nora Kulak
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Rainer Haag
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Arno Wiehe
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany.
| |
Collapse
|
5
|
Prieto-Montero R, Díaz Andres A, Prieto-Castañeda A, Tabero A, Longarte A, Agarrabeitia AR, Villanueva A, Ortiz MJ, Montero R, Casanova D, Martínez-Martínez V. Halogen-free photosensitizers based on meso-enamine-BODIPYs for bioimaging and photodynamic therapy. J Mater Chem B 2022; 11:169-179. [PMID: 36484323 DOI: 10.1039/d2tb01515c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The search for efficient heavy atom free photosensitizers (PSs) for photodynamic therapy (PDT) is a very active field. We describe herein a simple and easily accessible molecular design based on the attachment of an enamine group as an electron-donor moiety at the meso position of the BODIPY core with different alkylation patterns. The effect of the alkylation degree and solvent polarity on the photophysical properties in terms of splitting absorption bands, fluorescence efficiencies and singlet oxygen production is analyzed in depth experimentally using spectroscopic techniques, including femtosecond and nanosecond transient absorption (fs- and ns-TA) and using computational simulations based on time-dependent density functional theory. The correlation between the theoretical/experimental results permits the rationalization of the observed photophysical behavior exhibited by meso-enamine-BODIPY compounds and the determination of mechanistic details, which rule the population of the triplet state manifold. The potential applicability as a theragnostic agent for the most promising compound is demonstrated through in vitro assays in HeLa cells by analyzing the internalization, localization and phototoxic action.
Collapse
Affiliation(s)
- Ruth Prieto-Montero
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain.
| | - Aitor Díaz Andres
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Alejandro Prieto-Castañeda
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Andrea Tabero
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Asier Longarte
- Spectroscopy Laboratory, Departamento Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Apartado 644, 48080 Bilbao, Spain
| | - Antonia R Agarrabeitia
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.,Sección Departamental de Química Orgánica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Arcos de Jalón 118, 28037 Madrid, Spain
| | - Angeles Villanueva
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - María J Ortiz
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Raúl Montero
- SGiker Laser Facility, Universidad del País Vasco (UPV/EHU), Sarriena s/n, 48940 Leioa, Spain
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Euskadi, Spain
| | - Virginia Martínez-Martínez
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain.
| |
Collapse
|
6
|
Malacarne MC, Gariboldi MB, Caruso E. BODIPYs in PDT: A Journey through the Most Interesting Molecules Produced in the Last 10 Years. Int J Mol Sci 2022; 23:ijms231710198. [PMID: 36077597 PMCID: PMC9456687 DOI: 10.3390/ijms231710198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022] Open
Abstract
Over the past 30 years, photodynamic therapy (PDT) has shown great development. In the clinical setting the few approved molecules belong almost exclusively to the porphyrin family; but in the scientific field, in recent years many researchers have been interested in other families of photosensitizers, among which BODIPY has shown particular interest. BODIPY is the acronym for 4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene, and is a family of molecules well-known for their properties in the field of imaging. In order for these molecules to be used in PDT, a structural modification is necessary which involves the introduction of heavy atoms, such as bromine and iodine, in the beta positions of the pyrrole ring; this change favors the intersystem crossing, and increases the 1O2 yield. This mini review focused on a series of structural changes made to BODIPYs to further increase 1O2 production and bioavailability by improving cell targeting or photoactivity efficiency.
Collapse
|
7
|
BODIPY nanoparticles functionalized with lactose for cancer-targeted and fluorescence imaging-guided photodynamic therapy. Sci Rep 2022; 12:2541. [PMID: 35169149 PMCID: PMC8847361 DOI: 10.1038/s41598-022-06000-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/19/2022] [Indexed: 01/10/2023] Open
Abstract
A series of four lactose-modified BODIPY photosensitizers (PSs) with different substituents (-I, -H, -OCH3, and -NO2) in the para-phenyl moiety attached to the meso-position of the BODIPY core were synthesized; the photophysical properties and photodynamic anticancer activities of these sensitizers were investigated, focusing on the electronic properties of the different substituent groups. Compared to parent BODIPY H, iodine substitution (BODIPY I) enhanced the intersystem crossing (ISC) to produce singlet oxygen (1O2) due to the heavy atom effect, and maintained a high fluorescence quantum yield (ΦF) of 0.45. Substitution with the electron-donating methoxy group (BODIPY OMe) results in a significant perturbation of occupied frontier molecular orbitals and consequently achieves higher 1O2 generation capability with a high ΦF of 0.49, while substitution with the electron-withdrawing nitro group (BODIPY NO2) led a perturbation of unoccupied frontier molecular orbitals and induces a forbidden dark S1 state, which is negative for both fluorescence and 1O2 generation efficiencies. The BODIPY PSs formed water-soluble nanoparticles (NPs) functionalized with lactose as liver cancer-targeting ligands. BODIPY I and OMe NPs showed good fluorescence imaging and PDT activity against various tumor cells (HeLa and Huh-7 cells). Collectively, the BODIPY NPs demonstrated high 1O2 generation capability and ΦF may create a new opportunity to develop useful imaging-guided PDT agents for tumor cells.
Collapse
|
8
|
Gündüz EÖ, Gedik ME, Günaydın G, Okutan E. Amphiphilic Fullerene-BODIPY Photosensitizers for Targeted Photodynamic Therapy. ChemMedChem 2021; 17:e202100693. [PMID: 34859597 DOI: 10.1002/cmdc.202100693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/30/2022]
Abstract
Nanotheranostic tailor-made carriers are potent platforms for the treatment of cancer that propound a number of advantages over conventional agents for photodynamic therapy (PDT). Herein, four new heavy atom free amphiphilic glucose-BODIPY-fullerene dyads (14-17) endowed with carbohydrate units in the styryl units, which can also form nanomicelles (14-17NM) with Tween 80 for PDT are reported. Glucose-BODIPY-fullerene systems (14-17) and related nanomicelles (14-17NM) have been prepared to emcee efficient singlet oxygen generation upon light irradiation. In vitro anti-tumor effects of the compounds 14-17 and 14-17NM in the presence of light and in darkness have been investigated with K562 human chronic myelogenous leukemia suspension cells. Anti-tumor toxicity upon light irradiation was due to the formation of singlet oxygen and reactive oxygen species (ROS). This study may provide an accomplished example of efficient PDT applications based on nanovehicles fabricated with universal spin converter, fullerene, light harvesting unit, BODIPY dyes conjugated with targeting units to fight against cancer.
Collapse
Affiliation(s)
- Ezel Öztürk Gündüz
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| | - M Emre Gedik
- Department of Basic Oncology, Cancer Institute, Hacettepe University Çankaya, Ankara, 06100, Turkey
| | - Gürcan Günaydın
- Department of Basic Oncology, Cancer Institute, Hacettepe University Çankaya, Ankara, 06100, Turkey
| | - Elif Okutan
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| |
Collapse
|
9
|
Jin ZY, Fatima H, Zhang Y, Shao Z, Chen XJ. Recent Advances in Bio‐Compatible Oxygen Singlet Generation and Its Tumor Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Yang Jin
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Hira Fatima
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
| | - Yue Zhang
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Zongping Shao
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing Jiangsu 211816 P. R. China
| | - Xiang Jian Chen
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| |
Collapse
|
10
|
Qu Y, Wang X, Pei Z, Pei Y. Cancer-Mitochondria Dual-Targeting Glycol/Ferrocenium-Based Polydopamine Nanoparticles for Synergistic Photothermal and Photodynamic Therapy. ChemMedChem 2021; 17:e202100548. [PMID: 34719875 DOI: 10.1002/cmdc.202100548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/28/2021] [Indexed: 12/17/2022]
Abstract
A cancer-mitochondria dual-targeting nanoparticle based on lactose and ferrocenium derivatives conjugated polydopamine (PDA@Lac/Fc/Hyp) was constructed, which exhibited cancer-targeting and mitochondria-targeting ability deriving from lactose and ferrocenium derivatives due to the specific carbohydrate-protein interaction and cationic species properties, respectively. Moreover, PDA@Lac/Fc/Hyp showed great biocompatibility and phototherapeutic efficiency. This work displays a good example of constructing cancer-mitochondria dual-targeting nanoparticle for synergistic phototherapy.
Collapse
Affiliation(s)
- Yun Qu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Xinxin Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
11
|
Prieto-Montero R, Prieto-Castañeda A, Katsumiti A, Cajaraville MP, Agarrabeitia AR, Ortiz MJ, Martínez-Martínez V. Functionalization of Photosensitized Silica Nanoparticles for Advanced Photodynamic Therapy of Cancer. Int J Mol Sci 2021; 22:6618. [PMID: 34205599 PMCID: PMC8234454 DOI: 10.3390/ijms22126618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/10/2023] Open
Abstract
BODIPY dyes have recently attracted attention as potential photosensitizers. In this work, commercial and novel photosensitizers (PSs) based on BODIPY chromophores (haloBODIPYs and orthogonal dimers strategically designed with intense bands in the blue, green or red region of the visible spectra and high singlet oxygen production) were covalently linked to mesoporous silica nanoparticles (MSNs) further functionalized with PEG and folic acid (FA). MSNs approximately 50 nm in size with different functional groups were synthesized to allow multiple alternatives of PS-PEG-FA decoration of their external surface. Different combinations varying the type of PS (commercial Rose Bengal, Thionine and Chlorine e6 or custom-made BODIPY-based), the linkage design, and the length of PEG are detailed. All the nanosystems were physicochemically characterized (morphology, diameter, size distribution and PS loaded amount) and photophysically studied (absorption capacity, fluorescence efficiency, and singlet oxygen production) in suspension. For the most promising PS-PEG-FA silica nanoplatforms, the biocompatibility in dark conditions and the phototoxicity under suitable irradiation wavelengths (blue, green, or red) at regulated light doses (10-15 J/cm2) were compared with PSs free in solution in HeLa cells in vitro.
Collapse
Affiliation(s)
- Ruth Prieto-Montero
- Departamento de Química Física, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain;
| | - Alejandro Prieto-Castañeda
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.P.-C.); (A.R.A.)
| | - Alberto Katsumiti
- CBET Research Group, Department Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, 48620 Basque Country, Spain; (M.P.C.)
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (A.K.)
| | - Miren P. Cajaraville
- CBET Research Group, Department Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, 48620 Basque Country, Spain; (M.P.C.)
| | - Antonia R. Agarrabeitia
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.P.-C.); (A.R.A.)
| | - María J. Ortiz
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.P.-C.); (A.R.A.)
| | - Virginia Martínez-Martínez
- Departamento de Química Física, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain;
| |
Collapse
|
12
|
Liu Q, Tian J, Tian Y, Sun Q, Sun D, Liu D, Wang F, Xu H, Ying G, Wang J, Yetisen AK, Jiang N. Thiophene donor for NIR-II fluorescence imaging-guided photothermal/photodynamic/chemo combination therapy. Acta Biomater 2021; 127:287-297. [PMID: 33831570 DOI: 10.1016/j.actbio.2021.03.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/02/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022]
Abstract
Organic fluorophores/photosensitizers have been widely used in biological imaging and photodynamic and photothermal combination therapy in the first near-infrared (NIR-I) window. However, their applications in the second near-infrared (NIR-II) window are still limited primarily due to low fluorescence quantum yields (QYs). Here, a boron dipyrromethene (BDP) is created as a molecularly engineered thiophene donor unit with high QYs to the redshift. Thiophene insertion initiates substantial redshifts of the absorbance as compared to its counterparts in which iodine is introduced. The fluorescent molecule can be triggered by an NIR laser with a single wavelength, thereby producing emission in the NIR-II windows. Single NIR laser-triggered phototherapeutic nanoparticles (NPs) are developed by encapsulating the BDP and the chemotherapeutic drug docetaxel (DTX) by using a synthetic amphiphilic poly(styrene-co-chloromethyl styrene)-graft-poly(ethylene glycol) functionalized with folic acid (FA). These BDP-T-N-DTX-FA NPs not only show superior solubility and high singlet oxygen QY (ΦΔ=62%) but also demonstrate single NIR laser-triggered multifunctional characteristics. After intravenous administration of the NPs into 4T1 tumor-bearing mice, the accumulation of the NPs in the tumor showed a high signal-to-background ratio (11.8). Furthermore, 4T1 tumors in mice were almost eradicated by DTX released from the BDP-T-N-DTX-FA NPs under single NIR laser excitation and the combination of photodynamic therapy (PDT) and photothermic therapy (PTT). STATEMENT OF SIGNIFICANCE: The application of organic photosensitizers is still limited primarily due to low fluorescence quantum yields (QYs) in the second near-infrared (NIR-II) window. Here, a boron dipyrromethene (BDP) as a molecularly engineered thiophene donor unit with high QYs to the redshift is created. Phototherapeutic nanoparticles (NPs) are developed by encapsulating the BDP and docetaxel (DTX) using a synthetic amphiphilic poly(styrene-co-chloromethyl styrene)-graft-poly(ethylene glycol) functionalized with folic acid (FA). These BDP-T-N-DTX-FA NPs not only show high singlet oxygen QY (ΦΔ=62%) but also demonstrate single NIR laser-triggered multifunctional characteristics and a high signal-to-background ratio (11.8). Furthermore, 4T1 tumors in mice were almost eradicated by DTX released from the BDP-T-N-DTX-FA NPs under single NIR laser excitation and the PDT/PTT combination therapy.
Collapse
Affiliation(s)
- Qiang Liu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Chemistry, Stanford University, CA 94305, United States
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 21198, China
| | - Ye Tian
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qinchao Sun
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dan Sun
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Dewen Liu
- Department of Chemistry, Stanford University, CA 94305, United States
| | - Feifei Wang
- Department of Chemistry, Stanford University, CA 94305, United States
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China.
| | - Guoliang Ying
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139 MA, United States.
| | - Jigang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Urology, Shenzhen People's Hospital (The First Affilated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
13
|
Cetin S, Elmazoglu Z, Karaman O, Gunduz H, Gunbas G, Kolemen S. Balanced Intersystem Crossing in Iodinated Silicon-Fluoresceins Allows New Class of Red Shifted Theranostic Agents. ACS Med Chem Lett 2021; 12:752-757. [PMID: 34055222 PMCID: PMC8155232 DOI: 10.1021/acsmedchemlett.1c00018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Iodination of the silicon-fluorescein core revealed a new class of highly cytotoxic, red-shifted and water-soluble photosensitizer (SF-I) which is also fairly emissive to serve as a theranostic agent. Singlet oxygen generation capacity of SF-I was evaluated chemically, and up to 45% singlet oxygen quantum yield was reported in aqueous solutions. SF-I was further tested in triple negative breast (MDA MB-231) and colon (HCT-116) cancer cell lines, which are known to have limited chemotherapy options as well as very poor prognosis. SF-I induced efficient singlet oxygen generation and consequent photocytotoxicity in both cell lines upon light irradiation with a negligible dark toxicity while allowing cell imaging at the same time. SF-I marks the first ever example of a silicon xanthene-based photosensitizer and holds a lot of promise as a small-molecule-based theranostic scaffold.
Collapse
Affiliation(s)
- Sultan Cetin
- Department
of Chemistry, Koc University, Rumelifeneri Yolu, 34450 Istanbul, Turkey
| | - Zubeyir Elmazoglu
- Department
of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Osman Karaman
- Department
of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Hande Gunduz
- Department
of Chemistry, Koc University, Rumelifeneri Yolu, 34450 Istanbul, Turkey
| | - Gorkem Gunbas
- Department
of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Safacan Kolemen
- Department
of Chemistry, Koc University, Rumelifeneri Yolu, 34450 Istanbul, Turkey
- Surface
Science and Technology Center (KUYTAM), Koc University, 34450 Istanbul, Turkey
- Boron
and Advanced Materials Application and Research Center, Koc University, 34450 Istanbul, Turkey
- TUPRAS
Energy Center (KUTEM), Koc University, 34450 Istanbul, Turkey
| |
Collapse
|
14
|
Piskorz J, Porolnik W, Kucinska M, Dlugaszewska J, Murias M, Mielcarek J. BODIPY-Based Photosensitizers as Potential Anticancer and Antibacterial Agents: Role of the Positive Charge and the Heavy Atom Effect. ChemMedChem 2020; 16:399-411. [PMID: 32964632 DOI: 10.1002/cmdc.202000529] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Indexed: 12/24/2022]
Abstract
Boron-dipyrromethene derivatives, including cationic and iodinated analogs, were obtained and subjected to physicochemical and in vitro photodynamic activity studies. Iodinated derivatives revealed a substantial heavy atom effect manifested by a bathochromic shift of the absorption band by about 30 nm and fluorescence intensity reduced by about 30-35 times, compared to that obtained for non-iodinated ones. In consequence, singlet oxygen generation significantly increased with ΦΔ values in the range 0.69-0.97. The in vitro photodynamic activity was evaluated on Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and on human androgen-sensitive prostate adenocarcinoma cells (LNCaP). The novel cationic, iodinated BODIPY, demonstrated the highest activity toward all studied cells. An excellent cytotoxic effect was found against LNCaP cells with an IC50 value of 19.3 nM, whereas the viability of S. aureus was reduced by >5.6 log10 at 0.25 μM concentration and by >5.3 log10 in the case of E. coli at 5 μM. Thus, this analog seems to be a very promising candidate for the application in both anticancer and antimicrobial photodynamic therapy.
Collapse
Affiliation(s)
- Jaroslaw Piskorz
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań, 60-780 Poznan, Poland
| | - Weronika Porolnik
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań, 60-780 Poznan, Poland
| | - Malgorzata Kucinska
- Chair and Department of Toxicology, Poznan University of Medical Sciences, Poznań, Dojazd 30 Street, 60-631 Poznan, Poland
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego, Poznań, 4, 60-781 Poznan, Poland
| | - Marek Murias
- Chair and Department of Toxicology, Poznan University of Medical Sciences, Poznań, Dojazd 30 Street, 60-631 Poznan, Poland
| | - Jadwiga Mielcarek
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań, 60-780 Poznan, Poland
| |
Collapse
|
15
|
|
16
|
Ruan Z, Miao W, Yuan P, Le L, Jiao L, Hao E, Yan L. High Singlet Oxygen Yield Photosensitizer Based Polypeptide Nanoparticles for Low-Power Near-Infrared Light Imaging-Guided Photodynamic Therapy. Bioconjug Chem 2018; 29:3441-3451. [PMID: 30185031 DOI: 10.1021/acs.bioconjchem.8b00576] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
NIR photosensitizer is attractive for photodynamic therapy (PDT). Low-power light irradiation and imaging-guided PDT makes it possible to increase tissue penetration depth. The pyrrole-substituted iodinated BODIPY (BDPI) molecule was designed and synthesized, and it possesses an intense NIR absorption and emission band, and exhibits a high singlet oxygen quantum yield (ΦΔ = 0.80) which leads remarkable cytotoxicity upon low power illumination (IC50 = 0.60 μg/mL, 6.1 mW/cm2). After being encapsulated with biocompatibility polypeptide PEG-PLys, polymeric micelles nanoparticles (PBDPI NPs) was obtained that are water-dispersed and passively tumor-targetable. Such enhanced accumulation in tumor area makes it easily traced in vivo due to its NIR fluorescence. In addition, such nanoparticles offer an unprecedented photodynamic therapeutic effect by using a low-power irradiation light, which makes it possible to kill cancer cells in deep tissue efficiently.
Collapse
Affiliation(s)
- Zheng Ruan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM , University of Science and Technology of China , Jinzai road 96 , Hefei , 230026 , Anhui , China
| | - Wei Miao
- Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule Based Materials (State Key Laboratory Cultivation Base) and School of Chemistry and Materials Science , Anhui Normal University , No. 1 East Beijing Road , Wuhu , 241000 , Anhui , China
| | - Pan Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM , University of Science and Technology of China , Jinzai road 96 , Hefei , 230026 , Anhui , China
| | - Liu Le
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM , University of Science and Technology of China , Jinzai road 96 , Hefei , 230026 , Anhui , China
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule Based Materials (State Key Laboratory Cultivation Base) and School of Chemistry and Materials Science , Anhui Normal University , No. 1 East Beijing Road , Wuhu , 241000 , Anhui , China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule Based Materials (State Key Laboratory Cultivation Base) and School of Chemistry and Materials Science , Anhui Normal University , No. 1 East Beijing Road , Wuhu , 241000 , Anhui , China
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM , University of Science and Technology of China , Jinzai road 96 , Hefei , 230026 , Anhui , China
| |
Collapse
|
17
|
Kue CS, Ng SY, Voon SH, Kamkaew A, Chung LY, Kiew LV, Lee HB. Recent strategies to improve boron dipyrromethene (BODIPY) for photodynamic cancer therapy: an updated review. Photochem Photobiol Sci 2018; 17:1691-1708. [PMID: 29845993 DOI: 10.1039/c8pp00113h] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BODIPYs are photosensitizers activatable by light to generate highly reactive singlet oxygen (1O2) from molecular oxygen, leading to tissue damage in the photoirradiated region. Despite their extraordinary photophysical characteristics, they are not featured in clinical photodynamic therapy. This review discusses the recent advances in the design and/or modifications of BODIPYs since 2013, to improve their potential in photodynamic cancer therapy and related areas.
Collapse
Affiliation(s)
- Chin Siang Kue
- Department of Diagnostic and Allied Health Sciences, Faculty of Health and Life Sciences, Management & Science University, 40100 Shah Alam, Selangor, Malaysia.
| | - Shie Yin Ng
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Siew Hui Voon
- Project Leadership, Clinical Operations, R&D Solutions, IQVIA, 50480 Kuala Lumpur, Malaysia
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Lip Yong Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hong Boon Lee
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
18
|
Epelde-Elezcano N, Prieto-Montero R, Martínez-Martínez V, Ortiz MJ, Prieto-Castañeda A, Peña-Cabrera E, Belmonte-Vázquez JL, López-Arbeloa I, Brown R, Lacombe S. Adapting BODIPYs to singlet oxygen production on silica nanoparticles. Phys Chem Chem Phys 2018; 19:13746-13755. [PMID: 28503687 DOI: 10.1039/c7cp01333g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A modified Stöber method is used to synthesize spherical core-shell silica nanoparticles (NPs) with an external surface functionalized by amino groups and with an average size around 50 nm. Fluorescent dyes and photosensitizers of singlet oxygen were fixed, either separately or conjointly, respectively in the core or in the shell. Rhodamines were encapsulated in the core with relatively high fluorescence quantum yields (Φfl ≥ 0.3), allowing fluorescence tracking of the particles. Various photosensitizers of singlet oxygen (PS) were covalenty coupled to the shell, allowing singlet oxygen production. The stability of NP suspensions strongly deteriorated upon grafting the PS, affecting their apparent singlet oxygen quantum yields. Agglomeration of NPs depends both on the type and on the amount of grafted photosensitizer. New, lab-made, halogenated 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPY) grafted to the NPs achieved higher singlet oxygen quantum yields (ΦΔ ∼ 0.35-0.40) than Rose Bengal (RB) grafted NPs (ΦΔ ∼ 0.10-0.27). Finally, we combined both fluorescence and PS functions in the same NP, namely a rhodamine in the silica core and a BODIPY or RB grafted in the shell, achieving the performance Φfl ∼ 0.10-0.20, ΦΔ ∼ 0.16-0.25 with a single excitation wavelength. Thus, proper choice of the dyes, of their concentrations inside and on the NPs and the grafting method enables fine-tuning of singlet oxygen production and fluorescence emission.
Collapse
Affiliation(s)
- Nerea Epelde-Elezcano
- Departamento de Química Física, Universidad del País Vasco-EHU, Apartado 644, 48080, Bilbao, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tang Q, Xiao W, Li J, Chen D, Zhang Y, Shao J, Dong X. A fullerene-rhodamine B photosensitizer with pH-activated visible-light absorbance/fluorescence/photodynamic therapy. J Mater Chem B 2018; 6:2778-2784. [DOI: 10.1039/c8tb00372f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A heavy-atom-free photosensitizer (C60-RB) with pH-activable visible-light absorbance enhancement, fluorescence turn-on and triplet excited state generation was designed for tumor bioimaging and photodynamic therapy.
Collapse
Affiliation(s)
- Qianyun Tang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- P. R. China
| | - Wanyue Xiao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- P. R. China
| | - Jiewei Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- P. R. China
| | - Dapeng Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- P. R. China
| | - Yewei Zhang
- Department of Hepatobiliary and Pancreatic Surgery
- Zhongda Hospital
- Medical School
- Southeast University
- Nanjing 210009
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- P. R. China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- P. R. China
| |
Collapse
|
20
|
Mukherjee N, Podder S, Mitra K, Majumdar S, Nandi D, Chakravarty AR. Targeted photodynamic therapy in visible light using BODIPY-appended copper(ii) complexes of a vitamin B6Schiff base. Dalton Trans 2018; 47:823-835. [DOI: 10.1039/c7dt03976j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BODIPY-appended copper(ii) complexes of vitamin B6derivatives localize in mitochondria and exhibit cancer cell selective photocytotoxicity by1O2mediated apoptosis.
Collapse
Affiliation(s)
- Nandini Mukherjee
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Santosh Podder
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Koushambi Mitra
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Shamik Majumdar
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Dipankar Nandi
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Akhil R. Chakravarty
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| |
Collapse
|
21
|
Sun F, Yang G, Zhang Q, Xue Z, Gu C, Chen Z, Yan B, Feng Y, Wang Z, Meng S. The self-assembly of monosubstituted BODIPY and HFBI-RGD. RSC Adv 2018; 8:21472-21479. [PMID: 35539954 PMCID: PMC9080923 DOI: 10.1039/c8ra03687j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 05/25/2018] [Indexed: 11/21/2022] Open
Abstract
A novel fluorescent probe was constructed by the self-assembly of monosubstituted BODIPY and a novel targeted hydrophobin named hereafter as HFBI-RGD. Optical measurements and theoretical calculations confirmed that the spectral properties of the probe were greatly influenced by the BODIPY structure, the appropriate volume of BODIPY and the cavity of HFBI-RGD. The experiments in vivo and ex vivo demonstrated that the probe had excellent ability for tumor labelling. A novel fluorescent probe was constructed by the self-assembly of monosubstituted BODIPY and a novel targeted hydrophobin named hereafter as HFBI-RGD.![]()
Collapse
Affiliation(s)
- Fengnan Sun
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300050
- China
| | - Guang Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300050
- China
- Collaborative Innovation Center of Chemical Science and Engineering
| | - Qian Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300050
- China
| | - Zhongbo Xue
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300050
- China
| | - Chengzhi Gu
- School of Chemical Engineering and Technology
- Shihezi University
- Xinjiang 832000
- China
| | - Zhuozhi Chen
- School of Life Sciences
- Tianjin University
- Tianjin 300072
- China
| | - Boying Yan
- General Hospital of Tianjin Medical University
- Tianjin 300052
- China
| | - Yaqing Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300050
- China
- Collaborative Innovation Center of Chemical Science and Engineering
| | - Zefang Wang
- School of Life Sciences
- Tianjin University
- Tianjin 300072
- China
| | - Shuxian Meng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300050
- China
| |
Collapse
|
22
|
BODIPY@Ir(III) Complexes Assembling Organic Nanoparticles for Enhanced Photodynamic Therapy. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2096-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Deng K, Li C, Huang S, Xing B, Jin D, Zeng Q, Hou Z, Lin J. Recent Progress in Near Infrared Light Triggered Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702299. [PMID: 28961374 DOI: 10.1002/smll.201702299] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/23/2017] [Indexed: 05/21/2023]
Abstract
Nowadays, photodynamic therapy (PDT) is under the research spotlight as an appealing modality for various malignant tumors. Compared with conventional PDT treatment activated by ultraviolet or visible light, near infrared (NIR) light-triggered PDT possessing deeper penetration to lesion area and lower photodamage to normal tissue holds great potential for in vivo deep-seated tumor. In this review, recent research progress related to the exploration of NIR light responsive PDT nanosystems is summarized. To address current obstacles of PDT treatment and facilitate the effective utilization, several innovative strategies are developed and introduced into PDT nanosystems, including the conjugation with targeted moieties, O2 self-sufficient PDT, dual photosensitizers (PSs)-loaded PDT nanoplatform, and PDT-involved synergistic therapy. Finally, the potential challenges as well as the prospective for further development are also discussed.
Collapse
Affiliation(s)
- Kerong Deng
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chunxia Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shanshan Huang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Bengang Xing
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology, Sydney, NSW, 2007, Australia
| | - Qingguang Zeng
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Zhiyao Hou
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Jun Lin
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
24
|
Schoder S, Kord Daoroun Kalai S, Reissig HU. Novel Alkoxy-Substituted Dipyrrins and Near-IR BODIPY Dyes-Preparation and Photophysical Properties. Chemistry 2017; 23:12527-12533. [PMID: 28654213 DOI: 10.1002/chem.201701108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Indexed: 11/09/2022]
Abstract
Starting from 3-alkoxy-2-aryl-substituted pyrroles and aromatic aldehydes, a collection of new dipyrrins was prepared. Under the standard conditions of Treibs, these were converted into the corresponding boron dipyrrins (BODIPYs). Compounds of this type with alkoxy groups at C-3 position of both pyrrole subunits are new and hence the photophysical properties of this collection of novel dipyrrins and BODIPY dyes were investigated. The dipyrrins show absorption maxima up to 596 nm and emissions of up to 677 nm. For the BODIPY series a remarkable effect of the alkoxy groups was identified, resulting in red shifts for absorptions and emissions. The compound substituted with two 2-thien-2-yl groups and a meso-C6 F5 substituent shows an absorption maximum at 725 nm and emits at 754 nm and thus is a new representative of a near-IR BODIPY dye related to certain aza-BODIPYs. Our results demonstrate the influence of the alkoxy groups on the spectroscopic data and reveal the potential of 3-alkoxy-2-aryl-substituted pyrroles for the design of new fluorophores.
Collapse
Affiliation(s)
- Stefan Schoder
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | | | - Hans-Ulrich Reissig
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| |
Collapse
|
25
|
Gutsche CS, Hohlfeld BF, Flanagan KJ, Senge MO, Kulak N, Wiehe A. Sequential Nucleophilic Substitution of the α-Pyrrole and p
-Aryl Positions of meso
-Pentafluorophenyl-Substituted BODIPYs. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Claudia S. Gutsche
- Institut für Chemie und Biochemie; Freie Universität Berlin; Fabeckstr. 34/36 14195 Berlin Germany
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
- biolitec research GmbH; Otto-Schott-Str. 15 07745 Jena Germany
| | - Benjamin F. Hohlfeld
- Institut für Chemie und Biochemie; Freie Universität Berlin; Fabeckstr. 34/36 14195 Berlin Germany
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
- biolitec research GmbH; Otto-Schott-Str. 15 07745 Jena Germany
| | - Keith J. Flanagan
- School of Chemistry; SFI Tetrapyrrole Laboratory; The University of Dublin; 152-160 Pearse Street Dublin 2 Ireland
| | - Mathias O. Senge
- School of Chemistry; SFI Tetrapyrrole Laboratory; The University of Dublin; 152-160 Pearse Street Dublin 2 Ireland
| | - Nora Kulak
- Institut für Chemie und Biochemie; Freie Universität Berlin; Fabeckstr. 34/36 14195 Berlin Germany
| | - Arno Wiehe
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
- biolitec research GmbH; Otto-Schott-Str. 15 07745 Jena Germany
| |
Collapse
|