1
|
Rosales Martínez A, Rodríguez-Maecker RN, Rodríguez-García I. Unifying the Synthesis of a Whole Family of Marine Meroterpenoids through a Biosynthetically Inspired Sequence of 1,2-Hydride and Methyl Shifts as Key Step. Mar Drugs 2023; 21:md21020118. [PMID: 36827159 PMCID: PMC9962294 DOI: 10.3390/md21020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Marine meroterpenoids have attracted a great deal of attention from synthetic research groups due to their attractive and varied biological activities and their unique and diverse structures. In most cases, however, further biological studies have been severely limited mainly to the scarcity of natural supply and because almost none of the reported syntheses methods has enabled unified access for a large number of marine meroterpenoids with aureane and avarane skeletons. Based on our previous publications and the study of recent manuscripts on marine meroterpenoids, we have conceived a unified strategy for these fascinating marine compounds with aureane or avarane skeletons using available drimane compounds as starting materials. The key step is a biosynthetic sequence of 1,2-hydride and methyl shifts. This strategy is of great synthetic value to access marine meroterpenoids through easy chemical synthetic procedures. Finally, several retrosynthetic proposals are made for the future synthesis of several members of this class of meroterpenoids, focused on consolidating these 1,2-rearrangements as a versatile and unified strategy that could be widely used in the preparation of these marine meroterpenoids.
Collapse
Affiliation(s)
- Antonio Rosales Martínez
- Department of Chemical Engineering, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain
- Correspondence:
| | - Román Nicolay Rodríguez-Maecker
- Department of Energy and Mechanics, Carrera de Ingeniería Petroquímica, Universidad de las Fuerzas Armadas-ESPE, Latacunga 050150, Ecuador
| | | |
Collapse
|
2
|
Wu Y, Du X, Wang X, Liu H, Zhou L, Tang Y, Li D. Bio-inspired construction of a tetracyclic ring system with an avarane skeleton: total synthesis of dactyloquinone A. Org Chem Front 2022. [DOI: 10.1039/d2qo00792d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the asymmetric construction of an avarane skeleton. The strategy involves a Lewis acid-catalyzed cyclization reaction, which drives the methyl groups of two different configurations at the C-4 site to migrate by 1, 2-rearrangement.
Collapse
Affiliation(s)
- Yumeng Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xuanxuan Du
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xianyang Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Hainan Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yu Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
3
|
Baars J, Grimm I, Blunk D, Neudörfl J, Schmalz H. Enantioselektive Totalsynthese und Strukturrevision von Dysiherbol A. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Julian Baars
- University of Cologne Department of Chemistry Greinstraße 4 50939 Köln Deutschland
| | - Isabelle Grimm
- University of Cologne Department of Chemistry Greinstraße 4 50939 Köln Deutschland
| | - Dirk Blunk
- University of Cologne Department of Chemistry Greinstraße 4 50939 Köln Deutschland
| | - Jörg‐Martin Neudörfl
- University of Cologne Department of Chemistry Greinstraße 4 50939 Köln Deutschland
| | - Hans‐Günther Schmalz
- University of Cologne Department of Chemistry Greinstraße 4 50939 Köln Deutschland
| |
Collapse
|
4
|
Baars J, Grimm I, Blunk D, Neudörfl J, Schmalz H. Enantioselective Total Synthesis and Structural Revision of Dysiherbol A. Angew Chem Int Ed Engl 2021; 60:14915-14920. [PMID: 33978302 PMCID: PMC8251742 DOI: 10.1002/anie.202105733] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 12/25/2022]
Abstract
A 12-step total synthesis of the natural product dysiherbol A, a strongly anti-inflammatory and anti-tumor avarane meroterpene isolated from the marine sponge Dysidea sp., was elaborated. As key steps, the synthesis features an enantioselective Cu-catalyzed 1,4-addition/enolate-trapping opening move, an Au-catalyzed double cyclization to build up the tetracyclic core-carbon skeleton, and a late installation of the C5-bridgehead methyl group via proton-induced cyclopropane opening associated with spontaneous cyclic ether formation. The obtained pentacyclic compound (corresponding to an anhydride of the originally suggested structure for dysiherbol A) showed identical spectroscopic data as the natural product, but an opposite molecular rotation. CD-spectroscopic measurements finally confirmed that both the constitution and the absolute configuration of the originally proposed structure of (+)-dysiherbol A need to be revised.
Collapse
Affiliation(s)
- Julian Baars
- University of CologneDepartment of ChemistryGreinstrasse 450939CologneGermany
| | - Isabelle Grimm
- University of CologneDepartment of ChemistryGreinstrasse 450939CologneGermany
| | - Dirk Blunk
- University of CologneDepartment of ChemistryGreinstrasse 450939CologneGermany
| | | | | |
Collapse
|
5
|
Chong C, Zhang Q, Ke J, Zhang H, Yang X, Wang B, Ding W, Lu Z. Total Synthesis of Anti‐Cancer Meroterpenoids Dysideanone B and Dysiherbol A and Structural Reassignment of Dysiherbol A. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chuanke Chong
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
| | - Qunlong Zhang
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
| | - Jia Ke
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
| | - Haiming Zhang
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
| | - Xudong Yang
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
| | - Bingjian Wang
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
| | - Wei Ding
- Tianjin Key Laboratory of Human Development and Reproductive Regulation Tianjin Central Hospital of Gynecology Obstetrics Nankai University 156 Third Rd Tianjin 300052 China
| | - Zhaoyong Lu
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
- State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 China
| |
Collapse
|
6
|
Chong C, Zhang Q, Ke J, Zhang H, Yang X, Wang B, Ding W, Lu Z. Total Synthesis of Anti-Cancer Meroterpenoids Dysideanone B and Dysiherbol A and Structural Reassignment of Dysiherbol A. Angew Chem Int Ed Engl 2021; 60:13807-13813. [PMID: 33847042 DOI: 10.1002/anie.202100541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/30/2021] [Indexed: 01/01/2023]
Abstract
The first total synthesis of marine anti-cancer meroterpenoids dysideanone B and dysiherbol A have been accomplished in a divergent way. The synthetic route features: 1) a site and stereoselective α-position alkylation of a Wieland-Miescher ketone derivative with a bulky benzyl bromide to join the terpene and aromatic moieties together and set the stage for subsequent cyclization reactions; 2) an intramolecular radical cyclization to construct the 6/6/6/6-tetracycle of dysideanone B and an intramolecular Heck reaction to forge the 6/6/5/6-fused core structure of dysiherbol A. A late-stage introduction of the ethoxy group in dysideanone B reveals that this group might come from the solvent ethanol. The structure of dysiherbol A has been revised based on our chemical total synthesis.
Collapse
Affiliation(s)
- Chuanke Chong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China
| | - Qunlong Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China
| | - Jia Ke
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China
| | - Haiming Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China
| | - Xudong Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China
| | - Bingjian Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China
| | - Wei Ding
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University, 156 Third Rd, Tianjin, 300052, China
| | - Zhaoyong Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| |
Collapse
|
7
|
Schuppe AW, Liu Y, Newhouse TR. An invocation for computational evaluation of isomerization transforms: cationic skeletal reorganizations as a case study. Nat Prod Rep 2021; 38:510-527. [PMID: 32931541 PMCID: PMC7956923 DOI: 10.1039/d0np00005a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 2010 to 2020This review article describes how cationic rearrangement reactions have been used in natural product total synthesis over the last decade as a case study for the many productive ways by which isomerization reactions are enabling for synthesis. This review argues that isomerization reactions in particular are well suited for computational evaluation, as relatively simple calculations can provide significant insight.
Collapse
Affiliation(s)
- Alexander W Schuppe
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511-8107, USA.
| | | | | |
Collapse
|
8
|
A Concise Route for the Synthesis of Tetracyclic Meroterpenoids: (±)-Aureol Preparation and Mechanistic Interpretation. Mar Drugs 2020; 18:md18090441. [PMID: 32858988 PMCID: PMC7551916 DOI: 10.3390/md18090441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
A new concise general methodology for the synthesis of different tetracyclic meroterpenoids is reported: (±)-aureol (1), the key intermediate of this general route. The synthesis of (±)-aureol (1) was achieved in seven steps (28% overall yield) from (±)-albicanol. The key steps of this route include a C-C bond-forming reaction between (±)-albicanal and a lithiated arene unit and a rearrangement involving 1,2-hydride and 1,2-methyl shifts promoted by BF3•Et2O as activator and water as initiator.
Collapse
|
9
|
Inomata K, Narita S. Novel stereoselective 1,2-rearrangement of Swaminathan ketone derivatives bearing a 7-membered ring under solvolysis conditions. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
11
|
García PA, Hernández ÁP, San Feliciano A, Castro MÁ. Bioactive Prenyl- and Terpenyl-Quinones/Hydroquinones of Marine Origin †. Mar Drugs 2018; 16:E292. [PMID: 30134616 PMCID: PMC6165040 DOI: 10.3390/md16090292] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/05/2023] Open
Abstract
The sea is a rich source of biological active compounds, among which terpenyl-quinones/hydroquinones constitute a family of secondary metabolites with diverse pharmacological properties. The chemical diversity and bioactivity of those isolated from marine organisms in the last 10 years are summarized in this review. Aspects related to synthetic approaches towards the preparation of improved bioactive analogues from inactive terpenoids are also outlined.
Collapse
Affiliation(s)
- Pablo A García
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| | - Ángela P Hernández
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| | - Arturo San Feliciano
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| | - Mª Ángeles Castro
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| |
Collapse
|
12
|
Schiavo L, Lebedel L, Massé P, Choppin S, Hanquet G. Access to Wieland-Miescher Diketone-Derived Building Blocks by Stereoselective Construction of the C-9 Quaternary Carbon Center Using the Mukaiyama Aldol Reaction. J Org Chem 2018; 83:6247-6258. [PMID: 29601190 DOI: 10.1021/acs.joc.7b02862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Mukaiyama aldol reaction has been used to efficiently install a lateral chain at the C-9 position of the Wieland-Miescher ketone derivative 3 within two steps, representing a shortcut compared to that of the classical sequences. The treatment of the silylated enol ether 8 with a wide range of acetals in the presence of tin tetrachloride led to a the diastereoselective construction of the C-9 quaternary center of 33 new building blocks derived from the Wieland-Miescher ketone derivative 3.
Collapse
Affiliation(s)
- Lucie Schiavo
- Laboratoire d'Innovation Moléculaire et Applications, ECPM, UMR 7042 , Université de Strasbourg/Université de Haute-Alsace, CNRS , 67000 Strasbourg , France
| | - Ludivine Lebedel
- Laboratoire d'Innovation Moléculaire et Applications, ECPM, UMR 7042 , Université de Strasbourg/Université de Haute-Alsace, CNRS , 67000 Strasbourg , France
| | - Paul Massé
- Laboratoire d'Innovation Moléculaire et Applications, ECPM, UMR 7042 , Université de Strasbourg/Université de Haute-Alsace, CNRS , 67000 Strasbourg , France
| | - Sabine Choppin
- Laboratoire d'Innovation Moléculaire et Applications, ECPM, UMR 7042 , Université de Strasbourg/Université de Haute-Alsace, CNRS , 67000 Strasbourg , France
| | - Gilles Hanquet
- Laboratoire d'Innovation Moléculaire et Applications, ECPM, UMR 7042 , Université de Strasbourg/Université de Haute-Alsace, CNRS , 67000 Strasbourg , France
| |
Collapse
|
13
|
Evanno L, Lachkar D, Lamali A, Boufridi A, Séon-Méniel B, Tintillier F, Saulnier D, Denis S, Genta-Jouve G, Jullian JC, Leblanc K, Beniddir MA, Petek S, Debitus C, Poupon E. A Ring-Distortion Strategy from Marine Natural Product Ilimaquinone Leads to Quorum Sensing Modulators. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Laurent Evanno
- BioCIS; Université Paris-Sud; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - David Lachkar
- BioCIS; Université Paris-Sud; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Assia Lamali
- BioCIS; Université Paris-Sud; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Asmaa Boufridi
- BioCIS; Université Paris-Sud; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Blandine Séon-Méniel
- BioCIS; Université Paris-Sud; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Florent Tintillier
- EIO; UPF-IRD-Ifremer; Institut Louis Malardé; BP529 98713 Papeete Tahiti Polynésie française
| | - Denis Saulnier
- EIO; IRD-UPF-Ifremer; Institut Louis Malardé; BP 49 98719 Taravao Tahiti Polynésie française
| | - Stéphanie Denis
- BioCIS; Université Paris-Sud; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Grégory Genta-Jouve
- Dr Grégory Genta-Jouve; Laboratoire de Chimie-Toxicologie Analytique et Cellulaire (C-TAC); Université Paris Descartes; 4 Avenue de l'observatoire 75006 Paris France
| | | | - Karine Leblanc
- BioCIS; Université Paris-Sud; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Mehdi A. Beniddir
- BioCIS; Université Paris-Sud; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Sylvain Petek
- LEMAR; IRD-UBO-CNRS-IFREMER; IUEM; rue Dumont d'Urville 29280 Plouzané France
| | - Cécile Debitus
- LEMAR; IRD-UBO-CNRS-IFREMER; IUEM; rue Dumont d'Urville 29280 Plouzané France
| | - Erwan Poupon
- BioCIS; Université Paris-Sud; Université Paris-Saclay; 92290 Châtenay-Malabry France
| |
Collapse
|
14
|
Takeda Y, Nakai K, Narita K, Katoh T. A novel approach to sesquiterpenoid benzoxazole synthesis from marine sponges: nakijinols A, B and E–G. Org Biomol Chem 2018; 16:3639-3647. [DOI: 10.1039/c8ob00721g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nakijinols A, B, E, F and G were efficiently synthesized via the ring closure of the N-(2-hydroxyphenyl)-formamide or -acetamide moiety.
Collapse
Affiliation(s)
- Yuki Takeda
- Faculty of Pharmaceutical Sciences
- Tohoku Medical and Pharmaceutical University
- Sendai
- Japan
| | - Keiyo Nakai
- Faculty of Pharmaceutical Sciences
- Tohoku Medical and Pharmaceutical University
- Sendai
- Japan
| | - Koichi Narita
- Faculty of Pharmaceutical Sciences
- Tohoku Medical and Pharmaceutical University
- Sendai
- Japan
| | - Tadashi Katoh
- Faculty of Pharmaceutical Sciences
- Tohoku Medical and Pharmaceutical University
- Sendai
- Japan
| |
Collapse
|
15
|
A modular synthesis of tetracyclic meroterpenoid antibiotics. Nat Commun 2017; 8:2083. [PMID: 29234008 PMCID: PMC5727219 DOI: 10.1038/s41467-017-02061-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/02/2017] [Indexed: 11/08/2022] Open
Abstract
Stachyflin, aureol, smenoqualone, strongylin A, and cyclosmenospongine belong to a family of tetracyclic meroterpenoids, which, by nature of their unique molecular structures and various biological properties, have attracted synthetic and medicinal chemists alike. Despite their obvious biosynthetic relationship, only scattered reports on the synthesis and biological investigation of individual meroterpenoids have appeared so far. Herein, we report a highly modular synthetic strategy that enabled the synthesis of each of these natural products and 15 non-natural derivatives. The route employs an auxiliary-controlled Diels-Alder reaction to enable the enantioselective construction of the decalin subunit, which is connected to variously substituted arenes by either carbonyl addition chemistry or sterically demanding sp2-sp3 cross-coupling reactions. The selective installation of either the cis- or trans-decalin stereochemistry is accomplished by an acid-mediated cyclization/isomerization reaction. Biological profiling reveals that strongylin A and a simplified derivative thereof have potent antibiotic activity against methicillin-resistant Staphylococcus aureus.
Collapse
|
16
|
Yin X, Mato M, Echavarren AM. Gold(I)-Catalyzed Synthesis of Indenes and Cyclopentadienes: Access to (±)-Laurokamurene B and the Skeletons of the Cycloaurenones and Dysiherbols. Angew Chem Int Ed Engl 2017; 56:14591-14595. [PMID: 28941059 PMCID: PMC5698700 DOI: 10.1002/anie.201708947] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Indexed: 12/11/2022]
Abstract
The formal (3+2) cycloaddition between terminal allenes and aryl or styryl gold(I) carbenes generated by a retro-Buchner reaction of 7-substituted 1,3,5-cycloheptatrienes led to indenes and cyclopentadienes, respectively. These cycloaddition processes have been applied to the construction of the carbon skeleton of the cycloaurenones and the dysiherbols as well as to the total synthesis of (±)-laurokamurene B.
Collapse
Affiliation(s)
- Xiang Yin
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
| | - Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i VirgiliC/ Marcel⋅li Domingo s/n43007TarragonaSpain
| |
Collapse
|
17
|
Yin X, Mato M, Echavarren AM. Gold(I)-Catalyzed Synthesis of Indenes and Cyclopentadienes: Access to (±)-Laurokamurene B and the Skeletons of the Cycloaurenones and Dysiherbols. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708947] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiang Yin
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
| | - Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica; Universitat Rovira i Virgili; C/ Marcel⋅li Domingo s/n 43007 Tarragona Spain
| |
Collapse
|