1
|
Liu J, Li H, Guo W, Cai Z, Li M, Zhang LB. Electrochemical Decarboxylation Coupling Reactions. Chemistry 2024; 30:e202402621. [PMID: 39413120 DOI: 10.1002/chem.202402621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Indexed: 10/18/2024]
Abstract
Carboxylic acids are attractive synthetic feedstocks with stable, non-toxic, and inexpensive properties that can be easily obtained from natural sources or through synthesis. Carboxylic acids have long been considered environmentally friendly coupling agents in various organic transformations. In recent years, electrochemically mediated decarboxylation reactions of decarboxylic acids and their derivatives (NHPI) have emerged as effective new methods for constructing carbon-carbon or carbon-heterocarbon chemical bonds. Compared with transition metal and photochemistry-mediated catalytic reactions, which do not require the addition of oxidants and strong bases, electrochemically-mediated decarboxylative transformations are considered a sustainable strategy. In addition, various functional groups tolerate the electrochemical decarboxylation conversion strategy well. Here, we summarize the recent electrochemical decarboxylation reactions to better elucidate the advantages of electrochemical decarboxylation reactions.
Collapse
Affiliation(s)
- Jiaxiu Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Haoran Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Weisi Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Zhihua Cai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| |
Collapse
|
2
|
Mondal S, Mandal S, Mondal S, Midya SP, Ghosh P. Photocatalytic decarboxylation of free carboxylic acids and their functionalization. Chem Commun (Camb) 2024; 60:9645-9658. [PMID: 39120531 DOI: 10.1039/d4cc03189j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Visible light mediated decarboxylative functionalization of carboxylic acids and their derivatives has recently emerged as a novel and powerful toolkit for small molecule activation in diverse carbon-carbon and carbon-hetero bond forming reactions. Naturally abundant highly functionalized bench-stable carboxylic acid analogs have been employed as promising alternatives to non-trivial organometallic reagents for mild and eco-benign synthetic transformation with traceless CO2 by-products. In this highlight article, we focus on the development of various photodecarboxylative functionalization strategies along with intra/inter-molecular cyclization via concerted single electron transfer (SET) or energy transfer (ET) pathways. Moreover, widely explored carboxylic acids are systematically classified here into four categories; i.e., α-keto, aliphatic, α,β-unsaturated, and aromatic analogs for a concise overview to the readership. The association of decarboxylative radical species with coupling partners to construct C-C and C-N/O/S/P/X bonds for each analogous acid has been presented in brief.
Collapse
Affiliation(s)
- Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Subham Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Siba P Midya
- Department of Chemistry, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
3
|
Shimazumi R, Tobisu M. Unimolecular Fragment Coupling: A New Bond-Forming Methodology via the Deletion of Atom(s). JACS AU 2024; 4:1676-1695. [PMID: 38818052 PMCID: PMC11134393 DOI: 10.1021/jacsau.3c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 06/01/2024]
Abstract
Unimolecular fragment coupling (UFC) is defined as a reaction format, wherein atom(s) located in the middle of a molecule are extruded, and the remaining fragments are coupled. UFC is a potentially powerful strategy that is an alternative to transition-metal-catalyzed cross-coupling because the target chemical bond is formed in an intramolecular fashion, which is inherently beneficial for chemoselectivity and stereoselectivity issues. In this Perspective, we will present an overview of the recent advances in UFC reactions, which encompass those proceeding through the elimination of CO2, CO, SO2, isocyanates, N2, or single atoms primarily via transition metal catalysis.
Collapse
Affiliation(s)
- Ryoma Shimazumi
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mamoru Tobisu
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative
Catalysis Science Division, Institute for Open and Transdisciplinary
Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Sakakibara Y, Itami K, Murakami K. Switchable Decarboxylation by Energy- or Electron-Transfer Photocatalysis. J Am Chem Soc 2024; 146:1554-1562. [PMID: 38103176 DOI: 10.1021/jacs.3c11588] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Kolbe dimerization and Hofer-Moest reactions are well-investigated carboxylic acid transformations, wherein new carbon-carbon and carbon-heteroatom bonds are constructed via electrochemical decarboxylation. These transformations can be switched by choosing an electrode that allows control of the reactive intermediate, such as carbon radical or carbocation. However, the requirement of a high current density diminishes the functional group compatibility with these electrochemical reactions. Here, we demonstrate the photocatalytic decarboxylative transformation of activated carboxylic acids in a switchable and functional group-compatible manner. We discovered that switching between Kolbe-type or Hofer-Moest-type reactions can be accomplished with suitable photocatalysts by controlling the reaction pathways: energy transfer (EnT) and single-electron transfer (SET). The EnT pathway promoted by an organo-photocatalyst yielded 1,2-diarylethane from arylacetic acids, whereas the ruthenium photoredox catalyst allows the construction of an ester scaffold with two arylmethyl moieties via the SET pathway. The resulting radical intermediates were coupled to olefins to realize multicomponent reactions. Consequently, four different products were selectively obtained from a simple carboxylic acid. This discovery offers new opportunities for selectively synthesizing multiple products via switchable reactions using identical substrates with minimal cost and effort.
Collapse
Affiliation(s)
- Yota Sakakibara
- Graduate School of Science, Nagoya University, Chikusa 464-8602, Nagoya, Japan
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda 669-1330, Hyogo, Japan
- Japanese Science and Technology Agency (JST)-PRESTO, Chiyoda 102-0076, Tokyo, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Chikusa 464-8602, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa 464-8602, Nagoya, Japan
| | - Kei Murakami
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda 669-1330, Hyogo, Japan
- Japanese Science and Technology Agency (JST)-PRESTO, Chiyoda 102-0076, Tokyo, Japan
| |
Collapse
|
5
|
Labiche A, Malandain A, Molins M, Taran F, Audisio D. Modern Strategies for Carbon Isotope Exchange. Angew Chem Int Ed Engl 2023; 62:e202303535. [PMID: 37074841 DOI: 10.1002/anie.202303535] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
In contrast to stable and natural abundant carbon-12, the synthesis of organic molecules with carbon (radio)isotopes must be conceived and optimized in order to navigate through the hurdles of radiochemical requirements, such as high costs of the starting materials, harsh conditions and radioactive waste generation. In addition, it must initiate from the small cohort of available C-labeled building blocks. For long time, multi-step approaches have represented the sole available patterns. On the other side, the development of chemical reactions based on the reversible cleavage of C-C bonds might offer new opportunities and reshape retrosynthetic analysis in radiosynthesis. This review aims to provide a short survey on the recently emerged carbon isotope exchange technologies that provide effective opportunity for late-stage labeling. At present, such strategies have relied on the use of primary and easily accessible radiolabeled C1-building blocks, such as carbon dioxide, carbon monoxide and cyanides, while the activation principles have been based on thermal, photocatalytic, metal-catalyzed and biocatalytic processes.
Collapse
Affiliation(s)
- Alexandre Labiche
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Augustin Malandain
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Maxime Molins
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Davide Audisio
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Wang S, Larrosa I, Yorimitsu H, Perry GJP. Carboxylic Acid Salts as Dual-Function Reagents for Carboxylation and Carbon Isotope Labeling. Angew Chem Int Ed Engl 2023; 62:e202218371. [PMID: 36746757 DOI: 10.1002/anie.202218371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
The potassium salts of carboxylic acids are developed as efficient carboxylating agents through CO2 exchange. We describe these carboxylates as dual-function reagents because they function as a combined source of CO2 and base/metalating agent. By using the salt of a commercially available carboxylic acid, this protocol overcomes difficulties when using CO2 gas or organometallic reagents, such as pressurized containers or strictly inert conditions. The reaction proceeds under mild conditions, does not require transition metals or other additives, and shows broad substrate scope. Through the preparation of several biologically important molecules, we show how this strategy provides an opportunity for isotope labeling with low equivalents of labeled CO2 .
Collapse
Affiliation(s)
- Shuo Wang
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Igor Larrosa
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Gregory J P Perry
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.,Future correspondence: School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
7
|
Su J, Li C, Hu X, Guo Y, Song Q. Deaminative Arylation and Alkenyaltion of Aliphatic Tertiary Amines with Aryl and Alkenylboronic Acids via Nitrogen Ylides. Angew Chem Int Ed Engl 2022; 61:e202212740. [PMID: 36314477 DOI: 10.1002/anie.202212740] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 11/27/2022]
Abstract
Transition-metal-catalyzed Suzuki-Miyaura coupling has significantly advanced C-C bond formation and has been well recognized in organic synthesis, pharmaceuticals, materials science and other fields. In this rapid development, cross coupling without transition metal catalyst is a big challenge in this field, and using widely existing tertiary amines as electrophiles to directly couple with boronic acids has great hurdles yet significant application prospects. Herein, we report an efficient and general deaminative arylation and alkenylation of tertiary amines (propargyl amines, allyl amines and 1H-indol-3-yl methane amines) with ary and alkenylboronic acids enabled by difluorocarbene under transition-metal-free conditions. Preliminary mechanism experiments suggest that in situ formed difluoromethyl quaternary amine salt, nitrogen ylide and tetracoordinate boron species are the key intermediates, the subsequent 1,2-metallate shift and protodeboronation complete the new coupling reaction.
Collapse
Affiliation(s)
- Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Chengbo Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Xinyuan Hu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
8
|
Sebald MA, Gebauer J, Koch M. Concise Syntheses of Alternariol, Alternariol-9-monomethyl Ether and Their D3-Isotopologues. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1698-8328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractAlternariol (AOH) and alternariol-9-monomethyl ether (AME) are two secondary metabolites of Alternaria fungi which can be found in various foodstuffs like tomatoes, nuts, and grains. Due to their toxicity and potential mutagenic activity the need for the development of high-throughput methods for the supervision of AOH and AME levels is of increasing interest. As the availability of both native and labeled AOH and AME analytical standards is very limited, we herein present a novel and concise approach towards their synthesis by employing a ruthenium-catalyzed ortho-arylation as the key step. Finally, we demonstrate their suitability as internal standards in stable-isotope dilution assay (SIDA)-HPLC-MS/MS analysis, a technique commonly used for the quantification of natural products in food and feed.
Collapse
Affiliation(s)
| | | | - Matthias Koch
- Bundesanstalt für Materialforschung und -prüfung, Abteilung Analytische Chemie, Referenzmaterialien
| |
Collapse
|
9
|
Mkrtchyan S, Jakubczyk M, Lanka S, Yar M, Mahmood T, Ayub K, Sillanpää M, Thomas. C, Iaroshenko V. Mechanochemical Ni‐catalysed arylation of ortho‐hydroxyarylenaminones: Synthesis of isoflavones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at Center of Molecular and Macromolecular Studies, Polish Academy of Sciences. POLAND
| | - Michał Jakubczyk
- Institute of Bioorganic Chemistry Polish Academy of Sciences POLAND
| | | | | | | | | | - Mika Sillanpää
- f. Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, Aarhus C (Denmark). DENMARK
| | | | - Viktor Iaroshenko
- Laboratory of Homogeneous Catalysis and Molecular Design at Center of Molecular and Macromolecular Studies in Lodz POLAND
| |
Collapse
|
10
|
Xia H, Wang G, Zhao D, Zhu C. Visible Light Induced Aerobic Coupling of Arylboronic Acids Promoted by Hydrazone. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Dongbo Zhao
- Institute of Fluid Engineering Equipment, JITRI CHINA
| | | |
Collapse
|
11
|
Li F, Xiao J, Wu X, Wang X, Deng J, Tang Z. Metal-Free Formation of 2-Substitued Benzoxazoles with Amides and Esters. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202111031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Deng X, Guo J, Zhang X, Wang X, Su W. Activation of Aryl Carboxylic Acids by Diboron Reagents towards Nickel‐Catalyzed Direct Decarbonylative Borylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xi Deng
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiandong Guo
- Hoffmann Institute of Advanced Materials Postdoctoral Innovation Practice Base Shenzhen Polytechnic 7098 Liuxian Boulevard, Nanshan District Shenzhen 518055 P. R. China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou 350002 P. R. China
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials Postdoctoral Innovation Practice Base Shenzhen Polytechnic 7098 Liuxian Boulevard, Nanshan District Shenzhen 518055 P. R. China
- Department of Chemistry University of Colorado Denver Campus Box 194, P. O. Box 173364 Denver CO 80217-3364 USA
| | - Weiping Su
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
13
|
O'Hair RAJ. ORGANOMETALLIC GAS-PHASE ION CHEMISTRY AND CATALYSIS: INSIGHTS INTO THE USE OF METAL CATALYSTS TO PROMOTE SELECTIVITY IN THE REACTIONS OF CARBOXYLIC ACIDS AND THEIR DERIVATIVES. MASS SPECTROMETRY REVIEWS 2021; 40:782-810. [PMID: 32965774 DOI: 10.1002/mas.21654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Carboxylic acids are valuable organic substrates as they are widely available, easy to handle, and exhibit structural and functional variety. While they are used in many standard synthetic protocols, over the past two decades numerous studies have explored new modes of metal-mediated reactivity of carboxylic acids and their derivatives. Mass spectrometry-based studies can provide fundamental mechanistic insights into these new modes of reactivity. Here gas-phase models for the following catalytic transformations of carboxylic acids and their derivatives are reviewed: protodecarboxylation; dehydration; decarbonylation; reaction as coordinated bases in C-H bond activation; remote functionalization and decarboxylative C-C bond coupling. In each case the catalytic problem is defined, insights from gas-phase studies are highlighted, comparisons with condensed-phase systems are made and perspectives are reached. Finally, the potential role for mechanistic studies that integrate both gas- and condensed-phase studies is highlighted by recent studies on the discovery of new catalysts for the selective decomposition of formic acid and the invention of the new extrusion-insertion class of reactions for the synthesis of amides, thioamides, and amidines. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Richard A J O'Hair
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
14
|
Wu Y, Wen K, Chen J, Shi J, Yao X, Tang X. Copper-Mediated Decarboxylative Coupling between Arylacetic Acids and 1,3-Dicarbonyl Compounds. Org Lett 2021; 23:7878-7882. [PMID: 34612042 DOI: 10.1021/acs.orglett.1c02897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A copper-mediated decarboxylative coupling reaction between arylacetic acids and 1,3-dicarbonyl compounds was described. Significantly, methanocycloocta[b]indoles were also obtained by sequential intramolecular dehydrocyclization process in some cases. This protocol featured a broad substrate scope, simple operations, and good yields. Moreover, the products exhibited potent antiproliferative activity against the human cancer cell lines by a MTT assay.
Collapse
Affiliation(s)
- Yinrong Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, PR China
| | - Kangmei Wen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, PR China
| | - Jiewen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, PR China
| | - Jie Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, PR China
| | - Xingang Yao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, PR China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, PR China
| |
Collapse
|
15
|
Xiao P, Pannecoucke X, Bouillon J, Couve‐Bonnaire S. Palladium‐Catalysed Oxidative Decarboxylative Cross‐Coupling of Heteroarenes with CF
3
‐Acrylic Acids. ChemistrySelect 2021. [DOI: 10.1002/slct.202102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pan Xiao
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014) 76000 Rouen France
| | - Xavier Pannecoucke
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014) 76000 Rouen France
| | | | | |
Collapse
|
16
|
Deng X, Guo J, Zhang X, Wang X, Su W. Activation of Aryl Carboxylic Acids by Diboron Reagents towards Nickel-Catalyzed Direct Decarbonylative Borylation. Angew Chem Int Ed Engl 2021; 60:24510-24518. [PMID: 34235828 DOI: 10.1002/anie.202106356] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/05/2021] [Indexed: 12/14/2022]
Abstract
The Ni-catalyzed decarbonylative borylation of (hetero)aryl carboxylic acids with B2 cat2 has been achieved without recourse to any additives. This Ni-catalyzed method exhibits a broad substrate scope covering poorly reactive non-ortho-substituted (hetero)aryl carboxylic acids, and tolerates diverse functional groups including some of the groups active to Ni0 catalysts. The key to achieve this decarbonylative borylation reaction is the choice of B2 cat2 as a coupling partner that not only acts as a borylating reagent, but also chemoselectively activates aryl carboxylic acids towards oxidative addition of their C(acyl)-O bond to Ni0 catalyst via the formation of acyloxyboron compounds. A combination of experimental and computational studies reveals a detailed plausible mechanism for this reaction system, which involves a hitherto unknown concerted decarbonylation and reductive elimination step that generates the aryl boronic ester product. This mode of boron-promoted carboxylic acid activation is also applicable to other types of reactions.
Collapse
Affiliation(s)
- Xi Deng
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiandong Guo
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen, 518055, P. R. China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, 350002, P. R. China
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen, 518055, P. R. China.,Department of Chemistry, University of Colorado Denver, Campus Box 194, P. O. Box 173364, Denver, CO, 80217-3364, USA
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
17
|
|
18
|
Doi R, Hayashi K, Sato Y. Palladium-catalyzed Decarboxylative α-Polyfluoroarylation of Ketones. CHEM LETT 2021. [DOI: 10.1246/cl.210092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryohei Doi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Kanako Hayashi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Yoshihiro Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
19
|
He B, Liu X, Li H, Zhang X, Ren Y, Su W. Rh-Catalyzed General Method for Directed C-H Functionalization via Decarbonylation of in-Situ-Generated Acid Fluorides from Carboxylic Acids. Org Lett 2021; 23:4191-4196. [PMID: 33979175 DOI: 10.1021/acs.orglett.1c01103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Rh-catalyzed decarbonylative C-H coupling of in-situ-generated acid fluorides with amide substrates bearing ortho-Csp2-H bonds has been developed. This method enables alkyl, aryl, and alkenyl carboxylic acids to undergo decarbonylative coupling with C-H bonds of (hetero)aromatic or alkenyl amides in generally good yields via the in situ conversion of carboxylic acids into acid fluorides and also allows for the functionalization of a series of structurally complex carboxyl-containing natural products and pharmaceuticals as well as pharmaceutical amide derivatives.
Collapse
Affiliation(s)
- Bangyue He
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojie Liu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hongyi Li
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yuxi Ren
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Xiao P, Pannecoucke X, Bouillon JP, Couve-Bonnaire S. Wonderful fusion of organofluorine chemistry and decarboxylation strategy. Chem Soc Rev 2021; 50:6094-6151. [PMID: 34027960 DOI: 10.1039/d1cs00216c] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Decarboxylation strategy has been emerging as a powerful tool for the synthesis of fluorine-containing organic compounds that play important roles in various fields such as pharmaceuticals, agrochemicals, and materials science. Considerable progress in decarboxylation has been made over the past decade towards the construction of diverse valuable fluorinated fine chemicals for which the fluorinated part can be brought in two ways. The first way is described as the reaction of non-fluorinated carboxylic acids (and their derivatives) with fluorinating reagents, as well as fluorine-containing building blocks. The second way is dedicated to the exploration and the use of fluorine-containing carboxylic acids (and their derivatives) in decarboxylative transformations. This review aims to provide a comprehensive summary of the development and applications of decarboxylative radical, nucleophilic and cross-coupling strategies in organofluorine chemistry.
Collapse
Affiliation(s)
- Pan Xiao
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | - Xavier Pannecoucke
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | | | | |
Collapse
|
21
|
Zeng Z, Feceu A, Sivendran N, Gooßen LJ. Decarboxylation‐Initiated Intermolecular Carbon‐Heteroatom Bond Formation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100211] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhongyi Zeng
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Abigail Feceu
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Nardana Sivendran
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Lukas J. Gooßen
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
22
|
Yu H, Zhao H, Xu X, Zhang X, Yu Z, Li L, Wang P, Shi Q, Xu L. Rhodium(I)‐Catalyzed C2‐Selective Decarbonylative C−H Alkylation of Indoles with Alkyl Carboxylic Acids and Anhydrides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Haiyang Yu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Haoqiang Zhao
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Xin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Xin Zhang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Zexin Yu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Lingchao Li
- Jiangsu Zenji Pharmaceuticals Ltd. Huaian 223100 P. R. China
| | - Peng Wang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Qian Shi
- College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| |
Collapse
|
23
|
Doyle MGJ, Lundgren RJ. Oxidative cross-coupling processes inspired by the Chan-Lam reaction. Chem Commun (Camb) 2021; 57:2724-2731. [PMID: 33623942 DOI: 10.1039/d1cc00213a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Cu-catalyzed oxidative cross-coupling of N- and O-nucleophiles with aryl boronic acids (the Chan-Lam reaction) remains among the most useful approaches to prepare aniline and phenol derivatives. The combination of high chemoselectivity, mild reaction conditions, and the ability to use simple Cu-salts as catalysts makes this process a valuable alternative to aromatic substitutions and Pd-catalyzed reactions of aryl electrophiles (Buchwald-Hartwig coupling). Despite the widespread use of Chan-Lam reactions in synthesis, the analogous carbon-carbon bond forming variant of this process had not been developed prior to our work. This feature article describes our discovery and application of Cu-catalyzed oxidative coupling reactions of activated methylene derivatives or carboxylic acids with nucleophiles including aryl boronic esters and amines.
Collapse
Affiliation(s)
- Michael G J Doyle
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
24
|
Music A, Baumann AN, Boser F, Müller N, Matz F, Jagau TC, Didier D. Photocatalyzed Transition-Metal-Free Oxidative Cross-Coupling Reactions of Tetraorganoborates*. Chemistry 2021; 27:4322-4326. [PMID: 33306228 PMCID: PMC7986674 DOI: 10.1002/chem.202005282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 01/10/2023]
Abstract
Readily accessible tetraorganoborate salts undergo selective coupling reactions under blue light irradiation in the presence of catalytic amounts of transition‐metal‐free acridinium photocatalysts to furnish unsymmetrical biaryls, heterobiaryls and arylated olefins. This represents an interesting conceptual approach to forge C−C bonds between aryl, heteroaryl and alkenyl groups under smooth photochemical conditions. Computational studies were conducted to investigate the mechanism of the transformation.
Collapse
Affiliation(s)
- Arif Music
- Department Chemie, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Andreas N Baumann
- Department Chemie, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Florian Boser
- Department Chemie, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Nicolas Müller
- Department Chemie, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Florian Matz
- Quantum Chemistry and Physical Chemistry Section, KU Leuven, Celestijnenlaan 200f, box 2404, 3001, Leuven, Belgium
| | - Thomas C Jagau
- Quantum Chemistry and Physical Chemistry Section, KU Leuven, Celestijnenlaan 200f, box 2404, 3001, Leuven, Belgium
| | - Dorian Didier
- Department Chemie, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, 81377, Munich, Germany
| |
Collapse
|
25
|
Ramadoss V, Zheng Y, Shao X, Tian L, Wang Y. Advances in Electrochemical Decarboxylative Transformation Reactions. Chemistry 2021; 27:3213-3228. [PMID: 32633436 DOI: 10.1002/chem.202001764] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Indexed: 12/26/2022]
Abstract
Owing to their non-toxic, stable, inexpensive properties, carboxylic acids are considered as environmentally benign alternatives as coupling partners in various organic transformations. Electrochemical mediated decarboxylation of carboxylic acid has emerged as a new and efficient methodology for the construction of carbon-carbon or carbon-heteroatom bonds. Compared with transition-metal catalysis and photoredox catalysis, electro-organic decarboxylative transformations are considered as a green and sustainable protocol due to the absence of chemical oxidants and strong bases. Further, it exhibits good tolerance with various functional groups. In this Minireview, we summarize the recent advances and discoveries on the electrochemical decarboxylative transformations on C-C and C-heteroatoms bond formations.
Collapse
Affiliation(s)
- Velayudham Ramadoss
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yue Zheng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaoqing Shao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
26
|
Pan Z, Hu F, Jiang D, Liu Y, Xia C. Chichibabin pyridinium synthesis via oxidative decarboxylation of photoexcited α-enamine acids. Chem Commun (Camb) 2021; 57:1222-1225. [PMID: 33416811 DOI: 10.1039/d0cc07636h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light-induced decarboxylative Chichibabin pyridinium synthesis between α-amino acids and aldehydes was developed. When the in situ generated α-enamine acids were photoexcited, they were oxidized by aerobic oxygen to give radical cation species. After decarboxylation and further oxidation, the generated iminium undergoes Chichibabin cyclization to afford pyridiniums. This photochemical protocol enables the synthesis of various tetra-substituted pyridiniums and related natural products in one-step.
Collapse
Affiliation(s)
- Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Fengchi Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Di Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Yuchang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
27
|
Xiang K, Zhang S, Liu L, Huang T, Tang Z, Li C, Xu K, Chen T. Tunable C–H arylation and acylation of azoles with carboxylic acids by Pd/Cu cooperative catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo00380a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Direct C–H arylation and acylation of azoles with carboxylic acids are achieved selectively through Pd/Cu cooperative catalysis: biaryls are generated selectively with dppp as ligand, while biaryl ketones are obtained with high selectivity using dpph or Ph2PCy as ligand.
Collapse
Affiliation(s)
- Kang Xiang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources
- Hainan Provincial Key Lab of Fine Chem
- Hainan Provincial Fine Chemical Engineering Research Center
- Hainan University
- Haikou
| | - Shuo Zhang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources
- Hainan Provincial Key Lab of Fine Chem
- Hainan Provincial Fine Chemical Engineering Research Center
- Hainan University
- Haikou
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources
- Hainan Provincial Key Lab of Fine Chem
- Hainan Provincial Fine Chemical Engineering Research Center
- Hainan University
- Haikou
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources
- Hainan Provincial Key Lab of Fine Chem
- Hainan Provincial Fine Chemical Engineering Research Center
- Hainan University
- Haikou
| | - Zhi Tang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources
- Hainan Provincial Key Lab of Fine Chem
- Hainan Provincial Fine Chemical Engineering Research Center
- Hainan University
- Haikou
| | - Chunya Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources
- Hainan Provincial Key Lab of Fine Chem
- Hainan Provincial Fine Chemical Engineering Research Center
- Hainan University
- Haikou
| | - Kaiqiang Xu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources
- Hainan Provincial Key Lab of Fine Chem
- Hainan Provincial Fine Chemical Engineering Research Center
- Hainan University
- Haikou
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources
- Hainan Provincial Key Lab of Fine Chem
- Hainan Provincial Fine Chemical Engineering Research Center
- Hainan University
- Haikou
| |
Collapse
|
28
|
Zhang J, Hou YX, Tang YL, Xu JH, Liu ZK, Gao Y, Hu XQ. Transition-metal-free decarboxylative ipso amination of aryl carboxylic acids. Org Chem Front 2021. [DOI: 10.1039/d1qo00442e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An unprecedented DMAP-catalysed decarboxylative amination of carboxylic acids has been achieved under metal free conditions, enabling the convenient synthesis of structurally diverse aryl and alkyl amines.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Ye-Xing Hou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Yan-Liu Tang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Ji-Hang Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Zi-Kui Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Yang Gao
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| |
Collapse
|
29
|
Fu Z, Hao G, Shi, Q, Zhou J, Jiang L, Wang S, Guo S, Cai H. Ag/Cu-Mediated Decarboxylative Cyanation of Arene Carboxylic Acids Using NH 4 +/ N, N-Dimethylformamide as Combined Cyanide Source. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202006031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Ma X, Han Z, Liu C, Zhang D. Mechanistic Insight into Palladium-Catalyzed γ-C(sp 3)-H Arylation of Alkylamines with 2-Iodobenzoic Acid: Role of the o-Carboxylate Group. Inorg Chem 2020; 59:18295-18304. [PMID: 33253564 DOI: 10.1021/acs.inorgchem.0c02895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional theory calculations were performed to understand the distinctly different reactivities of o-carboxylate-substituted aryl halides and pristine aryl halides toward the PdII-catalyzed γ-C(sp3)-H arylation of secondary alkylamines. It is found that, when 2-iodobenzoic acid (a representative of o-carboxylate-substituted aryl halides) is used as an aryl transfer agent, the arylation reaction is energetically favorable, while when the pristine aryl halide iodobenzene is used as the aryl transfer reagent, the reaction is kinetically difficult. Our calculations showed an operative PdII/PdIV/PdII redox cycle, which differs in the mechanistic details from the cycle proposed by the experimental authors. The improved mechanism emphasizes that (i) the intrinsic role of the o-carboxylate group is facilitating the C(sp3)-C(sp2) bond reductive elimination from PdIV rather than facilitating the oxidative addition of the aryl iodide on PdII, (ii) the decarboxylation occurs at the PdII species instead of the PdIV species, and (iii) the 1,2-arylpalladium migration proceeds via a stepwise mechanism where the reductive elimination occurs before decarboxylation, not via a concerted mechanism that merges the three processes decarboxylation, 1,2-arylpalladium migration, and C(sp3)-C(sp2) reductive elimination into one. The experimentally observed exclusive site selectivity of the reaction was also rationalized well.
Collapse
Affiliation(s)
- Xuexiang Ma
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Zhe Han
- Qilu University of Technology (Shandong Academy of Sciences), Advanced Materials Institute, Shandong Engineering Research Centre for Municipal Sludge Disposal, Jinan 250014, People's Republic of China
| | - Chengbu Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
31
|
Fu Z, Cao X, Wang S, Guo S, Cai H. Conversions of aryl carboxylic acids into aryl nitriles using multiple types of Cu-mediated decarboxylative cyanation under aerobic conditions. Org Biomol Chem 2020; 18:8381-8385. [PMID: 33078806 DOI: 10.1039/d0ob01945c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Here, we used malononitrile or AMBN as a cyanating agent to develop efficient and practical protocols for Cu-mediated decarboxylative cyanations, under aerobic conditions, of aryl carboxylic acids bearing nitro and methoxyl substituents at the ortho position as well as of heteroaromatic carboxylic acids. These protocols involved economical methods to synthesize value-added aryl nitriles from simple and inexpensive raw materials. Further diversification of the 2-nitrobenzonitrile product was performed to highlight the practicality of the protocols.
Collapse
Affiliation(s)
- Zhengjiang Fu
- College of Chemistry, Nanchang University, Nanchang 330031, China. and State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xihan Cao
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shuiliang Wang
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shengmei Guo
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hu Cai
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
32
|
Ai W, Yang Q, Gao Y, Liu X, Liu H, Bai Y. In Situ Laser Scattering Electrospray Ionization Mass Spectrometry and Its Application in the Mechanism Study of Photoinduced Direct C-H Arylation of Heteroarenes. Anal Chem 2020; 92:11967-11972. [PMID: 32786502 DOI: 10.1021/acs.analchem.0c02384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An in situ laser scattering electrospray ionization mass spectrometry (LS-ESI-MS) was developed, where the laser scattering was simply achieved through the laser radiation of the "media" modified on the capillary. The laser scattering extended the reaction window and powerfully promoted the reaction yield of the photoinduced organic reaction, which enables the trace intermediates to be efficiently tracked in real time. For instance, the key radical cation in the photoinduced direct C-H arylation of heteroarenes was captured inventively, which provided direct experimental evidence for the verification of the reaction mechanism. Together with the characterization of oxidative photocatalytic Ru(III) intermediate, the integral insight into the process of visible-light-mediated direct C-H arylation of heteroarenes was confirmed. This approach is facile, powerful, and promising in the mechanism study of organic reaction.
Collapse
Affiliation(s)
- Wanpeng Ai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Qirong Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yunpeng Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
33
|
Gerleve C, Studer A. Transition-Metal-Free Oxidative Cross-Coupling of Tetraarylborates to Biaryls Using Organic Oxidants. Angew Chem Int Ed Engl 2020; 59:15468-15473. [PMID: 32159264 PMCID: PMC7496537 DOI: 10.1002/anie.202002595] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 12/11/2022]
Abstract
Readily prepared tetraarylborates undergo selective (cross)-coupling through oxidation with Bobbitt's salt to give symmetric and unsymmetric biaryls. The organic oxoammonium salt can be used either as a stoichiometric oxidant or as a catalyst in combination with in situ generated NO2 and molecular oxygen as the terminal oxidant. For selected cases, oxidative coupling is also possible with NO2 /O2 without any additional nitroxide-based cocatalyst. Transition-metal-free catalytic oxidative ligand cross-coupling of tetraarylborates is unprecedented and the introduced method provides access to various biaryl and heterobiaryl systems.
Collapse
Affiliation(s)
- Carolin Gerleve
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| |
Collapse
|
34
|
Gerleve C, Studer A. Übergangsmetallfreie oxidative Kreuzkupplung von Tetraarylboraten zu Biarylen mit organischen Oxidationsmitteln. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Carolin Gerleve
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
35
|
Ye Z, Zhang H, Chen N, Wu Y, Zhang F. PIDA-Mediated Rearrangement for the Synthesis of Enantiopure Triazolopyridinones. Org Lett 2020; 22:6464-6467. [PMID: 32806197 DOI: 10.1021/acs.orglett.0c02278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A tandem oxidative cyclization/1,2-carbon migration of hydrazides for the synthesis of otherwise inaccessible hindered or enantiopure triazolopyridinones has been developed. This protocol exhibits broad substrate scope and can be easily scaled up by continuous flow synthesis under mild conditions. Most importantly, this method demonstrates a rearrangement with retention of configuration and can be readily applied for the late-stage modification of carboxylic-acid-containing pharmaceuticals, amino acids, and natural products to access enantiopure triazolopyridinones.
Collapse
Affiliation(s)
- Zenghui Ye
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Hong Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Na Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yanqi Wu
- Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
36
|
Ye Z, Wu Y, Chen N, Zhang H, Zhu K, Ding M, Liu M, Li Y, Zhang F. Enantiospecific electrochemical rearrangement for the synthesis of hindered triazolopyridinone derivatives. Nat Commun 2020; 11:3628. [PMID: 32686668 PMCID: PMC7371640 DOI: 10.1038/s41467-020-17389-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/18/2020] [Indexed: 01/30/2023] Open
Abstract
Triazolopyridinone derivatives are of high value in both medicinal and material chemistry. However, the chiral or hindered triazolopyridinone derivatives remain an underexplored area of chemical space because they are difficult to prepare via conventional methods. Here we report an electrochemical rearrangement for the efficient synthesis of otherwise inaccessible triazolopyridinones with diverse alkyl carboxylic acids as starting materials. This enables the efficient preparation of more than 60 functionalized triazolopyridinones under mild conditions in a sustainable manner. This method is evaluated for the late stage modification of bioactive natural products, amino acids and pharmaceuticals, and it is further applied to the decagram scale preparation of enantiopure triazolopyridinones. The control experiments support a mechanism involving an oxidative cyclization and 1,2-carbon migration. This facile and scalable rearrangement demonstrates the power of electrochemical synthesis to access otherwise-inaccessible triazolopyridinones and may find wide application in organic, material and medicinal chemistry. Chiral and hindered triazolopyridinone derivatives are an underexplored area of chemical space mainly due to their challenging synthesis via classical methods. Here, the authors report an electrochemical rearrangement for the synthesis of triazolopyridinones using diverse, available alkyl carboxylic acids as starting materials.
Collapse
Affiliation(s)
- Zenghui Ye
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, PR China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, PR China
| | - Yanqi Wu
- Zhejiang University of Technology, 310014, Hangzhou, PR China
| | - Na Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, PR China
| | - Hong Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, PR China
| | - Kai Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, PR China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, PR China
| | - Mingruo Ding
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, PR China
| | - Min Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, PR China
| | - Yong Li
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, PR China
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, PR China. .,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, PR China.
| |
Collapse
|
37
|
Zhang Y, Zhang D. Cu-Photoredox-catalyzed C(sp)-C(sp 3) coupling of redox-active esters with terminal alkynes. Org Biomol Chem 2020; 18:4479-4483. [PMID: 32490865 DOI: 10.1039/d0ob00835d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Visible-light-induced C(sp)-C(sp3) coupling of redox-active esters with terminal alkynes has been developed. The activation of carboxylic acids as their redox-active ester derivatives was important for this decarboxylative alkynylation. The strategy established here facilitates the straightforward introduction of triple-bonded functional groups and avoids additional photocatalysts. A wide range of primary, secondary and tertiary acids can be converted into the target products; so this reaction exhibits a broad substrate scope and tolerance of functional groups. Mechanistic experiments suggested that this reaction may undergo a radical process. Under mild reaction conditions, a copper acetylide ligand as a photocatalyst delivered an electron to redox-active ester derivatives, and generated alkyl radicals. The radicals reacted with Cu(ii) to deliver a Cu(iii) complex, and then reductive elimination gave the products.
Collapse
Affiliation(s)
- Yajing Zhang
- School of Science, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Dayong Zhang
- School of Science, China Pharmaceutical University, Nanjing 210009, P.R. China.
| |
Collapse
|
38
|
Zhao H, Xu X, Yu H, Li B, Xu X, Li H, Xu L, Fan Q, Walsh PJ. Rh(I)-Catalyzed C6-Selective Decarbonylative Alkylation of 2-Pyridones with Alkyl Carboxylic Acids and Anhydrides. Org Lett 2020; 22:4228-4234. [DOI: 10.1021/acs.orglett.0c01277] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Haoqiang Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Xin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Haiyang Yu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Bohan Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xingyu Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Huanrong Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Qinghua Fan
- Beijing National Laboratory for Molecular Sciences and Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
39
|
Liu JT, Hase H, Taylor S, Salzmann I, Forgione P. Approaching the Integer‐Charge Transfer Regime in Molecularly Doped Oligothiophenes by Efficient Decarboxylative Cross‐Coupling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiang Tian Liu
- Department of Chemistry and Biochemistry Concordia University 7141 rue Sherbrooke O. Montréal QC H4B 1R6 Canada
| | - Hannes Hase
- Department of Physics Concordia University 7141 rue Sherbrooke O. Montréal QC H4B 1R6 Canada
| | - Sarah Taylor
- Department of Chemistry and Biochemistry Concordia University 7141 rue Sherbrooke O. Montréal QC H4B 1R6 Canada
| | - Ingo Salzmann
- Department of Chemistry and Biochemistry Concordia University 7141 rue Sherbrooke O. Montréal QC H4B 1R6 Canada
- Department of Physics Concordia University 7141 rue Sherbrooke O. Montréal QC H4B 1R6 Canada
- Centre for Research in Molecular Modeling (CERMM) Centre for NanoScience Research (CeNSR) Concordia University 7141 rue Sherbrooke O. Montreal QC H4B 1R6 Canada
| | - Pat Forgione
- Department of Chemistry and Biochemistry Concordia University 7141 rue Sherbrooke O. Montréal QC H4B 1R6 Canada
- Center for Green Chemistry and Catalysis McGill University 801 rue Sherbrooke O. Montréal QC H3A 0B8 Canada
- Centre for Research in Molecular Modeling (CERMM) Centre for NanoScience Research (CeNSR) Concordia University 7141 rue Sherbrooke O. Montreal QC H4B 1R6 Canada
| |
Collapse
|
40
|
Dienedioic acid as a useful diene building block via directed Heck-decarboxylate coupling. Commun Chem 2020; 3:48. [PMID: 36703445 PMCID: PMC9814911 DOI: 10.1038/s42004-020-0295-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/20/2020] [Indexed: 01/29/2023] Open
Abstract
The concise construction of diene scaffolds is quite useful in the synthesis of polyenes. Many diene building blocks have been developed based on Suzuki, Still and Hiyama couplings. Herein, the commercially available and environmentally friendly compound dienedioic acid is used as a diene building block. Broad substrate scope, good functional group tolerance, and late-stage derivatization of complex drug molecules are achieved. Different moieties can be conveniently introduced to both sides. Piperine and the methyl ester of azoxymycin C are each prepared in three steps. Additionally, one product shows promising anticancer activities in leukemia K562 and MV-4-11 cells. Mechanistic studies indicate that the reaction proceeds through a Heck-decarboxylate coupling procedure, and the carboxylic group acts as a directing group to promote the reaction and control regioselectivity. Our research suggests that dienedioic acid can serve as a good alternative for diene preparation via a directed Heck-decarboxylate coupling.
Collapse
|
41
|
Hachem M, Schneider C, Hoarau C. Direct Stereoselective β-Arylation of Enol Ethers by a Decarboxylative Heck-Type Reaction. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mahmoud Hachem
- INSA Rouen, CNRS, COBRA (UMR 6014); Normandie Univ, UNIROUEN; 1 rue Tesnière 76 821 Mont-Saint-Aignan Cedex France
| | - Cédric Schneider
- INSA Rouen, CNRS, COBRA (UMR 6014); Normandie Univ, UNIROUEN; 1 rue Tesnière 76 821 Mont-Saint-Aignan Cedex France
| | - Christophe Hoarau
- INSA Rouen, CNRS, COBRA (UMR 6014); Normandie Univ, UNIROUEN; 1 rue Tesnière 76 821 Mont-Saint-Aignan Cedex France
| |
Collapse
|
42
|
Liu JT, Hase H, Taylor S, Salzmann I, Forgione P. Approaching the Integer-Charge Transfer Regime in Molecularly Doped Oligothiophenes by Efficient Decarboxylative Cross-Coupling. Angew Chem Int Ed Engl 2020; 59:7146-7153. [PMID: 31961982 DOI: 10.1002/anie.201914458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 01/08/2023]
Abstract
A library of symmetrical linear oligothiophene was prepared employing decarboxylative cross-coupling reaction as the key transformation. Thiophene potassium carboxylate salts were used as cross-coupling partners without the need of co-catalyst, base, or additives. This method demonstrates complete chemoselectivity and is a comprehensive greener approach compared to the existing methods. The modularity of this approach is demonstrated with the preparation of discreet oligothiophenes with up to 10 thiophene repeat units. Symmetrical oligothiophenes are prototypical organic semiconductors where their molecular electrical doping as a function of the chain length can be assessed spectroscopically. An oligothiophene critical length for integer charge transfer was observed to be 10 thiophene units, highlighting the potential use of discrete oligothiophenes as doped conduction or injection layers in organic electronics applications.
Collapse
Affiliation(s)
- Jiang Tian Liu
- Department of Chemistry and Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC, H4B 1R6, Canada
| | - Hannes Hase
- Department of Physics, Concordia University, 7141 rue Sherbrooke O., Montréal, QC, H4B 1R6, Canada
| | - Sarah Taylor
- Department of Chemistry and Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC, H4B 1R6, Canada
| | - Ingo Salzmann
- Department of Chemistry and Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC, H4B 1R6, Canada.,Department of Physics, Concordia University, 7141 rue Sherbrooke O., Montréal, QC, H4B 1R6, Canada.,Centre for Research in Molecular Modeling (CERMM), Centre for NanoScience Research (CeNSR), Concordia University, 7141 rue Sherbrooke O., Montreal, QC, H4B 1R6, Canada
| | - Pat Forgione
- Department of Chemistry and Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC, H4B 1R6, Canada.,Center for Green Chemistry and Catalysis, McGill University, 801 rue Sherbrooke O., Montréal, QC, H3A 0B8, Canada.,Centre for Research in Molecular Modeling (CERMM), Centre for NanoScience Research (CeNSR), Concordia University, 7141 rue Sherbrooke O., Montreal, QC, H4B 1R6, Canada
| |
Collapse
|
43
|
Yang Y, Canty AJ, McKay AI, Donnelly PS, O’Hair RAJ. Palladium-Mediated CO2 Extrusion Followed by Insertion of Isocyanates for the Synthesis of Benzamides: Translating Fundamental Mechanistic Studies To Develop a Catalytic Protocol. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00820] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yang Yang
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Allan J. Canty
- School of Natural Sciences-Chemistry, University of Tasmania, Private Bag
75, Hobart, Tasmania 7001, Australia
| | - Alasdair I. McKay
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul S. Donnelly
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard A. J. O’Hair
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
44
|
Just-Baringo X, Shin Y, Panigrahi A, Zarattini M, Nagyte V, Zhao L, Kostarelos K, Casiraghi C, Larrosa I. Palladium catalysed C-H arylation of pyrenes: access to a new class of exfoliating agents for water-based graphene dispersions. Chem Sci 2020; 11:2472-2478. [PMID: 34084412 PMCID: PMC8157272 DOI: 10.1039/c9sc05101e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/23/2020] [Indexed: 01/20/2023] Open
Abstract
A new and diverse family of pyrene derivatives was synthesised via palladium-catalysed C-H ortho-arylation of pyrene-1-carboxylic acid. The strategy affords easy access to a broad scope of 2-substituted and 1,2-disubstituted pyrenes. The C1-substituent can be easily transformed into carboxylic acid, iodide, alkynyl, aryl or alkyl functionalities. This approach gives access to arylated pyrene ammonium salts, which outperformed their non-arylated parent compound during aqueous Liquid Phase Exfoliation (LPE) of graphite and compare favourably to state-of-the-art sodium pyrene-1-sulfonate PS1. This allowed the production of concentrated and stable suspensions of graphene flakes in water.
Collapse
Affiliation(s)
- Xavier Just-Baringo
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Yuyoung Shin
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Adyasha Panigrahi
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Marco Zarattini
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Vaiva Nagyte
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ling Zhao
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester AV Hill Building, Oxford Road Manchester M13 9PL UK
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Igor Larrosa
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
45
|
Green KA, Hoover JM. Intermediacy of Copper(I) under Oxidative Conditions in the Aerobic Copper-Catalyzed Decarboxylative Thiolation of Benzoic Acids. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kerry-Ann Green
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jessica M. Hoover
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
46
|
Moon PJ, Lundgren RJ. Metal-Catalyzed Ionic Decarboxylative Cross-Coupling Reactions of C(sp3) Acids: Reaction Development, Mechanisms, and Application. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04956] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrick J. Moon
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Rylan J. Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
47
|
Temperini A, Lanari D, Colognese F, Piazzolla F. Scalable Multicomponent Synthesis of (Hetero)aryl-Substituted Phenyls: Focus on Metal-Free Halogenated Biaryls, 3-Arylindoles, and Isourolithine A Synthesis. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andrea Temperini
- Dipartimento di Scienze Farmaceutiche; Università di Perugia; Via del Liceo 1 06123 Perugia Italy
| | - Daniela Lanari
- Dipartimento di Scienze Farmaceutiche; Università di Perugia; Via del Liceo 1 06123 Perugia Italy
| | - Francesco Colognese
- Dipartimento di Scienze Farmaceutiche; Università di Perugia; Via del Liceo 1 06123 Perugia Italy
| | - Francesca Piazzolla
- School of Chemistry and Biochemistry; University of Geneva; 1211 Geneva Switzerland
| |
Collapse
|
48
|
Yang Z, Zhou L, Liu Y, Lu H, Wu F, Xie Y, Liu J. Base‐Promoted Metal‐Free Arylation of Benzoxazoles with Phenylglyoxylic Acids. ChemistrySelect 2019. [DOI: 10.1002/slct.201903641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhiyong Yang
- School of Chemical EngineeringGuizhou Institute of Technology Guizhou Province Guiyang 550003 P. R. China
| | - Liang Zhou
- School of Chemical EngineeringGuizhou Institute of Technology Guizhou Province Guiyang 550003 P. R. China
| | - Ying Liu
- School of Chemical EngineeringGuizhou Institute of Technology Guizhou Province Guiyang 550003 P. R. China
| | - Hongwen Lu
- School of Chemical EngineeringGuizhou Institute of Technology Guizhou Province Guiyang 550003 P. R. China
| | - Fengxuan Wu
- School of Chemical EngineeringGuizhou Institute of Technology Guizhou Province Guiyang 550003 P. R. China
| | - Yuxin Xie
- School of Chemical EngineeringGuizhou Institute of Technology Guizhou Province Guiyang 550003 P. R. China
| | - Jianle Liu
- School of Chemical EngineeringGuizhou Institute of Technology Guizhou Province Guiyang 550003 P. R. China
| |
Collapse
|
49
|
Zhao H, Xu X, Luo Z, Cao L, Li B, Li H, Xu L, Fan Q, Walsh PJ. Rhodium(i)-catalyzed C6-selective C-H alkenylation and polyenylation of 2-pyridones with alkenyl and conjugated polyenyl carboxylic acids. Chem Sci 2019; 10:10089-10096. [PMID: 32055363 PMCID: PMC6991184 DOI: 10.1039/c9sc03672e] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/09/2019] [Indexed: 01/02/2023] Open
Abstract
A versatile Rh(i)-catalyzed C6-selective decarbonylative C-H alkenylation of 2-pyridones with readily available, and inexpensive alkenyl carboxylic acids has been developed. This directed dehydrogenative cross-coupling reaction affords 6-alkenylated 2-pyridones that would otherwise be difficult to access using conventional C-H functionalization protocols. The reaction occurs with high efficiency and is tolerant of a broad range of functional groups. A wide scope of alkenyl carboxylic acids, including challenging conjugated polyene carboxylic acids, are amenable to this transformation and no addition of external oxidant is required. Mechanistic studies revealed that (1) Boc2O acts as the activator for the in situ transformation of the carboxylic acids into anhydrides before oxidative addition by the Rh catalyst, (2) a decarbonylation step is involved in the catalytic cycle, and (3) the C-H bond cleavage is likely the turnover-limiting step.
Collapse
Affiliation(s)
- Haoqiang Zhao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
- Roy and Diana Vagelos Laboratories , Penn/Merck Laboratory for High-Throughput Experimentation , Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , USA .
| | - Xin Xu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Zhenli Luo
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Lei Cao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Bohan Li
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Huanrong Li
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Lijin Xu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
- Beijing National Laboratory for Molecular Sciences and Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China .
| | - Qinghua Fan
- Beijing National Laboratory for Molecular Sciences and Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China .
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories , Penn/Merck Laboratory for High-Throughput Experimentation , Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , USA .
| |
Collapse
|
50
|
Barak DS, Dahatonde DJ, Batra S. Microwave‐Assisted Metal‐Free Decarboxylative Iodination/Bromination of Isoxazole‐4‐carboxylic Acids. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dinesh S. Barak
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031, Uttar Pradesh India
| | - Dipak J. Dahatonde
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031, Uttar Pradesh India
| | - Sanjay Batra
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031, Uttar Pradesh India
- Academy of Scientific and Innovative ResearchCSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad- 201002, Uttar Pradesh India
| |
Collapse
|